What is Nutrient Sensing?

All organisms have the capacity to sense the presence and absence of the nutrients required to
generate energy and the building blocks of cells
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Organisms gauge environmental conditions to
decide cell fate
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Nutrient sensing regulates growth in unicellular organisms



Bacteria have evolved many interesting mechanisms
for sensing diverse nutrients, undoubtedly an
adaptation to living in environments where the
concentrations and types of nutrients can vary
unpredictably.

E. coli express five dimeric, single-pass transmembrane
chemoreceptors—Tar, Tsr, Tap, Trg, and Aer—which

function as distinct nutrient sensors.

In aggregate, they allow E. coli to detect and respond to a broad
spectrum of extracellular molecules, with aspartate, maltose, Co2+,
and Ni2+ binding to Tar; ribose and galactose to Trg; flavin adenine
dinucleotide to Aer; serine to Tsr; and dipeptides to Tap.

Chemoreceptors sense ligand concentrations as low as
3 nM and function over a concentration range of five

orders of magnitude.

This high sensitivity stems from the clustering at the cell pole of the receptors
into higher-order arrays, enabling one ligand-binding event to affect multiple
neighboring receptors and effectors.
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Multicellular organisms adapted ancient
nutrient sensing mechanisms
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Multicellular organisms adapted ancient
nutrient sensing mechanisms
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Why Nutrient Sensing?

Like all biological systems, cells must respond
to changes in resources and adjust their
metabolism accordingly
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Why Nutrient Sensing?

1. Restrain toxicity

2. Enable metabolic conservation FEEDBACK
3. Ensure stable levels of key metabolites

4. Allow metabolic plasticity

| FEEDFORWARD
5. Protect against stress



Molecular mechanisms of
nutrient sensing



Metabolites are sensed by proteins

MetaboliteS | .

Regardless of the manner in which nutrient sensing
occurs, for a protein to be considered a sensor, its affinity must be

within the range of physiological fluctuations of the concentration

of the nutrient or its surrogate.
Adapted from: Ye & Medzhitov, Nat Metab, 2019



Different biochemical logics can mediate

feedback or feedforward signals
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To accomplish metabolite
homeostasis, two clear
strategies have evolved.

First, the hyper-accumulation of
upstream substrates often
activates downstream regulatory
steps in a pathway. This serves
to increase the flux through the
pathway, thereby returning
metabolite concentrations to
within the desired window.

Second, the hyper-accumulation
of downstream products often
iInhibits upstream steps in a
pathway. This mechanism slows
the synthesis of overly abundant
iIntermediates to modulate a
pathway based on the
physiologic state.

Baker & Rutter, NRMCB, 2023



Example: Phospho-Fructose Kinase 1 (PFK1)
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Even though ADP is produced directly by PFK1 in
the process of phosphate transfer, the overall
result of glycolysis is to produce two net ATPs
from ADP per consumed glucose.
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Even though ADP is produced directly by PFK1 in
the process of phosphate transfer, the overall
result of glycolysis is to produce two net ATPs
from ADP per consumed glucose.

Activation of PFK1 by ADP illustrates the first
principle of metabolic regulation in that ADP is an
upstream ‘pathway substrate’ of glycolysis and,

when accumulated, stimulates PFK1 to facilitate
net ADP to ATP conversion.
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Example: Phospho-Fructose Kinase 1 (PFK1)
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Even though ADP is produced directly by PFK1 in
the process of phosphate transfer, the overall
result of glycolysis is to produce two net ATPs
from ADP per consumed glucose.

Activation of PFK1 by ADP illustrates the first
principle of metabolic regulation in that ADP is an
upstream ‘pathway substrate’ of glycolysis and,
when accumulated, stimulates PFK1 to facilitate
net ADP to ATP conversion.

PFK1 is also negatively regulated by ATP, as well
as multiple downstream products from glycolysis
including phosphoenolpyruvate (PEP), 3-
phosphoglycerate (3PG) and citrate.

This regulation highlights the second principle of
metabolic regulation.

Importantly, the accumulation of downstream
products, but not their formation per se, inhibits
upstream reactions.
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An example of this third principle, PFK1 is activated
by the signaling metabolite fructose 2,6-bisphosphate
(F2,6BP), which is synthesized by
phosphofructokinase 2 (PFK2). PFK2 phosphorylates
FG6P to generate F2,6BP, and is regulated by the
insulin and glucagon pathways in metazoans (to
couple cell responses to systemic glucose levels).
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In the fasted state, glucagon activates protein kinase A (PKA)
and induces PFK2 phosphorylation. This inactivates PFK2,
thereby decreasing F2,6BP and inhibiting PFK1 and glycolytic
flux. By contrast, insulin signalling in the fed state
dephosphorylates and activates PFK2, thereby increasing
F2,6BP to permit the flow of carbon through glycolysis even in a
state of energy abundance (ATP accumulation).
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Example: Phospho-Fructose Kinase 1 (PFK1)
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Glycolysis and gluconeogenesis are inversely regulated to
prevent futile cycling.

The counterpart of PFK1 for gluconeogenesis is the enzyme
fructose 1,6-bisphosphatase (FBPase1). FBPase1 and PFK1
catalyze opposite reactions, albeit FBPase1 does not

=%\ regenerate the ATP consumed by PFK1.
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prevent futile cycling.

The counterpart of PFK1 for gluconeogenesis is the enzyme
fructose 1,6-bisphosphatase (FBPase1). FBPase1 and PFK1
catalyze opposite reactions, albeit FBPase1 does not
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AMP activates PFK1 and, conversely, inhibits FBPase1. This
ensures cellular survival as the accumulation of AMP indicates
dangerously low energy abundance in the form of ATP. In a cell
that is undergoing gluconeogenesis but experiences energetic
deficits, AMP can halt the production of glucose and propel
glycolysis to restore the ATP concentration to a safe level.
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Example: Pyruvate metabolism (PDC-PDK)
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Example: Pyruvate metabolism (PDC-PDK)
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Example: Pyruvate metabolism (PDC-PDK)
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Example: Pyruvate metabolism (PDC-PDK)
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PDC activity receives metabolite
signaling indirectly through inhibitory
phosphorylation by pyruvate
dehydrogenase kinases (PDKs).

PDKs are allosterically activated by
NADH and acetyl-CoA and inhibited
by ADP, NAD+, coenzyme A (CoA-
SH) and pyruvate



Different biochemical logics can mediate
feedback or feedforward signals
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Example: Pyruvate metabolism (TCA/ETC)
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Example: Pyruvate metabolism (TCA/ETC)
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Both pyruvate and uridine provide
cells with a mean to regenerate
NAD+ independently of ETC

ETC-deficient cells increase their
uptake of pyruvate to lower
NADH:NAD+ ratio



Molecular mechanisms of
nutrient sensing



Metabolites are sensed by PROTEINS
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Several protein (or protein complex) sensors have been described,

all functioning via 4 fundamental mechanisms
Liu & Birsoy, Mol Cell, 2023
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A : : D . S .
Allosteric Regulation Post-translational Modification
Metabolite sensed (GTP) Metabolite sensed (Acetyl-CoA)
Low High
Low High
Fatty acyl-CoA \\
Glutamate e ~
O ) o
O /\ ” y = .
o ' ~ /-
( |
@
® @® Glutamate dehydrogenase 1
a_ketoglutarate 77‘8/78-2—8/70}//—(:0/\
C : D :
Cofactor Synthesis Membrane Physical State
(unsaturated phospholipid)
Low High
Low \\ High
O = \’ ) l &
T L/T\\_\j P 1
— [ | e |
™ U
n : \ ,,/ monolysocardiolipin L ( A cardiolipin
p ,\33 \v &-aminolevulinate \ "\\D\—T\‘\ N 7/
) ( ) |
S ' /
\_/
porphobilinogen o

Several protein (or protein complex) sensors have been described,

all functioning via 4 fundamental mechanisms
Liu & Birsoy, Mol Cell, 2023



Metabolites are sensed through
allosteric regulation

One of the most common mechanisms for metabolite sensing is the allosteric regulation

Allows rapid tuning of biochemical fluxes in response to diverse metabolic cues

Factors sensed via allosteric regulation range from amino acids, lipids, carbohydrates, and
metabolic intermediates to metals and cofactors; in many cases, it allows the integration of
multiple metabolic signals via the activity of a single enzyme.

Allosteric Inhibition Allosteric Activation
Enzyme 1 Enzyme 2
3 Allosteric
gct:élve / site Altered
\T active site W
Inhibitor AR

Substrate Substrate

Altered active site Active site
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One of the most common mechanisms for metabolite sensing is the allosteric regulation

Allows rapid tuning of biochemical fluxes in response to diverse metabolic cues

Factors sensed via allosteric regulation range from amino acids, lipids, carbohydrates, and
metabolic intermediates to metals and cofactors; in many cases, it allows the integration of
multiple metabolic signals via the activity of a single enzyme.



Metabolites are sensed through
allosteric regulation

One of the most common mechanisms for metabolite sensing is the allosteric regulation

Allows rapid tuning of biochemical fluxes in response to diverse metabolic cues

Factors sensed via allosteric regulation range from amino acids, lipids, carbohydrates, and
metabolic intermediates to metals and cofactors; in many cases, it allows the integration of
multiple metabolic signals via the activity of a single enzyme.

A well-studied example is the regulation of glutamate dehydrogenase (GDH) by GTP,
NADH, leucine, Mg2*, and other metabolites.

TCA cycle Biosynthesis
A 'y

nitrogen assimilation

- N

2-oxoglutarate + NAD(P)H + NH, GDH NAD(P)* + L-glutamate

e T -

energy production




Metabolites are sensed through
allosteric regulation

(a)
NAD-

binding
domain

Antenna

cleft GTP inhibits the activity of the enzyme, while ADP exerts an
activating effect

An increased ADP/GTP ratio signals a low-energy status in
mitochondria that demands the replenishment of TCA cycle
intermediates via the activity of GDH.

Allosteric activation of GDH enables insulin secretion.
Pathogenic mutations have been identified in human GDH
enzyme that specifically abolish the allosteric inhibition by
GTP. These mutations lead to a gain-of-function effect on
the GDH enzyme and hyperactive insulin secretion in beta
cells.

(c)

Smith & Stanley, TiBS, 2008
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Metabolites are sensed through
post-translational modifications

Effects in
PTMs Functions of PTMs Physiology and
Pathology
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O-GlIcNAcylation interaction -
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Oxidation
S-Nitrosylation Transcription
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PTMs regulate the activity of many proteins and influence several
cellular functions



Metabolites are sensed through
post-translational modifications

Effects in
PTMs Functions of PTMs Physiology and
Pathology

\ s D

&nzymatlc PTMs Protein acﬁvny
Phosphorylation

\
J

Methylation

acyl-PTMs Enzyme activity
Acetylation
Propionylation
Malonylation Protein stability
2-hydroxyisobutyrylation
Metabolites are B-hydroxybutyrylation Protein

ey Succinylation degradation
Cri tl ca | Crotonylation :>

S:I?almitoylation Protein
substrates e localization

SUMOylation Protein-protein
O-GIcNAcylation interaction
Lactylation

non-Enzymatic PTMs DNA replication
Oxidation
S-Nitrosylation Transcription
Glycation
acyl-PTMs
5 ) \ | \ )
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Acetyl-CoA at the interface of metabolism and epigenome

Glucose Acetate
H+
= Branch Chained AAs
* (BCAAs)
H+
Fatty acids Cholesterol

Citrate @» acetyl-CoA 4@ Acetate

Carrer & Wellen, Curr Opin Biotechnol, 2015



Acetyl-CoA at the interface of metabolism and epigenome

Glucose Acetate

/

H*

= Branch Chained AAs
* (BCAAs)

acetyl-CoA
— Fatty acids Cholesterol
Citrate @» acetyl-CoA 4@ Acetate
CoA

_CD
c®

H,O

2

Carrer & Wellen, Curr Opin Biotechnol, 20156



Metabolites are sensed through
acetyl-CoA-dependent acetylation

(1) [KAT]+ ,
/ \




Nutrient abundance is sensed through
acetyl-CoA-dependent histone acetylation
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Akt-Dependent Metabolic Reprogramming

Regulates Tumor Cell Histone Acetylation
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Metabolites are sensed by PROTEINS
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Metabolites are sensed through
cofactor availability

Some metabolites are critical co-factors for enzymatic activity
Particularly useful when metabolite/co-factor synthesis and availability is highly compartmentalized
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cofactor availability

Some metabolites are critical co-factors for enzymatic activity
Particularly useful when metabolite/co-factor synthesis and availability is highly compartmentalized



Metabolites are sensed through
cofactor availability

Some metabolites are critical co-factors for enzymatic activity
Particularly useful when metabolite/co-factor synthesis and availability is highly compartmentalized

TCA cycle intermediates are sensed through alpha-ketoglutarate (aKG)-dependent dioxygenases,
a versatile group of iron-containing enzymes that includes key players in epigenetic regulation,
oxygen sensing, lipid metabolism, and other critical processes.

These enzymes couple the decarboxylation of aKG with the oxidation of the substrate, and in
many cases the predicted Ku of those enzymes to aKG overlaps with its physiological levels,
suggesting that their activity may dynamically respond to intracellular aKG levels.
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Metabolites are sensed through
cofactor availability

Some metabolites are critical co-factors for enzymatic activity
Particularly useful when metabolite/co-factor synthesis and availability is highly compartmentalized

TCA cycle intermediates are sensed through alpha-ketoglutarate (aKG)-dependent dioxygenases,
a versatile group of iron-containing enzymes that includes key players in epigenetic regulation,
oxygen sensing, lipid metabolism, and other critical processes.

These enzymes couple the decarboxylation of aKG with the oxidation of the substrate, and in
many cases the predicted Ku of those enzymes to aKG overlaps with its physiological levels,
suggesting that their activity may dynamically respond to intracellular aKG levels.
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TCA cycle intermediates are sensed through alpha-ketoglutarate (aKG)-dependent dioxygenases,
a versatile group of iron-containing enzymes that includes key players in epigenetic regulation,
oxygen sensing, lipid metabolism, and other critical processes.

These enzymes couple the decarboxylation of aKG with the oxidation of the substrate, and in
many cases the predicted Ky of those enzymes to aKG overlaps with its physiological levels,
suggesting that their activity may dynamically respond to intracellular aKG levels.
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Metabolites are sensed through
cofactor availability

aKG supports hypoxic response
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Lipids are sensed through biophysical

properties of cellular membranes
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Lipids are sensed through biophysical
properties of cellular membranes

a Membrane curvature

Lipid species and spontaneous membrane curvature
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Lipid composition of cellular membranes is highly heterogeneous
and impacts biophysical properties
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Lipids are sensed through biophysical
properties of cellular membranes

a Recruitment of lipid-binding b Sensing of membrane properties by protems
proteins Introducmg packing defects
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Lipids are sensed through biophysical
properties of cellular membranes
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Membrane properties » Hydrophobic mismatch
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Lipid composition of cellular membranes is highly heterogeneous
and impacts biophysical properties
Harayama & Riezman, NRMCB, 2019



Example: Carnitine Palmitoyltransferase 1A (CPT1A)

long chain fatty
acids (LCFA)

malonyl-CoA

cytosol acyl-CoA } carnitine

acyl-carnitine

mitochondrial matrix

CoA acyl-CoA + carnitine
v
v

.
fatty acid oxidation



Example: Carnitine Palmitoyltransferase 1A (CPT1A)

a) Initial condition
Planar membrane Curved membrane

NTD

b) TMDI1 sensing membrane curvature

°9

¢) Deactivating/activanting CPT 1A

5 iﬂ—ormal bilayer

NTD

OMM

TMDI

Nermal bilayer

Tilt angle

CPT1Ais a transmembrane protein at the
outer mitochondrial membrane.

The N-terminal domain (NTD) of CPT1A s
sensitive to the curvature of the membrane.



Example: Carnitine Palmitoyltransferase 1A (CPT1A)

a) Initial condition
Planar membrane Curved membrane

@ NTD
OMM TMDI1 S S OMM

b) TMDI sensing membrane curvature

° 9

¢) Deactivating/activanting CPT 1A

; iﬁormal bilayer

NTD

TMDI

Nermal bilayer

Tilt angle

CPT1Ais a transmembrane protein at the
outer mitochondrial membrane.

The N-terminal domain (NTD) of CPT1A s
sensitive to the curvature of the membrane.

PE PC
Conical Cylindrical
CHs 52' positive Curvatye
NHg* HaC = N*=CHs %%gé%?
ol e

-

oqative C“'Vatu,
PE -

(a) Head group size.

Membrane curvature is dictated by several
factors including PL composition.

PE: phosphatidyl-ethanolamine
PC: phosphatidyl-choline



Example: Carnitine Palmitoyltransferase 1A (CPT1A)

o
:1 ; MG'OHY'-COA Trimer : 4)_’)( .

Cr ‘i?- Malonyl'COA nsensive Mitochondrial \’3% |
',J‘fr - sensitive Intermmebrane "> §.<
1) Space CyL)
) 2= () Cxri>

The activity of CPT1A is regulated by PL abundance through biophysical interactions



Molecular mechanisms of
nutrient sensing



Molecular mechanisms of
nutrient sensing

WHERE"??




Membrane-enclosed organelles maintain distinct
biochemical environments.

This creates a unique milieu for nutrient sensing.



Compartmentalization of nutrient sensing:
MITOCHONDRIA

Feedback regulation

A B C
Conservation gf energy =\ =\ Metabolic_ Restrjct toxic products &
and nutrient homeostasis intermediates
Low-demand product /io.
K\ S e Y

» - Y @)V
) SLC25A39® o >

® PANK2 l@ O ))VQ K

o ~® Acetyl-CoA D ALAS1/2 (A
s GSH

Acetyl-CoAe® \ L

Liu & Birsoy, Mol Cell, 2023

NH, CPS1 NAGS
o - _ o

Ursa B -Oxidation \
cYcIe .Acetyl CoA \ e /; ¥ B
O OntoNA $@O R  Ros, DAMPs, et

CPT1A
. - Urea _A
K MitoUPR, ISR, ——— /
® Malonyl-CoA cGAS/STING
N Y \_ o 429
Fatty Acid .'/\ .
7%
Metabolic Restrict Protection
plasticity futile cycling LY 4 S against stress
D E = F

Feedforward regulation

(A) Feedback circuit that ensures metabolic conservation by limiting energy-consuming pathways. PANK2, a
mitochondrial enzyme in the CoA synthesis pathway, is allosterically inhibited by CoA and acetyl-CoA.

(B) Feedback circuit dedicated to maintaining the mitochondrial levels of a metabolite. Glutathione has been observed to
down-regulate its mitochondrial importer SLC25A39.

(C) Feedback circuit that restrains the production of toxic metabolites. Heme inhibits the import of the rate-
limiting enzyme in its de novo synthesis, ALAS1/ALAS2, to avoid the accumulation of toxic intermediates.

(D) Feedforward circuit that enables metabolic plasticity. Arginine stimulates the synthesis of N-acetylglutamate, an
allosteric activator of urea cycle enzyme CPS1, allowing robust activation of the urea cycle upon the influx of N.

(E) Feedforward circuit that prevents futile cycles. Fatty acid synthesis substrate malonyl-CoA inhibits the entrance of
fatty acids into the reverse reaction, b-oxidation, by allosterically inhibiting CPS1.

(F) Feedforward circuits that trigger adaptive responses to stress. The release of mitochondrial DNA or cytochrome ¢
triggers stress response signaling via the cGAS-STING pathway or the integrated stress response (ISR).



Compartmentalization of nutrient sensing:
LYSOSOMES
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Ballabio & Bonifacino, NRMCB, 2020



Compartmentalization of nutrient sensing:
LYSOSOMES

Active = Local metabolite levels
> mediate signaling pathways

mTORC .. y

Nutrients

Growth Factors A

§ o OSBP
VAP §
§ - Membrane transporters
o § mediating metabolic crosstalk

o § § Cholesterol AcCo é‘ _vl

autophagosome
Amino

mitochondria . ACidS’
‘ > ~ ~e
Biosynthetic
Pathways >

-
4

ER <

®e
. peroxisome

lysosome .

Golgi
apparatus

o

Its unique biochemical milieu, the scavenging

Corann of cellular components, the interconnections

i i AP with other organelles, make the lysosome
ideally positioned to sense metabolic inputs

Ca?* >0
Buffering

CERT

Contact Sites
Jain & Zoncu, Mol Metab, 2021

Lipid Transport




Catabolism and Anabolism are juxtaposed and
regulated by nutrient sensing

food the many molecules
molecules that form the cell
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the many building blocks for biosynthesis



Catabolism and Anabolism are juxtaposed and
regulated by nutrient sensing

food the many molecules
molecules that form the cell

e (i

useful l
k» forms of

AM P K CATABOLIC energy ANABOLIC
PATHWAYS ry PATHWAYS

A lost

. L heat

AMP-activated protein kinase
t>‘ 0/

the many bu1ld|ng b|ocks for biosynthesis



Catabolism and Anabolism are juxtaposed and
regulated by nutrient sensing

AMPK

AMP-activated protein kinase

food
molecules

CATABOLIC
PATHWAYS

N

useful

k» forms of
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the many molecules
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mechanistic Target of Rapamycin

the many bu1ld|ng blocks for biosynthesis



AMPK and mTORC are master regulator of
catabolism and anabolism, respectively

Both activated at lysosomes, enabling co-regulation

AMPK and mTOR are both components of ancient conserved pathways that have evolved
as a yin-yang-like antagonistic mechanism controlling catabolism and anabolism

High Energy Low Energy

V-ATPase I_ cs{\ V-ATPase

bbbl asddd e
‘0..“”'... LR A

Anabolism Catabolism
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.“ LA A S L L Ll Ll L bl

Lm ondooomo
MMysosome




AMPK: Central regulator of glucose and lipid
metabolism

glucose
uptake
protein
synthesis glycolysis

N\ I/

Do —— AwpK —— e

oxidation
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mitochondrial

genesis biogenesis

fatty acid/
cholesterol
synthesis

1. Promote glycolysis and FAO (catabolism)
2. Increase number of mitochondria
3. Blocks biosynthesis of macromolecules



AMPK: Central regulator of glucose and lipid
metabolism

glucose
uptake
protein
synthesis glycolysis
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Do —— AwpK —— e

oxidation
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genesis

mitochondrial
biogenesis

fatty acid/
cholesterol
synthesis

1. Promote glycolysis and FAO (catabolism)
2. Increase number of mitochondria
3. Blocks biosynthesis of macromolecules Consume less ATP

Generate more ATP



Cells constantly need to manage their energy consumption depending on the
availability of nutrients and on their capacity to produce ATP.

When cellular ATP levels decrease, it is essential for cells to minimize energy
consumption to avoid exhausting what is left of their resources. At the same
time, emergency measures have to be taken to restore the cellular energy
supply, such as increasing nutrient intake, activating alternative energy-
producing pathways or turning over existing macromolecules into nutrients.



AMPK: Central regulator of glucose and lipid

metabolism
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The AMP-activated protein kinase
(AMPK) is a highly conserved (all
eukaryotic cells) metabolic
checkpoint that acts as a sensor of
ATP levels in the cell
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AMPK: Central regulator of glucose and lipid

metabolism

LKB1
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The AMP-activated protein kinase
(AMPK) is a highly conserved (all
eukaryotic cells) metabolic
checkpoint that acts as a sensor of
ATP levels in the cell

AMPK is regulated by 3 upstream
Kinases:

* Liver Kinase B1 (LKB1) - ubiquitous

« Calmodulin-dependent protein kinases
a, B (CAMKKS) - neurons



AMPK: Central regulator of glucose and lipid

metabolism

LKB1

AMP
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CATABOLISM
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CaMKK
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BIOSYNTHESIS
GROWTH

The AMP-activated protein kinase
(AMPK) is a highly conserved (all
eukaryotic cells) metabolic
checkpoint that acts as a sensor of
ATP levels in the cell

AMPK is regulated by 3 upstream
Kinases:

* Liver Kinase B1 (LKB1) - ubiquitous

« Calmodulin-dependent protein kinases
a, B (CAMKKS) - neurons

AMPK was first discovered in 1973 as a
mammalian protein kinase that is
activated by changes in intracellular

adenosine nucleotide levels (Carlson &
Kim, J Biol Chem)



AMPK: energy sensor

Nutrient status
Low ATP

!

1 ADP:AMP ratio

!

s E

Glucose Mitochondrial
metabolism Lipid metabolism
metabolism
I glucose uptake I mitophagy
I glycolysis _ _ autophag{'
. gluconeogenesis | h}’f’l."-*_l-* I oxidative metabolism
! glycogellesis 1 p-OdeilthH

. lipogenesis
. cholesterol biosynthesis

|

. ATP consuming pathways

I ATP producing pathways, | glucose sparing, 1 energy



AMPK: structure and function

AMPK is an obligate heterotrimeric kinase complex composed of a catalytic (a) subunit
and two regulatory (B and y) subunits.

The a subunit contains the kinase domain and a critical residue, Thr172, that is phosphorylated by
upstream kinases. The 3 subunit contains a carbohydrate binding module that allows AMPK to associate
with glycogen. The y subunit enables AMPK to respond to changes in the ATP:AMP ratio as it contains
four tandem cystathionine-B-synthase (CBS) domains that bind adenine nucleotides. Binding of AMP,
and to a lesser extent ADP, to the ysubunit stimulates AMPK activity

Ca2+

A-769662 ‘Energy status modifiers
: 9916966 ¢ Nutrient starvation
e Salicylate . B . (ngl:rccc?:: and/or O,)
: :/IF'I:Z);gm B CBM oy binding | Y * Mitochondrial
. GSK6—21 comdin poisons (metformin,
e MK-8722 rotenone, CCCP)

L |
T
— AMPK — AMP mimetics
f (AICAR)
ADP ATP ATP\' ADP
Catabolic processes Anabolic processes
| ' ] : ! |

Glucose Autophagy Lipid Lipid Gluconeogenesis Protein

metabolism oxidation synthesis and glycogen storage synthesis Herzig & Shaw, NRMCB, 2018



AMPK: structure and function

AMP binding to the y subunit enhances AMPK activity through three distinct
mechanisms:

1. AMP has been proposed to stimulate phosphorylation of Thr172 by directly stimulating

the activity of the upstream kinase or by an allosteric mechanism that would render
AMPK a better substrate for the upstream kinase; however reports show no effect of
AMP on the phosphorylation of Thr172 by the upstream kinase in vitro.

2. AMP inhibits the dephosphorylation of Thr172 by protecting it from phosphatases.
3. AMP causes allosteric activation of AMPK already phosphorylated on Thr172.

Several factors lead to AMPK activation, such as mitochondrial poisons and oxygen or
glucose starvation, as well as exercise. Drugs that activate AMPK include the AMP mimetic
AICAR and several small-molecule allosteric activators (listed on the left-hand side)

b Cyclodextrin

c Conformational change
upon dephosphorylation

pThr172 buried
in cleft

Catalytic 2 oy
module Catalytic— S CE0E

Steinberg & Hardie, NRMCB, 2023




AMPK: structure and function

a-subunits  Upstream
kinases
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Nature Reviews | Molecular Cell Biology



How AMPK is activated?

Mitochondria are the major suppliers of ATP,
but are susceptible to damage by oxidative stress

Mitochondrial Mitochondrial

biogenesis fission Mitophagy
[ A
AMPK
A
AMP + ATP
ATP—>ATP e
ADP<T‘ADP
ADP/ATP
translocase
Mitochondrion
e Oxidative stress (ATP
. Mlt-oc'hondrlal L ADP
inhibitors
ATP synthase

In fully energized, undamaged mitochondria the high ATP to ADP ratio drives the freely reversible
adenylate kinase reaction (ATP + AMP < 2ADP) towards ADP, thus keeping AMP at very low levels.
However, impairments in mitochondrial function cause rising ADP to ATP ratios, driving the AK2
reaction in the opposite direction and causing an even larger increase in the AMP to ATP ratio. This

activates AMPK by the canonical pathway

Steinberg & Hardie, NRMCB, 2023



How AMPK is activated?

Mitochondria are the major suppliers of ATP,
but are susceptible to damage by oxidative stress

Mitochondrial Mitochondrial

biogefesis fission Mitophagy
/JMP[K (ATP + AMP <« 2ADP) is
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In fully energized, undamaged mitochondria the high ATP to ADP ratio drives the freely reversible
adenylate kinase reaction (ATP + AMP < 2ADP) towards ADP, thus keeping AMP at very low levels.
However, impairments in mitochondrial function cause rising ADP to ATP ratios, driving the AK2
reaction in the opposite direction and causing an even larger increase in the AMP to ATP ratio. This

activates AMPK by the canonical pathway

Steinberg & Hardie, NRMCB, 2023



Point mutations in the y2 interfere with
the binding of the regulatory nucleotides,
AMP and ATP.

Here, they selected one of these
mutations, R531G, that causes a severe
loss of binding of AMP and ATP to CBS3,
thus generating an AMP-insensitive
complex.

They constructed isogenic HEK293 cells
stably expressing either wild-type y2 or
v2-R531G mutant and used them to test
whether a variety of pharmacological
agents and stresses that activate AMPK
do so via increases in AMP
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Hawley et al, Cell Metab, 2010
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How AMPK is activated?

AMPK activators
’// met‘fol’r!'lxA
phenformin
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" : Respiratory A-T-
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ATPY ATP ¥ ATPY
AMPK

Six mechanisms for AMPK activation

Hawley et al, Cell Metab, 2010



How AMPK is activated?

AMPK activators
)// metforrl'l\A
phenformin
legine oligomycin
2-deoxy ga i A23187
A769662 AICAR glucose phenobarbital resveratrol osmotic stress

troglitazone  quercetin?

oxidative stress
berberine
A769662 ZMP  Glycolysis Respiratory sy,’:}LZse Ca2+
760652 —_ AMP4 AMP4 AmP4 CaMKKg
ATPY ATAP*/TP*
AMPK

Six mechanisms for AMPK activation

.... energy status sensing is part of the story....

Hawley et al, Cell Metab, 2010



When AMPK is activated?

Intense muscle contraction/activity

Ischemia In cardiac muscle

Oxidative stress in the liver

* Poor perfusion in tumors



A-769662 is an AMP-independent allosteric
regulator of AMPK activation
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Sanders et al, JBC, 2007



A-769662 is an AMP-independent allosteric
regulator of AMPK activation
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A-769662 is an AMP-independent allosteric
regulator of AMPK activation
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AICAR is an AMP mimetic
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How AMPK is activated?

Nucleus
(N7 . ~)
y / "/ ‘/I ) 4 ?
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A number of NON-CANONICAL regulations of AMPK have emerged, activation by including
DNA damage and damaged lysosomes.

Steinberg & Hardie, NRMCB, 2023



Ca®*-Stimulated AMPK-Dependent Phosphorylation
of Exo1 Protects Stressed Replication Forks
from Aberrant Resection
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How AMPK is activated?

CaMKK LKB1

@fj
o

Energy Energy
production expenditure

| |

Restore energy balance

LKB1 (in complex with STRAD-MO25) is the major upstream kinase (and regulator) of AMPK
in mammals. Yet, what factors elicit its activation remain elusive



How AMPK is activated?

ROS
PIBK / AKT
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Restore energy balance

LKB1 (in complex with STRAD-MO25) is the major upstream kinase (and regulator) of AMPK
in mammals. Yet, what factors elicit its activation remain elusive



AMPK: activity and regulated pathways

Once activated, AMPK redirects metabolism towards increased catabolism and decreased

anabolism through the phosphorylation of key proteins in multiple pathways, including mTOR
complex 1 (mTORC1), glycolysis (PFK1) and fatty acid synthesis (ACC1/2)
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Herzig & Shaw, NRMCB, 2018



AMPK: inhibition of FAS and stimulation of FAO

AMPK inhibits multiple biosynthetic AMPK

pathways under conditions of energy

shortage. / \-

The first pathway to be identified was the

inhibition of lipid and sterol synthesis by ATGL CPT-1a

AMPK through inhibitory phosphorylation of /\

the Acetyl-CoA Carboxylases (ACC1 and l \

ACC?2), which catalyze the first step in de
novo lipid synthesis, and inhibitory
phosphorylation of HMGCoA Reductase

Malonyl-CoA FAS

¥

(HMGCR), which catalyzes the rate-limiting

step in cholesterol synthesis Lipolysis| | Fatty acid Lipogenesis

oxidation




AMPK: inhibition of FAS and stimulation of FAO
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AMPK:

activity and regulated pathways
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AMPK: regulation of mitochondrial homeostasis
and autophagy

------------------------
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AMPK: induction of autophagy
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Autophagy is a process by which cells digest their own components using a specialized machinery of adaptors and effectors. It begins
with the generation of the autophagosome and recognition of the cargo, followed by the maturation of the autophagosome and fusion
with lysosomes. The term itself means ‘self-eating’ and was first coined by Belgian scientist and Nobel Prize laureate Christian de Duve.
Autophagy serves two main functions: it enables the degradation of cellular structures that are too large for other surveillance pathways, such
as the ubiquitin—proteasome system, and it allows cells to survive starvation by recycling building blocks such as amino acids to sustain
essential cell functions. Autophagy can be either a bulk recycling of cytosolic components or a targeted removal of macromolecules and
even organelles. In particular, removal of mitochondria by autophagy, a process called mitophagy, has been shown to require the canonical
autophagy machinery as well as specific markers at the surface of damaged mitochondria that signal their removal. Genes essential for autophagy
(ATGs) have been discovered by screening for genes that are required for autophagosome formation in the yeast Saccharomyces cerevisiae during
nitrogen starvation239,240. Yoshinori Ohsumi was awarded the Nobel Prize in physiology or medicine in 2016 for the discovery of the ATG genes.
Since the 1990s, the molecular events controlling autophagy execution have been characterized, and the role of ATG genes in controlling various
steps of the autophagy pathway has been demonstrated. The first ATG gene to be cloned, ATG1, encodes a protein kinase required for the
initiation of autophagy. Its mammalian homologue, ULK1, plays a similar role.



AMPK: induction of autophagy
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Herzig & Shaw, NRMCB, 2018



Physiological consequences of AMPK activation
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AMPK preserves energy expenditure and optimizes ATP generation: important to sustain
exercise In skeletal muscle cells




Inducible deletion of skeletal muscle AMPKo
reveals that AMPK is required for nucleotide
balance hut dispensable for muscle glucose
uptake and fat oxidation during exercise
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AMPK Activation of Muscle
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AMPK: regulation of appetite
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NPY/AgRP: neuropeptide Y and agouti-related protein-expressing neurons

POMC: pro-opiomelanocortin-expressing neurons Herzig & Shaw, NRMCB, 2018



Catabolism and Anabolism are juxtaposed and
regulated by nutrient sensing
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Catabolism and Anabolism are juxtaposed and
regulated by nutrient sensing

AMPK

AMP-activated protein kinase
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Two protein complexes coordinate nutrient/
sighaling sensing and anabolism/growth
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MTORC: mechanistic (previously: mammalian) Target of Rapamycin Complex

Liu & Sabatini, NRMCB, 2020
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Two protein complexes coordinate nutrient/
sighaling sensing and anabolism/growth
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Macrolide with potent anti fungal activity isolated in 1964 from bacteria fbund in the Rapa Nui
island. This compound was later found to have immunosuppressive, antitumour and

: : . o - : Liu & Sabatini, NRMCB, 2020
neuroprotective properties, generating significant clinical excitement



MTORC complexes: structure

b mTORC1
( PRAS40 O

1
FKBP12-
)
v 1 v

( HEAT repeats

[ FAT (FRB( Kinase | FATC |

mTOR T

( DEPTOR |
¢ mTORC2
PROTOR1/2() ( msiNt ()

¥ v
——)
v v

( HEATrepeats | FAT (FRB( Kinase | FATC (]
mTOR T

( DEPTOR |

MTOR is a is a 289kDa serine/threonine protein kinase in the PI3K-related protein kinases (PIKK)
family. In mammals, it constitutes the catalytic subunit of two distinct complexes known as mTOR
complex 1 (MTORC1) and mTORC2. These complexes are distinguished by their accessory proteins
and their differential sensitivity to rapamycin, as well as by their unique substrates and functions



MTORC complexes: structure

The overall organization of both mTORC1 and mTORC2 is that of a dimer:
each complex includes two copies of mMTOR and of their respective accessory
subunits (differ in part).

Three core components: MTOR, mammalian lethal with SEC13 protein 8

(mLSTS8, also known as GBL - stabilizing role) and a unique defining subunit,
the scaffold protein regulatory-associated protein of mMTOR (RAPTOR/
RICTOR - localization and substrate specificity)



MTORC complexes: structure

In isolation, this complex is relatively inactive; a recent structure suggests
that key residues in the kinase domain of mMTOR may only shift into a
catalytic position after the complex binds its essential activator, the small
GTPase Rheb (Yang et al, Nature, 2017)

MTORC2 retains the ability to phosphorylate its substrates upon acute
rapamycin treatment

MSIN1 has a phospholipid-binding pleckstrin homology domain, which
may help mMTORC2 assemble on the plasma membrane



MTORC: structure
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The mTOR N-terminus comprises an array of

helical HEAT repeats that form two a-solenoids
packed against each other, known as the ‘horn’
and the ‘bridge’ domains (binding of regulators).

The HEAT domain enables its recruitment at the
lysosomal surface.

As in other PIKK family kinases, the FAT domains
serve as organizing centres of the complex, as
they clamp onto and anchor the kinase domains,
horn, and bridge.

The active site of mMTOR contains a substrate-
binding groove that consists of the activation loop,
portions of the mLST8 binding site, and the FATC
domain. The FRB domain and mLST8 narrow the
active site cleft to prevent non-target proteins from
binding

Goul, Peruzzo & Zoncu, NRMCB, 2023



MTORC complexes have different activating
cues and effectors
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How is mMTORC1 activated?

€ RHEB-mTORC1 binding
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Regulators of mMTORC1 converge on the lysosome-associated RHEB (Ras homologue
enriched in brain) guanosine triphosphatases (GTPases) that modulate its kinase activity.
RHEB is active in the GTP-bound state, stimulating mTORC1 through physical interactions that
allosterically reorient the kinase active site, thereby favoring substrate phosphorylation.

The recruitment of mMTORC1 to lysosomes, which enables its interaction with RHEB, is
mediated by the heterodimeric Rag GTPases, and occurs in the presence of glucose, amino
acids and other nutrients.

The requirement for both RHEB and Rag GTPases ensures that growth signaling occurs
according to a ‘co-incidence detection’ principle, that is, only when the required
intracellular building blocks and extracellular growth-promoting instructions are simultaneously

present.

Goul, Peruzzo & Zoncu, NRMCB, 2023



How is mMTORC1 activated?

mTORC1

Enhanced recruitment of substrate proteins

Phosphorylation of substrate proteins

RHEB in its GTP-bound state interacts with mTORC1 and activates it. This involves enhanced
recruitment of substrate proteins resulting in their phosphorylation. RHEB-GTP is converted to

RHEB-GDP by the action of Tuberous Sclerosis Complex TSC1/TSC2 GAP (GTPase Activating
Protein)



How is mMTORC1 activated?

In response to nutrients, mMTORC1 translocates from the cytoplasm to the lysosomal
surface, where it is activated by growth factors via PIS3K— AKT signaling.

Growth factors
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AKT inhibits the TSC1-TSC2 complex, which is a GTPase- activating protein
(GAP) for the small GTPase RHEB. GTP-bound RHEB directly binds and
activates mTORC1 at the lysosome




MTORC1 activation

Nutrients/growth factors poor condition Nutrients/growth factors rich condition
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| ! I
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Nutrients are sensed by RAGULATOR proteins to recruit mTORC1 at the lysosome
Growth factors trigger AKT signaling to promote RHEB-GTP state and activate mTOR kinase

The requirement for both RHEB and Rag GTPases ensures that growth signaling occurs
according to a ‘co-incidence detection’ principle, that is, only when the required intracellular building
blocks and extracellular growth-promoting instructions are simultaneously present.



What is sensed by RAG-mTORC1?
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What is sensed by RAG-mTORC1?

. lots of things!

O Positive regulator of mTORC1 O Negative regulator of mTORC1

~Insulin (f]rowth
0.0 actors
() Insulin/IGF

‘ ‘ receptor EGFR
& * @ receptor
{ PIP2
(NF1 ]—|( Ras )«— (Grb2

PTEN 505
PIP3 o’
v v TNF
Energetic stress @RCZ ——=( Akt )
¢ Whnt
Hypoxia —> REDD1 \ .
<4 GSK3
DNA damage —> (p53 )--------- > |— ' @
TSC |« s
~—>( LKB1 )—> AMPK —_— f IKKB )<—
A
> Methionine »SAM : ?
SRS i i S S Low nucleotides
_Mrgmme (FLCN/FNIP2 ) . .
CASTORl '
SAMTOR 1 :
Sean '
'731 ‘ { : ?
_bLeucme & GTF = ;

.......
........... ‘ )}
o ca Y s e St o W A W\ [P P e o 0770/ f5s 2@
e PL '... "
0 o o2Jf o0 ——
o N OO G54 o3
° K 2
P3- ...

, X5 Amino acid
NP efflux

Arginine

Lysosome

Plasmal
membrane



What is sensed by RAG-mTORC1?

. lots of things!

O Positive regulator of mTORC1 O Negative regulator of mTORC1

~Insulin Growth

facto rs

00

() Insulin/IGF

receptor EGFR
* @ receptor
PIP2
(NF1 ]—|( Ras )<«— (Grb2

PTEN 505
PIP3 .
Y v TNF
Energetic stress mTORCZ 4_( Akt )
o
Hypoxia —> REDD1 —) _[ Il
4 GSK3
DNA damage —»@ ......... |— r—( B)
1S@
“——( LKB1 )—> AMPK _— I 1KKB )«
A
> Methionine »SAM :‘ ?

_Mrgmme (FLCN/FNIP2 ) -

CASTORl

Sean

— Leucme ATOR2)—|(GAT0R1)—| Eﬂ}.

SAMTOR l
GDP(RagC/D )L

‘

KICSTOR

Amino acid
efflux

Arginin

Lysosome

Plasmal
membrane



What is sensed by RAG-mTORC1?

O Positive regulator of mTORC1 O Negative regulator of mTORC1

~Insulin (f]rowth
0.0 actors
() Insulin/IGF

receptor EGFR
* @ receptor
PIP2
(NF1 ]—|( Ras )<«— (Grb2

PTEN Sos
," --------------------- Plasmal
p|p3 pe .@ membrane
v v TNF
—~ Energetic stress mTORCZ 4_( Akt )
v
Hypoxia —> REDD1 —) _[ ]
DNA damage —> (p53 )--------- > @ |— '
TSCH «
—>(_LKB1 )—> AMPK — :

> Methionine » SAM
_Mrgmme (FLCN/FNIP2 )

(CASTOR1)
SAMTOR l
Sean
GDP(RagC/D )

— Leucme ATORz)—|(GAT0R1)—| Eﬁ’, RagA/B )}
) " KICSTOR "

Amino acid
efflux

Arginin

Lysosome

. lots of things!



Arginine Leucine Glutamine Growth factor
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Nutrients, in particular amino acids, promote lysosomal localization of mMTORC1 via the RAS-related
GTP-binding proteins (RAGSs), thereby enabling mTORC1 to encounter RHEB.

RAGs are small GTPases that form obligate heterodimers. RAGA or RAGB associates with RAGC
or RAGD.

In the active state, GTP-bound RAGA or RAGB and GDP-bound RAGC or RAGD bind RAPTOR
and thereby recruit mTORC1 to the lysosomal surface.

P

Mossman et al, Mat Rev Cancer, 2018

The nucleotide binding status of the RAGs is tightly regulated by amino acids obtained from
intracellular synthesis, protein turnover or extracellular sources via specific transporters.



The lysosome Is an ideal compartment to sense
anabolic demands and activate mTORC1
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(A) In the absence of amino acids and growth factors, mMTORC1 is inactive. This is controlled by two separate signaling pathways. First, GATOR1 is an active
GAP toward RagA, causing it to become GDP bound. In this state, mnTORC1 does not localize to the lysosomal surface.

(B) In the presence of amino acids and growth factors, mTORC1 is active. Amino acids within the lysosome signal through SLC38A9 to activate the amino
acid sensing branch. Ragulator is active, causing RagAto be GTP bound. This binding state is reinforced by the fact that GATOR1 is inactive in the presence
of amino acids, as GATOR?2 inhibits it. The Rag heterodimer in this nucleotide conformation state recruits mTORC1 to the lysosomal surface.
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acid sensing branch. Ragulator is active, causing RagAto be GTP bound. This binding state is reinforced by the fact that GATOR1 is inactive in the presence
of amino acids, as GATOR?2 inhibits it. The Rag heterodimer in this nucleotide conformation state recruits mTORC1 to the lysosomal surface.



The lysosome Is an ideal compartment to sense
anabolic demands and activate mTORC1
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(A) In the absence of amino acids and growth factors, mMTORC1 is inactive. This is controlled by two separate signaling pathways. First, GATOR1 is an active
GAP toward RagA, causing it to become GDP bound. In this state, mnTORC1 does not localize to the lysosomal surface.

(B) In the presence of amino acids and growth factors, mTORC1 is active. Amino acids within the lysosome signal through SLC38A9 to activate the amino
acid sensing branch. Ragulator is active, causing RagAto be GTP bound. This binding state is reinforced by the fact that GATOR1 is inactive in the presence
of amino acids, as GATOR?2 inhibits it. The Rag heterodimer in this nucleotide conformation state recruits mTORC1 to the lysosomal surface.



Sensing of amino acids by mTORC1 is mediated
by RAGs-Ragulator complex
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The Rag GTPases are anchored to the lysosome by the pentameric Ragulator complex, which is
composed of late endosomal/lysosomal adaptor and MAPK and MTOR activator 1 (LAMTOR1; also

known as p18), LAMTORZ2 (p14), LAMTORS, LAMTOR4 and LAMTORS

SLC38A9 is specifically required for mTORC1 activation by Arg present within the lysosome
lumen. Arg is not a substrate of SLC38A9 but, rather, allosterically promotes the interaction of

SLC38A9 with Ragulator— Rag GTPases, thereby contributing to switching or stabilizing RagA/B
to the active (IMTORC1-binding) state. Moreover, through SLC38A9, Arg stimulates the efflux of
Leu and other non-polar essential amino acids from the lysosome lumen.

Goul, Peruzzo & Zoncu, NRMCB, 2023



MTORC1 activation
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What is sensed by RAG-mTORC1?
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CHOLESTEROL SENSING
SIGNAL TRANSDUCTION

Lysosomal cholesterol activates L : : :
: . ysosomal GPCR-like protein LYCHOS signals
mTORC1 via an SLC38A9-Niemann- o\, 104} sufficiency to mTORC1

Pick C1 signaling complex

Castellano et al, Science, 2017 Shin et al, Science, 2022
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Lysosome
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jure 2.9 Model for nTORC1 requlation by LDL-derived cholesterol

The nucleotide-binding state of the Rags is controlled by protein complexes including the Ragulator, a GEF for RagA and RagB; and
GATOR1, a GAP for RagA and RagB.

Cholesterol binds to SLC38A9 and regulates the Ragulator-Rag GTPase complex.

Cholesterol is also sensed by the GPCR LYCHOS; when cholesterol is high, LYCHOS activates mTORC1 activity by sequestering
GATOR1



CHOLESTEROL SENSING

Lysosomal cholesterol activates
mTORCI via an SLC38A9-Niemann-
Pick C1 signaling complex

Castellano et al, Science, 2017
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CHOLESTEROL SENSING

Lysosomal cholesterol activates
mTORCI via an SLC38A9-Niemann-
Pick C1 signaling complex

Castellano et al, Science, 2017
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SIGNAL TRANSDUCTION

Lysosomal GPCR-like protein LYCHOS signals
cholesterol sufficiency to mTORC1

Shin et al, Science, 2022

One important player is the lysosomal transmembrane protein,
SLC38A9, which participates in cholesterol- dependent activation of
mTORC1 through conserved sterol-interacting motifs within its
transmembrane domains. However, SLC38A9 primarily relays
arginine abundance to mTORC1, whereas a dedicated sensor for
cholesterol remains to be identified.

More generally, it is likely that the lysosome has as yet undiscovered
nutrient sensors that could regulate cellular metabolism through
MmTORC1-dependent or independent pathways.
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SIGNAL TRANSDUCTION

Lysosomal GPCR-like protein LYCHOS signals
cholesterol sufficiency to mTORC1

Shin et al, Science, 2022

One important player is the lysosomal transmembrane protein,

SLC38A9, which participates in cholesterol- dependent activation of

mTORC1 through conserved sterol-interacting motifs within its
transmembrane domains. However, SLC38A9 primarily relays

arginine abundance to mTORC1, whereas a dedicated sensor for
cholesterol remains to be identified.

More generally, it is likely that the lysosome has as yet undiscovered

nutrient sensors that could regulate cellular metabolism through
MmTORC1-dependent or independent pathways.
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SIGNAL TRANSDUCTION

Lysosomal GPCR-like protein LYCHOS signals
cholesterol sufficiency to mTORC1

Shin et al, Science, 2022
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NPC disease -
dysfunction of a cholesterol transport protein NPC1/NPC2
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Unesterified
cholesterol Extracellular
—U . Intracellular
| P
Q 0,
°oQ \ o
Q Lysosome =
Early \4 @ =
endosome "o L
Late Golgi
endosome complex
Esterified :

cholesterol ©- »
Endoplasmic reticulum

[ W NPCH © NPC2

NPC disease

Unesterified
cholesterol Extracellular

Q0
_U Intracellular

|

Early
endosome

Late — NS®_ o
endosome °

%/ Golgi®

Endoplasmic reticulum  complex

& NPC1/NPC2 deficiency j




EARLY INFANTILE

ONSET i 4

~ | MUSCLE TONE

~ DELAY in
DEVELOPMENTAL
MOTOR MILESTONES

Vanier, J Rare Dis, 2010

SYMPTOMS

* PROGRESSIVE NEUROLOGIC
~ ALMOST ALL AFFECTED INDIVIDUALS

PEVELOPMENTAL
REGRESSION

INFANTILE &
CHILDHOOD ONSET
~ CLUMSINESS

~ LEARNING DIFFICULTIES
~ UNSTEADY GAIT

~ DIFFICULTY SWALLOWING
~ SLURRED SPEECH

~ SEIZURES or CATAPLEXY

TEENAGE & ADULT

ONSET

~ PSYCHIATRIC SYMPTOMS

~ PROGRESSIVE COGNITIVE
IMPAIRMENT

JAUNDICE

~ COMMON in NEWBORNS
~ RARE in OL




SYMPTOMS

* PROGRESSIVE NEUROLOGIC
~ ALMOST ALL AFFECTED INDIVIDUALS

EARLY INFANTILE  ,cve opmenTAL TEENAGE % ADULT
ONSET T~ ReGRESSION ONSET
~ | MUSCLE TONE ~ PSYCHIATRIC SYMPTOMS
~ DELAY in ~ PROGRESSIVE COGNITIVE
DEVELOPMENTAL INFANTILE & IMPAIRMENT
MOTOR MILESTONES  CHILDHOOD ONSET
G i JAUNDICE
~ LEARNING DIFFICULTIES R T
~ UNSTEADY GAIT .

~ DIFFICULTY SWALLOWING
~ SLURRED SPEECH
~ SEIZURES or CATAPLEXY 1}

0 No neurological signs

25 o] Neurological signs, dead

- Neurological signs, alive

a
o

HHHHH J—TT

Patients (n=97)

~
(&)

100

2 IR T O 1 A 8 o 0 1NN U 50 IS0 30 U B O 1 TR S 1 o TR A (S MY I S A A o OO0 I I 68 I

Vanier, J Rare Dis, 2010 0 10 20 30 40 50 60
Age, years



MTORC1 is hyper activated in Niemann-Pick Type C
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MTORC1 is hyper activated in Niemann-Pick Type C
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MTORC1 is hyper activated in Niemann-Pick Type C
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What is sensed by RAG-mTORC1?

O Positive regulator of mTORC1 O Negative regulator of mTORC1
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What is sensed by RAG-mTORC1?

. lots of things!
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What is sensed by RAG-mTORC1?

O Positive regulator of mTORC1 O Negative regulator of mTORC1
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MTORC1: Central regulator anabolism
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MTORC1: Central regulator anabolism

a Protein synthesis
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Liu & Sabatini, NRMCB, 2020



MTORC1: Central regulator anabolism

a Protein synthesis
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Activation of protein synthesis. Protein
synthesis is the most energy-intensive and

resource-intensive process in growing cells. It is

therefore tightly regulated by mTORC1, which

promotes protein synthesis by phosphorylating
the eukaryotic initiation factor 4E binding
proteins (4EBPs) and p70 S6 kinase 1 (S6K1).

[Lipid synthesis)
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glycolysis

Liu & Sabatini, NRMCB, 2020



MTORC1 canonical targets (and mediators)
are 4EBP1 and S6K
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MTORC1 canonical targets (and mediators)
are 4EBP1 and S6K
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MTORC1 canonical targets (and mediators)
are 4EBP1 and S6K

Effects on metabolism are
multifold, and still emerging.
Generally speaking, mTORC1
enhances several processes.
These include:

* Nucleotide synthesis
 Lipid synthesis
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» Glycogen synthesis
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In its unphosphorylated
state, 4EBP1 suppresses
translation by binding and
sequestering eukaryotic
translation initiation factor
4E (elF4E), an essential
component of the elF4F
cap-binding complex.

S6K1 phosphorylates its
namesake target,
ribosomal protein S6, a
component of the 40S
subunit. The function of S6
phosphorylation remains
ambiguous.



Pyrimidine biosynthesis

MTORC1 stimulates nucleotide biosynthesis
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MTORC1: Central regulator anabolism
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MTORC1: Central regulator anabolism

a Protein synthesis
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MTORC1 blocks autophagy through
“non-canonical” mechanisms
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MTORC1 blocks autophagy through
“non-canonical” mechanisms

Canonical pathway @ Non-canonical pathway
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MTORC1 can phosphorylate MiT-TFE transcription family members interacting with
Follicular (FLCN) as GEF

Napolitano, Di Malta & Ballabio, Trends Cell Biol, 2022



MTORC1 blocks autophagy through
“non-canonical” mechanisms
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MTORC1 blocks autophagy through
“non-canonical” mechanisms
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When TFEB is phosphorylated, it is retained in the cytoplasm (inactive)

Napolitano, Di Malta & Ballabio, Trends Cell Biol, 2022



MTORC1 activation excludes TFEB

from the nucleus
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MTORC1: Signal integrator and central
regulator anabolism
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AMPK1 suppresses mTORC1
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AMPK1 suppresses mTORC1

high glucose low glucose

AMPK

- mTORCA1
-RagD GDP

v-ATPase

lysosome membrane lysosome membrane

AMPK1 activates the TSC complex (inhibiting mTORC1)

AMPK - mTORC crosstalk ensure proper balance between anabolism and catabolism



MmTORC2: Signal mediator for growth and survival
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Sirtuins:

Seven family members (mammals): SIRT1 - SIRT7
Protein deacetylases (also involved in ADP-ribosylation)
Localized at different compartments

Depend on NAD+ (activated by calorie restriction)

Involved in metabolism and aging
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Sirtuins activity is regulated

a Transcription b Post-translational ¢ Complex formation d Substrate levels
modifications
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Houtkooper et al, NRCMB, 2012



Sirtuins activity is regulated

a Transcription b Post-translational ¢ Complex formation
modifications
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Sirtuins depend on NAD+ availability

Ac-Lys
N - N
Active Silenced
Sir2
NAD

" e
.7 =

Metabolicrate of cells

The NAD+-dependence of deacetylase activity supports the hypothesis that Sirtuins
could act as metabolic sensors, capable of modulating gene expression according
to the metabolic state of the cell

Guarente, Genes & Dev, 2000



NAD+ levels decrease under conditions that
stimulate its conversion to its reduced form, NADH

ETC / OXPHOS
Fatty acid synthesis
Pyruvate metabolism

Lipid desaturation

NAD+-producing reactions

De novo synthesis
Salvage pathways

NAD+-consuming reactions
Glycolysis
TCA cycle
Fatty Acid ox
NAD phosphorylation (NADP+)
Specific PTMs



NAD+ homeostasis Is sensitive to
metabolic status of the cell

* PARPs +CD38
* Sirtuins = CD157

(NADP*) < (NAD") > (Nam )
A— A— \ — :

* Antioxidant H Pt * Energy delivery to H : g:foz;'; :-._ADPR_.‘
defence \ Aaangd Complex | of the ETC \ xid);n'on ="

* Anabolic \ P tth * Lactic acid generation \ i ]9. b' l
reactions H RS * PUFA desaturation H ”,Cda' OI‘Y e

* Signalling v v acid cycle
via NOXs

(NADPH) (NADH)

Ralto et al, Nat Rev Nephrol, 2019



NAD+ levels rise iIn muscle, liver and white adipose
tissue during fasting, caloric restriction and
exercise

STACs Resveratrol Exercise Calorie Fasting
restriction

BN

NAD* production
e.g. Trp, NA, NAM, NR

While high-fat diet in mice / obesity reduces the NAD+/NADH ratio
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Jannsen et al, Nat Aging, 2022



NAD+ is compartmentalized
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NAD+ levels fluctuate and impact
tissue-specific functions
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Sirtuins regulate metabolism
. GRID
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Houtkooper et al, NRCMB, 2012



Sirtuins regulate metabolism

€ Caloric restriction and exercise Caloric excess and sedentary lifestyle
L ATP T ATP
4

Mitochondrial
biogenesis
and activity

Mitochondrial
biogenesis

L lml r-band activity

Nature Reviews | Molecular Cell Biology

Houtkooper et al, NRCMB, 2012



Sirtuins regulate mitochondria fithess

STACs Resveratrol |Exercise Calorie Fasting
restriction

S

NAD* production
e.g. Trp, NA, NAM, NR

/ \ Deacetylation of transcriptional

Mitochondrial unfolded protein

response (UPRMY) regulators (e.g. PGC-1a, FOXO1)
| oo
Mitohormetic response Metabollciadaptatuon
v
# Mitochondrial @ e 1 Mitochondrial
biogenesis and g 093."95 s an
function @ function

Protection against mitochondrial

Longevity and age-related disorders



Sirtuins and aging

Lifespan increase

Beneficial health effects

old age)

cardiovascular disease

Dietary Mutations/ Dietary Mutations/
restriction drugs restriction drugs
Extended Extended reproductive
3 fold 10 fold reproductive period, decreased DNA
period damage/mutations
Resistance to g:t;gg:d‘:; ﬁ::?s-
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proteins
and germ-line cancer
Resistance to
2 fold 60-70% None reported bacterial infection,
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Protection against Reduced tumor
30-50% cancer, diabetes, incidence, protection
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30-50% (~100% in myopathy, autoimmune, = cognitive decline, cardio-
combination kidney and respiratory | myopathy, fatty liver and
with DR) diseases, reduced renal lesions. Extended
neurogeﬂeraQIOn insulin sensitiv‘ty
Prevention of obesity,
Trend Not protection against Not
noted tested diabetes, cancer and tested
cardiovascular disease
Not Prevention of obesity,
Not determined diabetes, hypertension Possible reduction
determined . (GHR deficient Reduced risk factors in cancer and
subjects reach for cancer and diabetes



Sirtuins and aging

Age/Disease Calorie Restriction
/Starvation

Ablation of sirtuins decreases lifespan (healthspan??) in yeast and worms, while
their OE prolongs it
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Lipid sensing
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Cholesterol sensing is mediated by
SCAP and SREBP

Low
Cholesterol

ER Lumen

High No Scap transport

Cholesterol
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When animal cells are deprived of sterols, Scap escorts SREBPs from the ER to Golgi by binding to
Sec24, a component of the Sar1/Sec23/Sec24 complex of the COPII protein coat. Once in the Golgi, the
SREBPs are proteolytically processed to generate their nuclear forms that activate genes for cholesterol
synthesis and uptake.

Cholesterol negatively regulates ER-to-Golgi transport by binding to Scap, thereby changing its
conformation and triggering the binding of Scap to Insig, an ER anchor protein. Insig prevents the bind-
ing of Scap to COPII proteins, thereby halting transport of SREBPs to the Golgi.



Nutrient availability impacts acetyl-CoA levels
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...which can signal to the nucleus
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Metabolites integrate nutrient availability in the
nucleus

Growth factors
Hormones
Cytokines Nutrients

Signaling \ / Metabolism
Transcription factors \ /

Substrate/Co-factor

Chromatin modifying enzyme |

Lu & Thompson, Cell Metab, 2012



Metabolites integrate nutrient availability in the
nucleus

Glycolysis

Glucose —— > 5 4 TCA cycle
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Glutamine
NAD* NADH
Hexosamine Cltrate Methionine
Pathway l

GlcNAC Acetyl CoA SAM « AMPK

GlcNAcylation @ Acetylation € Methylation *Phosphorylation

O Hydroxymethylcytosine @ Methylcytosine

Lu & Thompson, Cell Metab, 2012
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When is nutrient sensing
important?



Physiology:

When a cell changes microenvironment - adaptation
To regulate changes in cell state - differentiation

To regulate growth - development

To integrate dietary inputs - fed/fast state

To integrate circadian oscillations - day/night cycles

Pathology:

Cancer

Metabolic syndrome / obesity

Maladaptive responses (dysplasia, hypertrophy, ...)
Neurological disorders



