Probabilistic Model Checking

Lecture 6 Costs & Rewards

Alessandro Abate

Department of Computer Science University of Oxford

Overview

- Specifying costs and rewards
 - DTMCs
 - hints at syntax for PRISM language
- Properties: expected reward values
 - instantaneous
 - cumulative
 - reachability
 - temporal logic extensions
- Model checking
 - computing reward values
- Case study
 - randomised contract signing

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology "rewards" regardless

Reward-based properties

- Properties of DTMCs augmented with rewards
 - allow a range of quantitative measures of the system: notion of expected value of rewards
 - (alternative reward structures possible, e.g., based on var)
 - rewards as specifications in an extension of PCTL
- More precisely, we use two distinct property classes:
- Instantaneous properties
 - e.g. the expected value of the reward at given time point
- Cumulative properties
 - e.g. the expected cumulated reward over a period/horizon

DTMC reward structures

- For a DTMC (S, s_{init} , P,L), a reward structure is a pair (ρ , ι)
 - $\underline{\rho} : S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function (vector)
 - $-\iota: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue, ι is not used (equal to zero everywhere)
- Examples (for use with cumulative properties)
 - "time-steps": <u>ρ</u> returns 1 for all states and ι is zero (equivalently, <u>ρ</u> is zero and ι returns 1 for all transitions)
 - "number of messages lost": <u>ρ</u> is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": <u>ρ</u> is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

Expected reward properties

- Expected ("average") values of rewards...
- Instantaneous
 - "the expected value of the state reward at time-step k"
 - e.g. "the expected nr. of jobs at exactly 90 seconds after start"
- Cumulative (time-bounded)
 - "the expected reward cumulated up to time-step k"
 - e.g. "the expected power consumption accrued over one hour"
- Reachability (also cumulative)
 - "the expected reward cumulated before reaching states $T \subseteq S$ "
 - e.g. "the expected time for the algorithm to terminate"

Expectation

- Probability space (Ω , Σ , Pr)
 - probability measure $Pr:\Sigma\rightarrow[0,1]$
- Random variable X
 - a measurable function $X:\Omega\to\Delta$
 - usually real-valued, i.e.: $X:\Omega \to \mathbb{R}$
- Expected ("average") value of the random variable: Exp(X)

$$Exp(X) = \sum_{\omega \in \Omega} X(\omega) \cdot Pr(\omega)$$
 discrete case
$$Exp(X) = \int_{\omega \in \Omega} X(\omega) dPr$$

Reachability + rewards

- Expected reward cumulated before reaching states $T \subseteq S$
- Define a random variable:
 - $X_{\text{Reach}(T)}$: Path(s) $\rightarrow \mathbb{R}_{\geq 0}$
 - where for an infinite path $\omega = s_0 s_1 s_2 ...$

$$\begin{split} X_{\text{Reach}(T)}(\omega) \ &= \left\{ \begin{array}{cc} 0 & \text{if } s_0 \in T \\ \infty & \text{if } s_i \not\in T \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_T - 1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{array} \right. \end{split}$$

$$- \text{ where } k_T = \min\{ j \mid s_j \in T \}$$

- Then define:
 - ExpReach(s, T) = Exp(s, X_{Reach(T)})
 - denoting: expectation of the random variable $X_{Reach(T)}$ with respect to the probability measure Pr_s , i.e.:

$$\int_{\omega \in Path(s)} X_{Reach(T)}(\omega) \, dPr_s$$

Computing the rewards

- Determine states for which ProbReach(s, T) = 1
- Solve linear equation system:
 - ExpReach(s, T) =

$$\begin{cases} \infty & \text{if ProbReach}(s, T) < 1 \\ 0 & \text{if } s \in T \\ \underline{\rho}(s) + \sum_{s' \in S} P(s,s') \cdot \left(\iota(s,s') + ExpReach(s', T) \right) & \text{otherwise} \end{cases}$$

Example

- Let $\underline{\rho} = [0, 1, 0, 0]$ and $\iota(s,s') = 0$ for all $s,s' \in S$
- Compute ExpReach(s₀, {s₃})
 - ("expected number of times pass through s_1 to get to s_3 ")
- First check:
 - $\underline{ProbReach}(\{s_3\}) = \{1, 1, 1, 1\}$
- Then solve linear equation system:
 - (letting $x_i = ExpReach(s_i, \{s_3\})$):
 - $x_0 = 0 + 1 \cdot (0 + x_1)$

$$-x_1 = 1 + 0.01 \cdot (0 + x_2) + 0.01 \cdot (0 + x_1) + 0.98 \cdot (0 + x_3)$$

 $- x_2 = 0 + 1 \cdot (0 + x_0)$

$$-x_3 = 0$$

- Solution: $ExpReach(\{s_3\}) = [100/98, 100/98, 100/98, 0]$
- So: ExpReach(s₀, {s₃}) = $100/98 \approx 1.020408$

10

Specifying reward properties in PRISM

- PRISM extends PCTL to include expected reward properties
 - add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0}$, ~ $\thicksim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$

• R_{-r} [•] means "the expected value of • satisfies -r"

Random variables for reward formulae

- Definition of random variables for the R operator:
 - for an infinite path $\omega = s_0 s_1 s_2 ...$

$$\begin{split} X_{i=k}(\omega) &= \underline{\rho}(s_k) \\ X_{C \leq k}(\omega) &= \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases} \\ X_{F\varphi}(\omega) &= \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\varphi) \\ \infty & \text{if } s_i \notin \text{Sat}(\varphi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases} \end{split}$$

- where
$$k_{\varphi} = \min\{ j \mid s_j \vDash \varphi \}$$

Reward formula semantics

- Formal semantics of the three reward operators:
- For a state s in the DTMC:

$$- s \vDash R_{\sim r} [I^{=k}] \Leftrightarrow Exp(s, X_{I=k}) \sim r$$
$$- s \vDash R_{\sim r} [C^{\leq k}] \Leftrightarrow Exp(s, X_{C\leq k}) \sim r$$
$$- s \vDash R_{\sim r} [F \Phi] \Leftrightarrow Exp(s, X_{F\Phi}) \sim r$$

where: Exp(s, X) denotes the expectation of the random variable X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

• We can also define $R_{=?}$ [...] properties, as for the P operator - e.g. $R_{=?}$ [F Φ] returns the value Exp(s, $X_{F\Phi}$)

Model checking reward operators

- As for model checking P_{-p} [...], in order to check R_{-r} [...]
 - compute reward values for all states, compare with bound r
- Instantaneous: R_{-r} [I^{=k}] compute <u>Exp</u>(X_{I=k})
 - solution of recursive equations
 - essentially: k matrix-vector multiplications
- Cumulative: R_{-r} [$C^{\leq k}$] compute $\underline{Exp}(X_{C\leq k})$
 - solution of recursive equations
 - essentially: k matrix-vector multiplications
- Reachability: R_{-r} [F φ] compute <u>Exp</u>(X_{F φ})
 - graph analysis + solution of linear system of equations
 - (see computation of ExpReach(s, T) earlier)

Model checking R operator has same complexity as P operator

Model checking $R_{\sim r}$ [I^{=k}]

- Expected instantaneous reward at step k
 - can be defined in terms of transient probabilities for step k
- $Exp(s, X_{I=k}) = \Sigma_{s' \in S} \pi_{s,k}(s') \cdot \underline{\rho}(s')$
- $\underline{Exp}(X_{I=k}) = \mathbf{P}^k \cdot \underline{\rho}$
- Yielding recursive definition:
 - $\underline{Exp}(X_{I=0}) = \underline{\rho}$
 - $\underline{Exp}(X_{I=k}) = \mathbf{P} \cdot \underline{Exp}(X_{I=(k-1)})$
 - i.e. k matrix-vector multiplications
 - note: "backward" computation (like bounded-until prob) rather than "forward" computation (like transient probs)

Example

• Let $\underline{\rho} = [0, 1, 0, 0]$ and $\iota(s,s') = 0$ for all $s,s' \in S$

• Result: $Exp(s_0, X_{I=2}) = 0.01$

Model checking $R_{\sim r} [C^{\leq k}]$

- Expected reward cumulated up to time step k
- Again, a recursive definition:

$$Exp(s, X_{C \le k}) = \begin{cases} 0 & \text{if } k = 0\\ \underline{\rho}(s) + \sum_{s' \in S} P(s, s') \cdot (\iota(s, s') + Exp(s', X_{C \le k-1})) & \text{if } k > 0 \end{cases}$$

And in matrix/vector notation:

$$\underline{\text{Exp}}(X_{C \le k}) = \begin{cases} 0 & \text{if } k = 0\\ \underline{\rho} + (\mathbf{P} \bullet \mathbf{L}) \cdot \underline{1} + \mathbf{P} \cdot \underline{\text{Exp}}(X_{C \le k-1}) & \text{if } k > 0 \end{cases}$$

- where • denotes Schur (pointwise) matrix multiplication - and $\underline{1}$ is a unit vector (of all 1s)

Case study: Contract signing

- Two parties want to agree on a contract
 - each will sign if the other will sign, but do not trust each other
 - there may be a trusted third party (judge)
 - but it should only be used if something goes wrong
- In real life: contract signing with pen and paper
 - sit down and write signatures simultaneously
- On the Internet...
 - how to exchange commitments on an asynchronous network?
 - "partial secret exchange protocol" [EGL85]

Contract signing – EGL protocol

- Partial secret exchange protocol for 2 parties (A and B)
- A (B) holds 2N secrets a₁,...,a_{2N} (b₁,...,b_{2N})
 - a secret is a binary string of length L
 - secrets partitioned into pairs: e.g. { (a_i , a_{N+i}) | i=1,...,N }
 - A (B) committed if B (A) knows one of A's (B's) pairs
- Uses "1-out-of-2 oblivious transfer protocol" OT(S,R,x,y)
 - Sender S sends x and y to receiver R
 - R receives x with probability ½ otherwise receives y
 - S does not know which one R receives
 - if S cheats then R can detect this with probability $\frac{1}{2}$

EGL protocol – Step 1

(repeat for i=1...N)

EGL protocol – Step 2

(repeat over i=1...L)

- Modelled in PRISM as a DTMC (no concurrency) [NS06]
- Highlights a weakness in the protocol
 - party B can act maliciously by quitting the protocol early
 - this behaviour not considered in the original analysis
- PRISM analysis shows
 - if B stops participating in the protocol as soon as he/she has obtained one of A pairs, then, with probability 1, at this point:
 - · B possesses a pair of A's secrets
 - A does not have complete knowledge of any pair of B's secrets
 - protocol is not fair under this attack:
 - B has a distinct advantage over A

- The protocol is unfair because in step 2:
 - A sends a bit for each of its secrets before B does
- Can we make this protocol fair by changing the message sequence scheme?
- Since the protocol is asynchronous the best we can hope for is:
 - B (or A) has this advantage with probability $\frac{1}{2}$
- We consider 3 possible alternative message sequence schemes (EGL2, EGL3, EGL4)

Contract signing – EGL2

```
(step 1)
...
(step 2)
for ( i=1,...,L )
  for ( j=1,...,N ) A transmits bit i of secret a<sub>j</sub> to B
  for ( j=1,...,N ) B transmits bit i of secret b<sub>j</sub> to A
  for ( j=N+1,...,2N ) A transmits bit i of secret a<sub>j</sub> to B
  for ( j=N+1,...,2N ) B transmits bit i of secret b<sub>j</sub> to A
```

Modified step 2 for EGL2

(after j=1...N, send j=N+1...2N) (then repeat over i=1...L)

Contract signing – EGL3

```
(step 1)
...
(step 2)
for ( i=1,...,L ) for ( j=1,...,N )
        A transmits bit i of secret a<sub>j</sub> to B
        B transmits bit i of secret b<sub>j</sub> to A
for ( i=1,...,L ) for ( j=N+1,...,2N )
        A transmits bit i of secret a<sub>j</sub> to B
        B transmits bit i of secret b<sub>j</sub> to A
```

Modified step 2 for EGL3

(repeat for j=1...N and for i=1...L) (then send j=N+1...2N for i=1...L)

Contract signing – EGL4

```
(step 1)
...
(step 2)
for ( i=1,...,L )
    A transmits bit i of secret a<sub>1</sub> to B
    for ( j=1,...,N ) B transmits bit i of secret b<sub>j</sub> to A
    for ( j=2,...,N ) A transmits bit i of secret a<sub>j</sub> to B
for ( i=1,...,L )
    A transmits bit i of secret a<sub>N+1</sub> to B
    for ( j=N+1,...,2N ) B transmits bit i of secret b<sub>j</sub> to A
    for ( j=N+2,...,2N ) A transmits bit i of secret a<sub>j</sub> to B
```

Modified step 2 for EGL4

(repeat for i=1...L) (then send j=N+1...2N in same fashion)

- The chance that the protocol is unfair (N = secrets)
 - probability that one party gains knowledge first
 - $P_{=?}$ [F (know_B $\land \neg$ know_A)] and $P_{=?}$ [F (know_A $\land \neg$ know_B)]

- The influence that each party has on the fairness
 - once a party knows a pair, the expected number of messages from this party required before the other party knows a pair

 $R=? [F know_A]$

Reward structure:

Assign 1 to transitions corresponding to messages being sent from B to A after B knows a pair

(and 0 to all other transitions)

- The duration of unfairness of the protocol
 - once a party knows a pair, the expected total number of messages that need to be sent before the other knows a pair

 $R=? [F know_A]$

Reward structure:

Assign 1 to transitions corresponding to any message being sent between A and B after B knows a pair

(and 0 to all other transitions)

- Results show EGL4 is the 'fairest' protocol
- Except for measure of "duration of unfairness"
 - expected messages that need to be sent for a party to know a pair once the other party knows a pair
 - this value is larger for B than for A
 - and, in fact, as N increases, this measure:
 - $\cdot\,$ increases for B
 - decreases for A
- Solution:
 - if a party sends a sequence of bits in a row (without the other party sending messages in between), require that the party send these bits as a single message

- The duration of unfairness of the protocol
 - (with the solution on the previous slide applied to all variants)

Summing up...

- Costs and rewards
 - real-valued assigned to states/transitions of a DTMC
- Properties
 - expected instantaneous/cumulative reward values
 - PRISM property specifications: adds R operator to PCTL
- Model checking
 - instantaneous: matrix-vector multiplications
 - cumulative: matrix-vector multiplications
 - reachability: graph analysis + linear equation systems
- Case study
 - randomised contract signing