Probabilistic Model Checking

Lecture 6 Costs \& Rewards

Alessandro Abate

Department of Computer Science University of Oxford

Overview

- Specifying costs and rewards
- DTMCs
- hints at syntax for PRISM language
- Properties: expected reward values
- instantaneous
- cumulative
- reachability
- temporal logic extensions
- Model checking
- computing reward values
- Case study
- randomised contract signing

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
- real-valued quantities assigned to states and/or transitions
- these can have a wide range of possible interpretations
- Some examples:
- elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs or rewards?
- mathematically, no distinction between rewards and costs
- when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
- we will consistently use the terminology "rewards" regardless

Reward-based properties

- Properties of DTMCs augmented with rewards
- allow a range of quantitative measures of the system: notion of expected value of rewards
- (alternative reward structures possible, e.g., based on var)
- rewards as specifications in an extension of PCTL
- More precisely, we use two distinct property classes:
- Instantaneous properties
- e.g. the expected value of the reward at given time point
- Cumulative properties
- e.g. the expected cumulated reward over a period/horizon

DTMC reward structures

- For a DTMC $\left(\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}\right)$, a reward structure is a pair $(\underline{\rho}, \mathrm{l})$
$-\varrho: S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function (vector)
$-\imath: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
- "size of message queue": ρ maps each state to the number of jobs in the queue, t is not used (equal to zero everywhere)
- Examples (for use with cumulative properties)
- "time-steps": ρ returns 1 for all states and t is zero (equivalently, ρ is zero and $\mathrm{\imath}$ returns 1 for all transitions)
- "number of messages lost": ρ is zero and t maps transitions corresponding to a message loss to 1
- "power consumption": ρ is defined as the per-time-step energy consumption in each state and t as the energy cost of each transition

Expected reward properties

- Expected ("average") values of rewards...
- Instantaneous
- "the expected value of the state reward at time-step k"
- e.g. "the expected nr. of jobs at exactly 90 seconds after start"
- Cumulative (time-bounded)
- "the expected reward cumulated up to time-step k"
- e.g. "the expected power consumption accrued over one hour"
- Reachability (also cumulative)
- "the expected reward cumulated before reaching states $T \subseteq S$ "
- e.g. "the expected time for the algorithm to terminate"

Expectation

- Probability space ($\Omega, \Sigma, \operatorname{Pr}$)
- probability measure $\operatorname{Pr}: \Sigma \rightarrow[0,1]$
- Random variable X
- a measurable function $\mathrm{X}: \Omega \rightarrow \Delta$
- usually real-valued, i.e.: $\mathrm{X}: \Omega \rightarrow \mathbb{R}$
- Expected ("average") value of the random variable: $\operatorname{Exp}(X)$

$$
\begin{aligned}
& \operatorname{Exp}(X)=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega) \\
& \operatorname{Exp}(X)=\int_{\omega \in \Omega} X(\omega) d \operatorname{Pr}
\end{aligned}
$$

Reachability + rewards

- Expected reward cumulated before reaching states $\mathrm{T} \subseteq \mathrm{S}$
- Define a random variable:
$-X_{\text {Reach(T) }}$: Path(s) $\rightarrow \mathbb{R}_{\geq 0}$
- where for an infinite path $\omega=s_{0} s_{1} s_{2} \ldots$

$$
X_{\text {Reach }(T)}(\omega)=\left\{\begin{array}{cl}
0 & \text { if } s_{0} \in T \\
\infty & \text { if } s_{i} \notin T \text { for all } i \geq 0 \\
\sum_{i=0}^{k_{T}-1} \underline{\rho}\left(s_{i}\right)+\mathbf{l}\left(s_{i}, s_{i+1}\right) & \text { otherwise }
\end{array}\right.
$$

- where $\mathrm{k}_{\mathrm{T}}=\min \left\{\mathrm{j} \mid \mathrm{s}_{\mathrm{j}} \in \mathrm{T}\right\}$
- Then define:
$-\operatorname{ExpReach}(s, T)=\operatorname{Exp}\left(s, X_{\operatorname{Reach}(T)}\right)$
- denoting: expectation of the random variable $X_{\text {Reach(}}($ with respect to the probability measure Pr_{s}, i.e.:

$$
\int_{\omega \in \operatorname{Path}(\mathrm{s})} X_{\operatorname{Reach}(\mathrm{T})}(\omega) \mathrm{dPr} \mathrm{P}_{\mathrm{s}}
$$

Computing the rewards

- Determine states for which ProbReach(s, T) = 1
- Solve linear equation system:
- ExpReach(s, T) =

$$
\left\{\begin{array}{cl}
\infty & \text { if ProbReach }(s, T)<1 \\
0 & \text { if } s \in T \\
\underline{\rho}(s)+\sum_{s^{\prime} \in S} \mathbf{P}\left(s, s^{\prime}\right) \cdot\left(\mathfrak{l}\left(s, s^{\prime}\right)+\operatorname{ExpReach}\left(s^{\prime}, T\right)\right) & \text { otherwise }
\end{array}\right.
$$

Example

- Let $\rho=[0,1,0,0]$ and $t\left(s, s^{\prime}\right)=0$ for all $s, s^{\prime} \in S$
- Compute ExpReach $\left(\mathrm{s}_{0},\left\{\mathrm{~s}_{3}\right\}\right)$
- ("expected number of times pass through s_{1} to get to s_{3} ")
- First check:
- ProbReach $\left(\left\{5_{3}\right\}\right)=\{1,1,1,1\}$
- Then solve linear equation system:
- (letting $x_{i}=\operatorname{ExpReach}\left(s_{i},\left\{s_{3}\right\}\right)$):
$-x_{0}=0+1 \cdot\left(0+x_{1}\right)$
$-x_{1}=1+0.01 \cdot\left(0+x_{2}\right)+0.01 \cdot\left(0+x_{1}\right)+0.98 \cdot\left(0+x_{3}\right)$
$-x_{2}=0+1 \cdot\left(0+x_{0}\right)$
$-x_{3}=0$
- Solution: ExpReach $\left(\left\{s_{3}\right\}\right)=[100 / 98,100 / 98,100 / 98,0]$
- So: $\operatorname{ExpReach}\left(\mathrm{s}_{0},\left\{\mathrm{~s}_{3}\right\}\right)=100 / 98 \approx 1.020408$

Specifying reward properties in PRISM

- PRISM extends PCTL to include expected reward properties
- add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0}, \sim \in\{\langle,>, \leq, \geq\}, k \in \mathbb{N}$
- $\mathrm{R}_{\sim r}$ [•] means "the expected value of • satisfies $\sim \mathrm{r}$ "

Random variables for reward formulae

- Definition of random variables for the R operator:
- for an infinite path $\omega=s_{0} s_{1} s_{2} \ldots$

$$
\begin{aligned}
& X_{l-k}(\omega)=\underline{\rho}\left(s_{k}\right) \\
& X_{C \leq k}(\omega)= \begin{cases}0 & \text { if } k=0 \\
\sum_{i=0}^{k-1} \underline{\rho}\left(s_{i}\right)+\mathrm{l}\left(s_{i}, s_{i+1}\right) & \text { otherwise }\end{cases} \\
& X_{\mathrm{F} \mathrm{\phi}}(\omega)=\left\{\begin{array}{cl}
0 & \text { if } s_{0} \in \operatorname{Sat}(\phi) \\
\sum_{i} & \text { if } s_{i} \notin \operatorname{Sat}(\phi) \text { for all } i \geq 0 \\
\sum_{i=0}^{k_{\phi}-1} \underline{\rho}\left(s_{i}\right)+t\left(s_{i}, s_{i+1}\right) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- where $\mathrm{k}_{\phi}=\min \left\{\mathrm{j} \mid \mathrm{s}_{\mathrm{j}} \vDash \phi\right\}$

Reward formula semantics

- Formal semantics of the three reward operators:
- For a state s in the DTMC:

$$
\begin{aligned}
& -s \vDash R_{\sim r}[I=k] \Leftrightarrow \operatorname{Exp}\left(s, X_{I=k}\right) \sim r \\
& -s \vDash R_{\sim r}[C \leq k] \Leftrightarrow \operatorname{Exp}\left(s, X_{C \leq k}\right) \sim r \\
& -s \vDash R_{\sim r}[F \Phi] \Leftrightarrow \operatorname{Exp}\left(s, X_{F \Phi}\right) \sim r
\end{aligned}
$$

where: $\operatorname{Exp}(s, X)$ denotes the expectation of the random variable $X: \operatorname{Path}(s) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_{s}

- We can also define $\mathrm{R}_{=\text {? }}$ [...] properties, as for the P operator - e.g. $R_{=?}\left[F \Phi\right.$] returns the value $\operatorname{Exp}\left(s, X_{F \Phi}\right)$

Model checking reward operators

- As for model checking $P_{\sim p}[\ldots]$, in order to check $R_{\sim r}[\ldots]$
- compute reward values for all states, compare with bound r
- Instantaneous: $\mathrm{R}_{\sim r}[\mathrm{I}=\mathrm{k}]$ - compute $\operatorname{Exp}\left(\mathrm{X}_{\mathrm{I}=\mathrm{k}}\right)$
- solution of recursive equations
- essentially: k matrix-vector multiplications
- Cumulative: $\mathrm{R}_{\sim r}[\mathrm{C} \leq \mathrm{k}]$ - compute $\operatorname{Exp}\left(\mathrm{X}_{\mathrm{C} \leq \mathrm{k}}\right)$
- solution of recursive equations
- essentially: k matrix-vector multiplications

Model checking R operator has same complexity as P operator

- Reachability: $\mathrm{R}_{\sim r}\left[\mathrm{~F} \phi\right.$] - compute $\operatorname{Exp}\left(\mathrm{X}_{\mathrm{F} \phi}\right)$
- graph analysis + solution of linear system of equations
- (see computation of ExpReach(s, T) earlier)

Model checking $\mathrm{R}_{\sim r}[\mathrm{I}=\mathrm{k}$]

- Expected instantaneous reward at step k
- can be defined in terms of transient probabilities for step k
- $\operatorname{Exp}\left(\mathrm{s}, \mathrm{X}_{\mathrm{I}=\mathrm{k}}\right)=\Sigma_{\mathrm{s}^{\prime} \in \mathrm{S}} \pi_{\mathrm{s}, \mathrm{k}}\left(\mathrm{s}^{\prime}\right) \cdot \underline{\rho}\left(\mathrm{s}^{\prime}\right)$
- $\operatorname{Exp}\left(X_{I=k}\right)=P^{k} \cdot \rho$
- Yielding recursive definition:
$-\underline{\operatorname{Exp}}\left(\mathrm{X}_{\mathrm{I}=0}\right)=\underline{\varrho}$
$-\underline{\operatorname{Exp}}\left(\mathrm{X}_{\mathrm{I}=\mathrm{k}}\right)=\mathbf{P} \cdot \underline{\operatorname{Exp}}\left(\mathrm{X}_{\mathrm{I}=(\mathrm{k}-1)}\right)$
- i.e. k matrix-vector multiplications
- note: "backward" computation (like bounded-until prob) rather than "forward" computation (like transient probs)

Example

- Let $\rho=[0,1,0,0]$ and $t\left(s, s^{\prime}\right)=0$ for all $s, s^{\prime} \in S$
- Compute $\operatorname{Exp}\left(\mathrm{s}_{0}, \mathrm{X}_{\mathrm{I}=2}\right)$
- ("probability of being in state s_{1} at time 2 ")
$-\operatorname{Exp}\left(\mathrm{X}_{\mathrm{I}=0}\right)=[0,1,0,0]$
$-\operatorname{Exp}\left(\mathrm{X}_{\mathrm{I}=1}\right)=\mathrm{P} \cdot \operatorname{Exp}\left(\mathrm{X}_{\mathrm{I}=0}\right)$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0.01 & 0.01 & 0.98 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
0.01 \\
0 \\
0
\end{array}\right]
$$

$-\operatorname{Exp}\left(\mathrm{X}_{\mathrm{I}=2}\right)=\mathbf{P} \cdot \operatorname{Exp}\left(\mathrm{X}_{\mathrm{I}=1}\right)$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0.01 & 0.01 & 0.98 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0.01 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.01 \\
0.0001 \\
1 \\
0
\end{array}\right]
$$

- Result: $\operatorname{Exp}\left(\mathrm{s}_{0}, \mathrm{X}_{\mathrm{I}=2}\right)=0.01$

Model checking $\mathrm{R}_{\sim \sim}[\mathrm{C} \leq \mathrm{k}]$

- Expected reward cumulated up to time step k
- Again, a recursive definition:
$\operatorname{Exp}\left(s, X_{C \leq k}\right)=\left\{\begin{array}{cl}0 & \text { if } k=0 \\ \underline{\rho}(s)+\sum_{s^{\prime} \in S} P\left(s, s^{\prime}\right) \cdot\left(\iota\left(s, s^{\prime}\right)+\operatorname{Exp}\left(s^{\prime}, X_{C \leq k-1}\right)\right) & \text { if } k>0\end{array}\right.$
- And in matrix/vector notation:
$\underline{\operatorname{Exp}}\left(X_{C \leq k}\right)=\left\{\begin{array}{cl}0 & \text { if } k=0 \\ \underline{\rho}+(P \bullet \imath) \cdot \underline{1}+P \cdot \underline{E x p}\left(X_{C \leq k-1}\right) & \text { if } k>0\end{array}\right.$
- where • denotes Schur (pointwise) matrix multiplication
- and $\underline{1}$ is a unit vector (of all 1 s)

Case study: Contract signing

- Two parties want to agree on a contract
- each will sign if the other will sign, but do not trust each other
- there may be a trusted third party (judge)
- but it should only be used if something goes wrong
- In real life: contract signing with pen and paper
- sit down and write signatures simultaneously
- On the Internet...
- how to exchange commitments on an asynchronous network?
- "partial secret exchange protocol" [EGL85]

Contract signing - EGL protocol

- Partial secret exchange protocol for 2 parties (A and B)
- A (B) holds 2 N secrets $\mathrm{a}_{1}, \ldots, \mathrm{a}_{2 \mathrm{~N}}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{2 \mathrm{~N}}\right)$
- a secret is a binary string of length L
- secrets partitioned into pairs: e.g. $\left\{\left(a_{i}, a_{N+i}\right) \mid i=1, \ldots, N\right\}$
- A (B) committed if B (A) knows one of A's (B's) pairs
- Uses "1-out-of-2 oblivious transfer protocol" OT(S,R,x,y)
- Sender S sends x and y to receiver R
- R receives x with probability $1 / 2$ otherwise receives y
- S does not know which one R receives
- if S cheats then R can detect this with probability $1 / 2$

EGL protocol - Step 1

EGL protocol - Step 2

(repeat over $\mathrm{i}=1 \ldots \mathrm{~L}$)

Contract signing - Results

- Modelled in PRISM as a DTMC (no concurrency) [NS06]
- Highlights a weakness in the protocol
- party B can act maliciously by quitting the protocol early
- this behaviour not considered in the original analysis
- PRISM analysis shows
- if B stops participating in the protocol as soon as he/she has obtained one of A pairs, then, with probability 1, at this point:
- B possesses a pair of A's secrets
- A does not have complete knowledge of any pair of B's secrets
- protocol is not fair under this attack:
- B has a distinct advantage over A

Contract signing - Results

- The protocol is unfair because in step 2:
- A sends a bit for each of its secrets before B does
- Can we make this protocol fair by changing the message sequence scheme?
- Since the protocol is asynchronous the best we can hope for is:
- B (or A) has this advantage with probability $1 / 2$
- We consider 3 possible alternative message sequence schemes (EGL2, EGL3, EGL4)

Contract signing - EGL2

(step 1)

(step 2)
for ($i=1, \ldots, L$)
for ($j=1, \ldots, N$) A transmits bit i of secret a_{j} to B for $(j=1, \ldots, N) B$ transmits bit i of secret b_{j} to A for ($j=N+1, \ldots, 2 N$) A transmits bit i of secret a_{j} to B for $(j=N+1, \ldots, 2 N) B$ transmits bit i of secret b_{j} to A

Modified step 2 for EGL2

> A sends bit i
of a_{j} to B for
$j=1 \ldots N$

Then B does the same for b_{j}

(after $\mathrm{j}=1 \ldots \mathrm{~N}$, send $\mathrm{j}=\mathrm{N}+1 \ldots 2 \mathrm{~N}$)
(then repeat over $\mathrm{i}=1$...L)

Contract signing - EGL3

```
(step 1)
(step 2)
for (i=1,\ldots,L ) for ( j=1,\ldots,N )
    A transmits bit i of secret }\mp@subsup{a}{j}{}\mathrm{ to B
    B transmits bit i of secret bj to A
for( i=1,\ldots,L) for ( }j=N+1,\ldots,2N 
    A transmits bit i of secret }\mp@subsup{a}{j}{}\mathrm{ to B
    B transmits bit i of secret bj to A
```


Modified step 2 for EGL3

(repeat for $j=1 \ldots N$ and for $i=1 \ldots L$)
(then send $j=N+1 \ldots 2 N$ for $i=1 \ldots L$)

Contract signing - EGL4

(step 1)
(step 2)
for ($i=1, \ldots, L$)
A transmits bit i of secret a_{1} to B for ($j=1, \ldots, N$) B transmits bit i of secret b_{j} to A for $(j=2, \ldots, N) A$ transmits bit i of secret a_{j} to B
for ($i=1, \ldots, L$)
A transmits bit i of secret a_{N+1} to B for $(j=N+1, \ldots, 2 N) B$ transmits bit i of secret b_{j} to A for ($j=N+2, \ldots, 2 N$) A transmits bit i of secret a_{j} to B

Modified step 2 for EGL4

Contract signing - Results

- The chance that the protocol is unfair ($\mathrm{N}=$ secrets)
- probability that one party gains knowledge first
$-P_{=?}\left[F\left(\right.\right.$ know $\left.\left._{\mathrm{B}} \wedge \neg \mathrm{know}_{\mathrm{A}}\right)\right]$ and $\mathrm{P}_{=?}\left[\mathrm{~F}\left(\mathrm{know}_{\mathrm{A}} \wedge \neg \mathrm{know}_{\mathrm{B}}\right)\right]$

Contract signing - Results

- The influence that each party has on the fairness
- once a party knows a pair, the expected number of messages from this party required before the other party knows a pair

$R=?\left[F \operatorname{know}_{\mathrm{A}}\right]$
Reward structure:

Assign 1 to transitions corresponding to messages being sent from B to A after B knows a pair
(and 0 to all other transitions)

Contract signing - Results

- The duration of unfairness of the protocol
- once a party knows a pair, the expected total number of messages that need to be sent before the other knows a pair

$\mathrm{R}=$? [$\mathrm{F} \mathrm{know}_{\mathrm{A}}$]

Reward structure:

Assign 1 to transitions corresponding to any message being sent between A and B after B knows a pair
(and 0 to all other transitions)

Contract signing - Results

- Results show EGL4 is the 'fairest' protocol
- Except for measure of "duration of unfairness"
- expected messages that need to be sent for a party to know a pair once the other party knows a pair
- this value is larger for B than for A
- and, in fact, as N increases, this measure:
- increases for B
- decreases for A
- Solution:
- if a party sends a sequence of bits in a row (without the other party sending messages in between), require that the party send these bits as a single message

Contract signing - Results

- The duration of unfairness of the protocol
- (with the solution on the previous slide applied to all variants)

Summing up...

- Costs and rewards
- real-valued assigned to states/transitions of a DTMC
- Properties
- expected instantaneous/cumulative reward values
- PRISM property specifications: adds R operator to PCTL
- Model checking
- instantaneous: matrix-vector multiplications
- cumulative: matrix-vector multiplications
- reachability: graph analysis + linear equation systems
- Case study
- randomised contract signing

