
Lecture 6
Costs & Rewards

Alessandro Abate

Department of Computer Science
University of Oxford

Probabilistic Model Checking

2

Overview

• Specifying costs and rewards
− DTMCs
− hints at syntax for PRISM language

• Properties: expected reward values
− instantaneous
− cumulative
− reachability
− temporal logic extensions

• Model checking
− computing reward values

• Case study
− randomised contract signing

3

Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)
− real-valued quantities assigned to states and/or transitions
− these can have a wide range of possible interpretations

• Some examples:
− elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

• Costs or rewards?
− mathematically, no distinction between rewards and costs
− when interpreted, we assume that it is desirable to minimise

costs and to maximise rewards
− we will consistently use the terminology “rewards” regardless

4

Reward-based properties

• Properties of DTMCs augmented with rewards
− allow a range of quantitative measures of the system: notion

of expected value of rewards
− (alternative reward structures possible, e.g., based on var)
− rewards as specifications in an extension of PCTL

• More precisely, we use two distinct property classes:

• Instantaneous properties
− e.g. the expected value of the reward at given time point

• Cumulative properties
− e.g. the expected cumulated reward over a period/horizon

5

DTMC reward structures
• For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)

− ρ : S → ℝ≥0 is the state reward function (vector)
− ι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)
− “size of message queue”: ρ maps each state to the number of

jobs in the queue, ι is not used (equal to zero everywhere)

• Examples (for use with cumulative properties)
− “time-steps”: ρ returns 1 for all states and ι is zero

(equivalently, ρ is zero and ι returns 1 for all transitions)
− “number of messages lost”: ρ is zero and ι maps transitions

corresponding to a message loss to 1
− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ι as the energy cost of
each transition

6

Expected reward properties

• Expected (“average”) values of rewards…
• Instantaneous

− “the expected value of the state reward at time-step k”
− e.g. “the expected nr. of jobs at exactly 90 seconds after start”

• Cumulative (time-bounded)
− “the expected reward cumulated up to time-step k”
− e.g. “the expected power consumption accrued over one hour”

• Reachability (also cumulative)
− “the expected reward cumulated before reaching states T⊆S”
− e.g. “the expected time for the algorithm to terminate”

7

Expectation

• Probability space (Ω, Σ, Pr)
− probability measure Pr : Σ → [0,1]

• Random variable X
− a measurable function X : Ω → Δ
− usually real-valued, i.e.: X : Ω → ℝ

• Expected (“average”) value of the random variable: Exp(X)

Exp(X) = X(w)dPr
wÎWò

Exp(X) = X(w)× Pr(w)
wÎW

å discrete case

8

Reachability + rewards

• Expected reward cumulated before reaching states T⊆S
• Define a random variable:

− XReach(T) : Path(s) → ℝ≥0

− where for an infinite path ω= s0s1s2…

− where kT = min{ j | sj ∈ T }
• Then define:

− ExpReach(s, T) = Exp(s, XReach(T))
− denoting: expectation of the random variable XReach(T)

with respect to the probability measure Prs, i.e.:

otherwise
 0i all for T s if

Ts if

)s,s()s(ρ

0
)ω(X i

0

1-k
0i 1iii

)TReach(
T

³Ï
Î

+
¥

ïî

ï
í
ì

=
å = +ι

ò Î)s(Pathω s)T(achRe Prd)ω(X

9

Computing the rewards

• Determine states for which ProbReach(s, T) = 1

• Solve linear equation system:

− ExpReach(s, T) =

¥
0

r(s) + P(s,s')× i(s,s') + ExpReach(s', T)()
s'ÎS
å

ì

í
ï
ï

î
ï
ï

if ProbReach(s, T) < 1
if s Î T
otherwise

10

Example

• Let ρ = [0, 1, 0, 0] and ι(s,s’) = 0 for all s,s’ ∈ S
• Compute ExpReach(s0, {s3})

− (“expected number of times pass through s1 to get to s3”)
• First check:

− ProbReach({s3}) = { 1, 1, 1, 1 }
• Then solve linear equation system:

− (letting xi = ExpReach(si, {s3})):
− x0 = 0 + 1·(0 + x1)
− x1 = 1 + 0.01·(0+x2)+0.01·(0+x1)+0.98·(0+x3)
− x2 = 0 + 1·(0 + x0)
− x3 = 0
− Solution: ExpReach({s3}) = [100/98, 100/98, 100/98, 0]

• So: ExpReach(s0, {s3}) = 100/98 ≈ 1.020408

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

11

Specifying reward properties in PRISM

• PRISM extends PCTL to include expected reward properties
− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

12

Random variables for reward formulae

• Definition of random variables for the R operator:
− for an infinite path ω= s0s1s2…

− where kφ = min{ j | sj ⊨ φ }

 otherwise
0k if

)s,s()s(ρ
0)ω(X 1k

0i 1iii
kC

=
+î

í
ì= å -

= +
£ ι

)s(ρ)ω(X kkI ==

otherwise
 0i all for)φSat(s if

)φSat(s if

)s,s()s(ρ

0
)ω(X i

0

1-k
0i 1iii

φF
φ

³Ï
Î

+
¥

ïî

ï
í
ì

=
å = +ι

XFφ
same as

XReach(Sat(φ))
from earlier

13

Reward formula semantics

• Formal semantics of the three reward operators:

• For a state s in the DTMC:

− s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r
− s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r
− s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) → ℝ≥0 with respect to the probability measure Prs

• We can also define R=? […] properties, as for the P operator
− e.g. R=? [F Φ] returns the value Exp(s, XFΦ)

Exp(s, XFΦ)
same as

ExpReach(s, Sat(Φ))
seen earlier

14

Model checking reward operators

• As for model checking P~p […], in order to check R~r […]
− compute reward values for all states, compare with bound r

• Instantaneous: R~r [I=k] - compute Exp(XI=k)
− solution of recursive equations
− essentially: k matrix-vector multiplications

• Cumulative: R~r [C≤k] - compute Exp(XC≤k)
− solution of recursive equations
− essentially: k matrix-vector multiplications

• Reachability: R~r [F φ] - compute Exp(XFΦ)
− graph analysis + solution of linear system of equations
− (see computation of ExpReach(s, T) earlier)

Model checking
R operator has

same complexity
as P operator

15

Model checking R~r [I=k]

• Expected instantaneous reward at step k
− can be defined in terms of transient probabilities for step k

• Exp(s, XI=k) = Σs’∈S πs,k(s’) · ρ(s’)

• Exp(XI=k) = Pk · ρ

• Yielding recursive definition:
− Exp(XI=0) = ρ
− Exp(XI=k) = P · Exp(XI=(k-1))
− i.e. k matrix-vector multiplications
− note: “backward” computation (like bounded-until prob)

rather than “forward” computation (like transient probs)

16

Example

• Let ρ = [0, 1, 0, 0] and ι(s,s’) = 0 for all s,s’ ∈ S
• Compute Exp(s0, XI=2)

− (“probability of being in state s1 at time 2”)
− Exp(XI=0) = [0, 1, 0, 0]
− Exp(XI=1) = P · Exp(XI=0)

− Exp(XI=2) = P · Exp(XI=1)

• Result: Exp(s0, XI=2) = 0.01

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
×
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

0
0
0.01
1

0
0
1
0

1000
0001

0.980.010.010
0010

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
×
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

0
1

0.0001
0.01

0
0
0.01
1

1000
0001

0.980.010.010
0010

17

Model checking R~r [C≤k]

• Expected reward cumulated up to time step k

• Again, a recursive definition:

• And in matrix/vector notation:

− where ∙ denotes Schur (pointwise) matrix multiplication
− and 1 is a unit vector (of all 1s)

()
ïî

ï
í
ì

>+×+
=

= å
Î

-££ 0kif)X ,Exp(s')'s,s()s'(s,)s(ρ
0kif0

)X Exp(s,
Ss'

1kCkC ιP

î
í
ì

>×+×•+
=

=
-£

£ 0kif)X(ExpP1)(ρ
0kif0)X(Exp

1kC
kC ιP

18

Case study: Contract signing

• Two parties want to agree on a contract
− each will sign if the other will sign, but do not trust each other
− there may be a trusted third party (judge)
− but it should only be used if something goes wrong

• In real life: contract signing with pen and paper
− sit down and write signatures simultaneously

• On the Internet…
− how to exchange commitments on an asynchronous network?
− “partial secret exchange protocol” [EGL85]

19

Contract signing – EGL protocol

• Partial secret exchange protocol for 2 parties (A and B)

• A (B) holds 2N secrets a1,…,a2N (b1,…,b2N)
− a secret is a binary string of length L
− secrets partitioned into pairs: e.g. { (ai, aN+i) | i=1,…,N }
− A (B) committed if B (A) knows one of A’s (B’s) pairs

• Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y)
− Sender S sends x and y to receiver R
− R receives x with probability ½ otherwise receives y
− S does not know which one R receives
− if S cheats then R can detect this with probability ½

20

EGL protocol - Step 1

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

OT(A,B,ai,aN+i)

Party A Party B

OT(B,A,bi,bN+i)

(repeat for i=1…N)

21

EGL protocol - Step 2

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B
A sends bit i
of aj to B for

j=1…2N

Then B does
the same

for bj

(repeat over i=1…L)

22

Contract signing - Results

• Modelled in PRISM as a DTMC (no concurrency) [NS06]

• Highlights a weakness in the protocol
− party B can act maliciously by quitting the protocol early
− this behaviour not considered in the original analysis

• PRISM analysis shows
− if B stops participating in the protocol as soon as he/she has

obtained one of A pairs, then, with probability 1, at this point:
• B possesses a pair of A’s secrets
• A does not have complete knowledge of any pair of B’s secrets

− protocol is not fair under this attack:
− B has a distinct advantage over A

23

Contract signing - Results

• The protocol is unfair because in step 2:
− A sends a bit for each of its secrets before B does

• Can we make this protocol fair by changing the message
sequence scheme?

• Since the protocol is asynchronous the best we can hope
for is:
− B (or A) has this advantage with probability ½

• We consider 3 possible alternative message sequence
schemes (EGL2, EGL3, EGL4)

24

(step 1)
…
(step 2)
for (i=1,…,L)

for (j=1,…,N) A transmits bit i of secret aj to B
for (j=1,…,N) B transmits bit i of secret bj to A
for (j=N+1,…,2N) A transmits bit i of secret aj to B
for (j=N+1,…,2N) B transmits bit i of secret bj to A

Contract signing - EGL2

25

Modified step 2 for EGL2

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B
A sends bit i
of aj to B for

j=1…N

Then B does
the same

for bj

(after j=1…N, send j=N+1…2N)
(then repeat over i=1…L)

26

(step 1)
…
(step 2)
for (i=1,…,L) for (j=1,…,N)

A transmits bit i of secret aj to B
B transmits bit i of secret bj to A

for (i=1,…,L) for (j=N+1,…,2N)
A transmits bit i of secret aj to B
B transmits bit i of secret bj to A

Contract signing - EGL3

27

Modified step 2 for EGL3

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party B
A sends bit i

of aj to B

Then B does
the same

for bj

(repeat for j=1…N and for i=1…L)
(then send j=N+1…2N for i=1…L)

28

(step 1)
…
(step 2)
for (i=1,…,L)

A transmits bit i of secret a1 to B
for (j=1,…,N) B transmits bit i of secret bj to A
for (j=2,…,N) A transmits bit i of secret aj to B

for (i=1,…,L)
A transmits bit i of secret aN+1 to B
for (j=N+1,…,2N) B transmits bit i of secret bj to A
for (j=N+2,…,2N) A transmits bit i of secret aj to B

Contract signing - EGL4

29

Modified step 2 for EGL4

1…L

1…N

N+1…2N

1…L

1…N

N+1…2N

Party A Party BA sends bit i
of a1 to B

Then A sends
bit i of aj to B

for j=2…N

(repeat for i=1…L)
(then send j=N+1…2N in same fashion)

Then B sends
bit i of bj to B

for j=1…N

30

Contract signing - Results

• The chance that the protocol is unfair (N = secrets)
− probability that one party gains knowledge first
− P=? [F (knowB ∧¬knowA)] and P=? [F (knowA ∧¬knowB)]

31

Contract signing - Results

• The influence that each party has on the fairness
− once a party knows a pair, the expected number of messages

from this party required before the other party knows a pair

R=? [F knowA]

Reward structure:

Assign 1 to transitions
corresponding to messages
being sent from B to A
after B knows a pair

(and 0 to all other transitions)

32

Contract signing - Results

• The duration of unfairness of the protocol
− once a party knows a pair, the expected total number of

messages that need to be sent before the other knows a pair

R=? [F knowA]

Reward structure:

Assign 1 to transitions
corresponding to any message
being sent between A and B
after B knows a pair

(and 0 to all other transitions)

33

Contract signing - Results

• Results show EGL4 is the ‘fairest’ protocol

• Except for measure of “duration of unfairness”
− expected messages that need to be sent for a party to know a

pair once the other party knows a pair
− this value is larger for B than for A
− and, in fact, as N increases, this measure:

• increases for B
• decreases for A

• Solution:
− if a party sends a sequence of bits in a row (without the other

party sending messages in between), require that the party
send these bits as a single message

34

Contract signing - Results

• The duration of unfairness of the protocol
− (with the solution on the previous slide applied to all variants)

35

Summing up…

• Costs and rewards
− real-valued assigned to states/transitions of a DTMC

• Properties
− expected instantaneous/cumulative reward values
− PRISM property specifications: adds R operator to PCTL

• Model checking
− instantaneous: matrix-vector multiplications
− cumulative: matrix-vector multiplications
− reachability: graph analysis + linear equation systems

• Case study
− randomised contract signing

