Probabilistic Model Checking

Lecture 6
Costs & Rewards

Alessandro Abate

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

Specifying costs and rewards
— DTMCs
— hints at syntax for PRISM language
Properties: expected reward values
— instantaneous
— cumulative
— reachability
— temporal logic extensions
Model checking
— computing reward values
Case study
— randomised contract signing

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions

— these can have a wide range of possible interpretations

- Some examples:
— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

- Costs or rewards?
— mathematically, no distinction between rewards and costs

— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

— we will consistently use the terminology “rewards” regardless

Reward-based properties

Properties of DTMCs augmented with rewards

— allow a range of quantitative measures of the system: notion
of expected value of rewards

— (alternative reward structures possible, e.g., based on var)
— rewards as specifications in an extension of PCTL

More precisely, we use two distinct property classes:

Instantaneous properties
— e.g. the expected value of the reward at given time point

Cumulative properties
— e.g. the expected cumulated reward over a period/horizon

DTMC reward structures

For a DTMC (S,si.i,P,L), a reward structure is a pair (p,u)
— p:S — R.gis the state reward function (vector)
—1:S XS — R.gis the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”; p maps each state to the number of
jobs in the queue, L is not used (equal to zero everywhere)

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and tis zero
(equivalently, p is zero and t returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and v as the energy cost of
each transition

Expected reward properties

Expected (“average”) values of rewards...

Instantaneous
— “the expected value of the state reward at time-step k”
— e.g. “the expected nr. of jobs at exactly 90 seconds after start”

- Cumulative (time-bounded)

— “the expected reward cumulated up to time-step k”
— e.g. “the expected power consumption accrued over one hour”

Reachability (also cumulative)
— “the expected reward cumulated before reaching states T<S”
— e.g. “the expected time for the algorithm to terminate”

Expectation

. Probability space (Q, Z, Pr)

— probability measure Pr: 3 — [0,1]

- Random variable X

— a measurable function X : Q — A
— usually real-valued, i.e.: X: Q - R

- Expected (“average”) value of the random variable: Exp(X)

EXp(X) _ ZX((D) PI'((D) 4\' d|screteca5e

e e ;

Exp(X) = | X(w)dPr

Reachability + rewards

Expected reward cumulated before reaching states T<S
Define a random variable:
— Xgeach(m) : Path(s) — R.q
— where for an infinite path w= sgs;s;...

0 ifs,eT
Xgeachm (W) = o0 ifs ¢Tforalli>0
Z:(:O p(s) +1(s;,50,) otherwise

— where ky = min{j|s; € T}

- Then define:

— ExpReach(s, T) = Exp(s, Xgreach)

— denoting: expectation of the random variable Xgeach(m
with respect to the probability measure Prg, i.e.:

Pr,
-[DePath(s) Reach T)(w) d

Computing the rewards

- Determine states for which ProbReach(s, T) = 1

- Solve linear equation system:

— ExpReach(s, T) =

0 if ProbReach(s, T) < 1
) 0 ifseT
B(S)-i-ZP(S,S')- 1(s,s") + ExpReach(s', T)) otherwise

s'eS

Example

- First check:

- Then solve linear equation system:

- letp=10,1,0,0]and us,s’) =0 foralls,s’ €S
. Compute ExpReach(s,, {s3})
— (“expected number of times pass through s; to get to s3”)

— ProbReach({ss) ={1,1,1,1}

— (letting x; = ExpReach(s;, {s3})):
—Xo=0+1-(0 + x3)

— X7 =1+0.01-(0+%x,)+0.07T-(0+x7)+0.98-(0+x3)

— X, =04+ 1-(0 + Xxp)

— X3=0

— Solution: ExpReach({s3}) = [100/98, 100/98, 100/98, 0]
- So: ExpReach(sy, {s3}) = 100/98 =~ 1.020408

10

Specifying reward properties in PRISM

- PRISM extends PCTL to include expected reward properties
— add an R operator, which is similar to the existing P operator

FUeEsEEEsEssEEssEssEssEEsEEsEEsEEssEssEEEEEe

expected
: reward is ~r

— ¢ = . [P [w] [RG[IFC] [RGy[C=k] | Ry [F o]

___ N I

. “instantaneous” : | “cumulative” i i “reachability”

— wherer € R.g, ~ € {<,>,<,2}, k e N

- R., [-] means “the expected value of - satisfies ~r”

11

Random variables for reward formulae

- Definition of random variables for the R operator:
— for an infinite path w= sgs;s>...

X (W) = p(s,) Xr4
: same as

XReach(Sat(cb))
from earlier :

) 0 ifk =0
Xca (W) —{ Z:.‘ p(s;) +L(s;,s,,) otherwise

0 if s, € Sat(d)
Xro(W) = ® if s, ¢ Sat(¢) forall i>0
Z:(:%_]_P(Si)ﬂ(si,sm) otherwise

— where ky = min{j [s; = ¢ }

12

Reward formula semantics

Formal semantics of the three reward operators:

For a state s in the DTMC: T — ;
Exp(s, Xro)

same as
—sER.,[IF] < Exp(s, Xi—) ~ r . ExpReach(s, Sat(®d)) :

—sER,[C=] o Exp(s, Xce) ~ r/ seen earlier

—sER,[F®] & Exp(s, Xpp) ~ 1

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R.q with respect to the probability measure Pr;

- We can also define R_, [...] properties, as for the P operator
— e.g. R_; [F &] returns the value Exp(s, Xgo)

13

Model checking reward operators

- As for model checking P_,[...], in order to check R, [...]
— compute reward values for all states, compare with bound r

Instantaneous: R_, [17k] - compute Exp(X,_,)
— solution of recursive equations
— essentially: k matrix-vector multiplications
- Cumulative: R_, [C=k'] - compute Exp(Xc~y) _ '\lgood:;r;?gflﬂgsg
— solution of recursive equations . same complexity
— essentially: k matrix-vector multiplications i . as b operator
Reachability: R., [F ¢] - compute Exp(X¢o)
— graph analysis + solution of linear system of equations
— (see computation of ExpReach(s, T) earlier)

14

Model checking R_, [17K]

- Expected instantaneous reward at step k
— can be defined in terms of transient probabilities for step k

- Exp(s, Xi_k) = Zgcs T i(s7) - p(s’)
- Exp(Xi_) = Pk - p

- Yielding recursive definition:

— Exp(Xi—0) = p

— Exp(Xi—) = P - EXp(Xi—k-1y)

— i.e. k matrix-vector multiplications

— note: “backward” computation (like bounded-until prob)
rather than “forward” computation (like transient probs)

15

Example

- letp=10,1,0,0]and us,s’) =0 foralls,s’ €S

- Compute Exp(sq, X|—>) 1 {fail}
— (“probability of being in state s; at time 2”)
— Exp(Xj—9) =[0, 1,0, 0]
— Exp(Xi=1) = P - Exp(Xi-o)

O 1 0 0]7Jo0]
|0 0.01 0.01 0.98|[1]|0.01 0.01 tsucc}
/10 0 0 |'|0|7] O

0O 0 O 1 110 0

— Exp(Xi=2) = P - Exp(X|y)

0O 1 0 0 1 0.01
_|0 0.01 0.01 0.98| (0.01|_1{0.000T
B (1) 0 0 0 0 |]

0 0 1 0 0

. Result: Exp(sg, X,_,) = 0.01

16

Model checking R_, [C=k]

- Expected reward cumulated up to time step k

- Again, a recursive definition:

0 ifk =0
EXP(S, Xca) = 1 p(s) + Y P(s,5")- (Us,") + EXp(s', Xcy 1) ifk >0

s'eS

- And in matrix/vector notation:

Exp(Xcy) =) i
Lp C<k/ — E+(P.L)']+P'Ex_p(XCsk—1) ifk >0

— where ¢ denotes Schur (pointwise) matrix multiplication
— and 1 is a unit vector (of all 15s)

17

Case study: Contract signing

- Two parties want to agree on a contract

— each will sign if the other will sign, but do not trust each other
— there may be a trusted third party (judge)
— but it should only be used if something goes wrong

In real life: contract signing with pen and paper
— sit down and write signatures simultaneously

- On the Internet...

— how to exchange commitments on an asynchronous network?
— “partial secret exchange protocol” [EGL85]

18

Contract signing - EGL protocol

- Partial secret exchange protocol for 2 parties (A and B)

- A (B) holds 2N secrets a;,...,ay (by,...,b5n)

— a secret is a binary string of length L

— secrets partitioned into pairs: e.g. { (a;, an,;i) | i=1,...,N }
— A (B) committed if B (A) knows one of A’s (B’s) pairs

- Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y)
— Sender S sends x and y to receiver R

— R receives x with probability /2 otherwise receives y

— S does not know which one R receives

— if S cheats then R can detect this with probability 12

19

EGL protocol - Step 1

Party A Party B
1...L 1...L
f— G—
A A
1...N 1...N

OT(Aa B,ai,aN+i)

—
OT(B,A,b;,by.) I
N+1...2N N+1...2N

> <

o

(repeat for i=1...N)

20

EGL protocol - Step 2

Party A o Party B
A sends bit i
1...L ofaj to B for 1...L

A ' ' > j=1...2N ' ' A

> <
1..N > I:{) <+ 1...N

> <
> <

v > <+ v

e (58
> <

N+1...2N > - N+1...2N

> Then B does -«
> the same <

v > for b; D v

(repeat over i=1...L)

21

Contract signing - Results

Modelled in PRISM as a DTMC (no concurrency) [NSO6]

Highlights a weakness in the protocol
— party B can act maliciously by quitting the protocol early
— this behaviour not considered in the original analysis

PRISM analysis shows

— if B stops participating in the protocol as soon as he/she has
obtained one of A pairs, then, with probability 1, at this point:

. B possesses a pair of A’s secrets
. A does not have complete knowledge of any pair of B’s secrets

— protocol is not fair under this attack:
— B has a distinct advantage over A

22

Contract signing - Results

- The protocol is unfair because in step 2:
— A sends a bit for each of its secrets before B does

- Can we make this protocol fair by changing the message
sequence scheme?

- Since the protocol is asynchronous the best we can hope
for is:

— B (or A) has this advantage with probability 2

- We consider 3 possible alternative message sequence
schemes (EGL2, EGL3, EGL4)

23

Contract signing - EGL2

(step 1)

(step 2)

for (i=1,...,L)
for (j= 1 ..,N) A transmits bit i of secret a; to B
for (j=1,...,N) B transmits bit i of secret b; to A

(
for (j= N+1 ,2N) A transmits bit i of secret a; to B
for (j=N+1,...,2N) B transmits bit i of secret b; to A

24

Modified step 2 for EGL2

Party A o Party B
A sends bit i

1...L ofaj to B for 1...L
j=1...N

111

> <
> <«

N+1...2N Then B does N+1...2N

the same
v for b, v

(after j=1...N, send j=N+1...2N)
(then repeat over i=1...L)

25

Contract sighing — EGL3

(step 1)

(step 2)

for (i=1,...,,L) for (j=1,...,N)
A transmits bit i of secret a; to B
B transmits bit i of secret b; to A

for (i=1,...,L) for (j=N+1,...,2N)
A transmits bit i of secret a; to B
B transmits bit i of secret b; to A

26

Modified step 2 for EGL3

Party A o Party B
A sends bit i
1...L ofaj to B 1...L
«—> «—>
A > <— A
1...N I::> 1...N
v v
A = '
N+1...2N Then B does N+1...2N
the same
v for b; v

(repeat for j=1...N and for i=1...L)
(then send j=N+1...2N for i=1...L)

27

Contract signing - EGL4

(step 1)

(step 2)
for (i=1,...,L)
A transmits bit i of secret a; to B
for (j=1,...,N) B transmits bit i of secret b; to A
for (j=2,...,N) A transmits bit i of secret a; to B
for (i=1,...,L)
A transmits bit i of secret ay.; to B
for (j=N+1,...,2N) B transmits bit i of secret b; to A
for (j=N+2,...,2N) A transmits bit i of secret a; to B

28

Modified step 2 for EGL4

Party A A sends bit i Party B
of a; to B

1...L 1...L
e |::> e

Then B sends
bit i of b; to B
for j=1...N

e

Then A sends
N+1...2N bit i of a; to B N+1...2N
for j=2...N

\/ ::> \/

(repeat for i=1...L)
(then send j=N+1...2N in same fashion)

11111

> <
> <

29

Contract signing - Results

- The chance that the protocol is unfair (N = secrets)
— probability that one party gains knowledge first
— P_,[F (knowg A—know,) | and P_,[F (knowa A—knowgp)]

1
; | |Party A

—e—EGL
~db-d-b-b-d-b-d-b--b-A-d-A-A-4-4 | —8—EGL2
—&—EGL3
—o—EGL4
o Party B

- ¢ -EGL4
,AA-AM&AAA-A-A-LAAAA-A-A -‘-EGL3
-8 -EGL2
| |[-e=-EGL

o
®

o
o

Probability

=
: o
T

o
N

\
]

-8

0-e0o0800000000000000
2 4 6 8 1ON12 14 16 18 20

Contract signing - Results

- The influence that each party has on the fairness

— once a party knows a pair, the expected number of messages
from this party required before the other party knows a pair

R=?[F know,]
Party A
v 1. —e—EGL _
S —e—EGL2 Reward structure:
2 Y ——EGL3
E 1:rl *°9 --,3’:\3‘%‘:‘»' 90-0-0-0-0-0-0-0-0-0¢ PanyE(B3L4 ASSign] to tran5|t|0n5
3 V*A.‘ ¢ -EGL4 corresponding to messages
d-A- .
8 Fhbbaaabdat|-4-EGL3 being sent from B to A
w 0.5 -8 -EGL2 f .
-e-EGL after B knows a pair
“!

(and O to all other transitions)
2 4 6 8 10 12 14 16 18 20

N

31

Contract signing - Results

- The duration of unfairness of the protocol

— once a party knows a pair, the expected total number of
messages that need to be sent before the other knows a pair

Expected Messages (total)

NN
o

W
(8]

W
o

10

. » -
2 4 6 8 10 12 14 16 1820
N

Party A
—e—EGL
—a—EGL2
—4&—EGL3
- EGL4

" Party B

s -EGL4
-Ao-EGL3

o4 |-®-EGL2

-e-EGL

R=?[F know,y]

Reward structure:

Assign 1 to transitions
corresponding to any message
being sent between A and B

after B knows a pair

(and O to all other transitions)

32

Contract signing - Results

Results show EGL4 is the ‘fairest’ protocol

Except for measure of “duration of unfairness”

— expected messages that need to be sent for a party to know a
pair once the other party knows a pair

— this value is larger for B than for A
— and, in fact, as N increases, this measure:

. increases for B
. decreases for A

Solution:

— if a party sends a sequence of bits in a row (without the other
party sending messages in between), require that the party
send these bits as a single message

33

Contract signing - Results

- The duration of unfairness of the protocol
— (with the solution on the previous slide applied to all variants)

25 ' ' ' ' ' '
QM Party A

——EGL
I -8 -EGL2
1.6p 1| —*—EGL3
f““tm -4 -EGL4
B Bs Party B
10+0-8-8-0-98-0-40-0-00000004¢|-4-[Gl4
L8 Y - 4-EGL3

we. -=-EGL2
0 st *““OHQ—O—&WQMO* -e-EGL

Expected Messages (total)

LI

2 4 6 8 10 12 14 16 18 20
N

34

Summing up...

Costs and rewards

— real-valued assigned to states/transitions of a DTMC
Properties

— expected instantaneous/cumulative reward values

— PRISM property specifications: adds R operator to PCTL
Model checking

— instantaneous: matrix-vector multiplications

— cumulative: matrix-vector multiplications

— reachability: graph analysis + linear equation systems
Case study

— randomised contract signing

35

