
Lecture 5
PCTL Model Checking for DTMCs

Alessandro Abate

Department of Computer Science
University of Oxford

Probabilistic Model Checking

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

2

3

Overview

• PCTL model checking for DTMCs

• Computation of probabilities for PCTL formulae
− next
− bounded until
− (unbounded) until

• Solving large systems of linear equations
− direct vs. iterative methods
− iterative solution methods

4

PCTL

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulae)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulae)

− where a is an atomic proposition, p ∈ [0,1] is a probability
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Remaining operators can be derived (false, ∨, →, F, G, …)
− hence will not be discussed here

“until”

ψ is true with
probability ~p

“bounded
until”“next”

5

PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]
− inputs: DTMC D=(S,sinit,P,L), PCTL formula φ
− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?
− often, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)
− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

• Sometimes, focus on quantitative results
− e.g. compute result of P=? [F error]
− e.g. compute result of P=? [F≤k error] for 0≤k≤100

6

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ
− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator:
− need to compute the

probabilities Prob(s, ψ)
for all states s ∈ S

− Sat(P~p [ψ]) = { s ∈ S | Prob(s, ψ) ~ p }

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

7

Probability computation

• Three temporal operators to consider:

• Next: P~p[X φ]

• Bounded until: P~p[φ1 U≤k φ2]
− adaptation of bounded reachability for DTMCs

• Until: P~p[φ1 U φ2]
− adaptation of reachability for DTMCs
− graph-based “precomputation” algorithms
− techniques for solving (large) systems of linear equations

8

PCTL next for DTMCs

• Computation of probabilities for PCTL next operator
− Sat(P~p[X φ]) = { s ∈ S | Prob(s, X φ) ~ p }
− need to compute Prob(s, X φ) for all s ∈ S

• Sum outgoing probabilities for
transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• Compute vector Prob(X φ) of
probabilities for all states s (useful for Sat set)
− Prob(X φ) = P · φ
− where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ
− computation requires a single matrix-vector multiplication

s

φ

9

PCTL next - Example

• Model check: P≥0.9 [X (¬try ∨ succ)]
− Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)

= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

− Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

• Results:
− Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]
− Sat(P≥0.9 [X (¬try ∨ succ)]) = {s1, s2, s3}

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

×

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1
1

0.99
0

1
1
0
1

1000
0001

0.980.010.010
0010

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

10

PCTL bounded until for DTMCs

• Computation of probabilities for PCTL U≤k operator
− Sat(P~p[φ1 U≤k φ2]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p }
− need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S

• First identify (some) states where probability is trivially 1/0
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

Sat(φ2)

Sat(φ1)
S

Syes = Sat(φ2)
Sno = S \ (Sat(φ1) ∪ Sat(φ2))

11

PCTL bounded until for DTMCs

• Let:
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• And let:
− S? = S \ (Syes ∪ Sno)

• Compute solution of recursive equations:

Sat(φ2)

Sat(φ1)S

0k and Ss if
0k and Ss if

Ss if
Ss if

)φ U φ ,Prob(s')s'(s,
0
0
1

)φ U φ Prob(s,
?

?

no

yes

Ss'
2

1-k
1

2
k

1

>Î
=Î

Î
Î

ï
ï
î

ïï
í

ì

×
=

å
Î

£

£

P

12

PCTL bounded until for DTMCs
• Simultaneous computation of vector Prob(φ1 U≤k φ2)

− i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S
− (important in order to find Sat set of formula)

• Iteratively define in terms of matrices and vectors
− define matrix P’ as follows:

• if s ∈ S? P’(s,s’) = P(s,s’);
• if s ∈ Syes, P’(s,s’) = 1 if s=s’, otherwise P’(s,s’) = 0

− Prob(φ1 U≤0 φ2) = φ2

− Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2)
− requires k matrix-vector multiplications

• Note that we could express this in terms of matrix powers
− Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps
− but this can be inefficient, as (P’)k is much less sparse than P’

13

PCTL bounded until - Example

• Model check: P>0.98 [F≤2 succ] ≡ P>0.98 [true U≤2 succ]
− Sat (true) = S = {s0,s1,s2,s3}, Sat(succ) = {s3}
− Syes = {s3}, Sno = ∅, S? = {s0,s1,s2}, P’ = P
− Prob(true U≤0 succ) = succ = [0, 0, 0, 1]

− Sat(P>0.98 [F≤2 succ]) = {s1, s3}

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

×

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=×= ££

1

0

0.98

0

1

0

0

0

1000

0001

0.980.010.010

0010

 succ) U (trueProb ' succ) U (trueProb 01 P

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

×

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=×= ££

1

0

0.9898

0.98

1

0

0.98

0

1000

0001

0.980.010.010

0010

 succ) U (trueProb ' succ) U (trueProb 12 P

14

PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S
• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2])
− Sno = Sat(P≤0 [φ1 U φ2])

• Then solve system of linear equations for remaining states

• Running example:

P>0.8 [¬a U b] 0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9
1

{a}

{b}

0.1

s0

s1 s3

s2 s4

s5

15

Precomputation

• We refer to the first phase (identifying sets Syes and Sno) as
“precomputation”
− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons
− Prob0 ensures unique solution to system of linear equations
− both reduce the set of states for which probabilities must be

computed numerically
− give exact results for the states in Syes and Sno (no round-off)
− (of course, for model checking of qualitative properties (P~p[·]

where p is 0 or 1), no further computation is required)

16

0.1

0.6

1 0.3

0.70.3

0.50.9
0.1

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

bs0

s1 s3

s2 s4

s5

0.1

17

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

18

Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

19

Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

20

Sat(P>0 [¬a U b])

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

21

Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

22

Sno = Sat(P≤0 [¬a U b])

0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9
0.1

Sat(P>0 [¬a U b])

Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :
− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])
− i.e. find all states which can, with non-zero probability, reach

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

bs0

s1 s3

s2 s4

s5

23

Prob0 algorithm

• Note: can be formulated as a least fixed point computation
− also well suited to symbolic computations, e.g., with binary

decision diagrams

12 Marta Kwiatkowska, Gethin Norman, and David Parker

Prob0(Sat(�),Sat())
1. R := Sat()
2. done := false
3. while (done = false)
4. R0 := R [{s 2 Sat(�) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Prob1(Sat(�),Sat(),Sat(P60[� U]))
1. R := Sat(P60[� U])
2. done := false
3. while (done = false)
4. R0 := R [{s 2 (Sat(�)\Sat()) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Fig. 3. The Prob0 and Prob1 algorithm

To simplify the computation we transform this system of equations into one
with a unique solution. This is achieved by first finding all the states s for which
Prob

D(s,� U) is exactly 0 or 1; more precisely, we compute the sets of states:

Sat(P60[� U]) = {s 2 S |ProbD(s,� U)=0}
Sat(P>1[� U]) = {s 2 S |ProbD(s,� U)=1} .

These sets can be determined with the algorithms Prob0 and Prob1 which are
described in Fig. 3:

Sat(P60[� U]) = Prob0(Sat(�),Sat())

Sat(P>1[� U]) = Prob1(Sat(�),Sat(),Sat(P60[� U])) .

Prob0 computes all the states from which it is possible, with non-zero proba-
bility, to reach a state satisfying without leaving states satisfying �. It then
subtracts these from S to determine the states which have a zero probability.
Prob1 first determines the set of states for which the probability is less than

1 of reaching a state satisfying without leaving states satisfying �. These
are the states from which there is a non-zero probability of reaching a state
in Sat(P60[� U]), passing only through states satisfying � but not . It then
subtracts this set from S to produce Sat(P>1[� U]). Note that both algorithms
are based on the computation of a fixpoint operator, and hence require at most
|S| iterations.

24

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :
− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
0.1
0.5

s0

s1 s3

s2 s4

s5

25

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :
− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

26

Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :
− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

a

bs0

s1 s3

s2 s4

s5

27

Sat(P<1 [¬a U b])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :
− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

bs0

s1 s3

s2 s4

s5

28

Syes =
Sat(P≥1 [¬a U b])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :
− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

bs0

s1 s3

s2 s4

s5

29

Syes =
Sat(P≥1 [¬a U b])

Sat(P<1 [¬a U b])
Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :
− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b]

1

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
0.1
0.5

s0

s1 s3

s2 s4

s5

30

Prob1 algorithm

12 Marta Kwiatkowska, Gethin Norman, and David Parker

Prob0(Sat(�),Sat())
1. R := Sat()
2. done := false
3. while (done = false)
4. R0 := R [{s 2 Sat(�) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Prob1(Sat(�),Sat(),Sat(P60[� U]))
1. R := Sat(P60[� U])
2. done := false
3. while (done = false)
4. R0 := R [{s 2 (Sat(�)\Sat()) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Fig. 3. The Prob0 and Prob1 algorithm

To simplify the computation we transform this system of equations into one
with a unique solution. This is achieved by first finding all the states s for which
Prob

D(s,� U) is exactly 0 or 1; more precisely, we compute the sets of states:

Sat(P60[� U]) = {s 2 S |ProbD(s,� U)=0}
Sat(P>1[� U]) = {s 2 S |ProbD(s,� U)=1} .

These sets can be determined with the algorithms Prob0 and Prob1 which are
described in Fig. 3:

Sat(P60[� U]) = Prob0(Sat(�),Sat())

Sat(P>1[� U]) = Prob1(Sat(�),Sat(),Sat(P60[� U])) .

Prob0 computes all the states from which it is possible, with non-zero proba-
bility, to reach a state satisfying without leaving states satisfying �. It then
subtracts these from S to determine the states which have a zero probability.
Prob1 first determines the set of states for which the probability is less than

1 of reaching a state satisfying without leaving states satisfying �. These
are the states from which there is a non-zero probability of reaching a state
in Sat(P60[� U]), passing only through states satisfying � but not . It then
subtracts this set from S to produce Sat(P>1[� U]). Note that both algorithms
are based on the computation of a fixpoint operator, and hence require at most
|S| iterations.

31

PCTL until - linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations
− essentially the same as for probabilistic reachability

• Can also be reduced to a system in |S?| unknowns instead
of |S| where S? = S \ (Syes ∪ Sno)

Prob(s, f1 U f2) =
1
0

P(s,s')× Prob(s', f1 U f2)
s'ÎS
å

ì

í
ï
ï

î
ï
ï

if s Î Syes

if s Î Sno

otherwise

32

PCTL until - linear equations

• Example: P>0.8 [¬a U b]
• Let xi = Prob(si, ¬a U b)

x1 = x3 = 0
x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9
x0 = 0.1x1+0.9x2 = 0.8
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]
Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =
Sat(P≤0 [¬a U b])

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

s0

s1 s3

s2 s4

s5

33

PCTL Until – Example 2

• Example: P>0.5 [G¬b]
• Prob(si, G¬b)

= Prob(si, ¬(F b))
= 1 - Prob(si, F b)

• Let xi = Prob(si, F b)

x3 = 0 and x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9
x1 = 0.6x3+0.4x0 = 0.4x0

x0 = 0.1x1+0.9x2 = 5/6 and x1= 1/3
Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0]
Sat(P>0.5 [G¬b]) = { s1,s3 }

Sno = Sat(P≤0 [F b])

Syes =
Sat(P≥1 [F b])

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
10.1

0.5
s0

s1 s3

s2 s4

s5

34

System of linear equations

• Solution of large (likely sparse) systems of linear equations
− size of system (number of variables) typically O(|S|)
− state space S gets very large in practice

• Two main classes of solution methods:
− direct methods - compute exact solutions in fixed number of

steps, e.g. Gaussian elimination, L/U decomposition
− iterative methods, e.g. matrix power, Jacobi, Gauss-Seidel, …
− the latter are preferred in practice due to scalability

• General form: A·x = b
− indexed over integers,
− i.e. assume S = { 0,1,…,|S|-1 }

35

Iterative solution methods

• Start with an initial estimate for the vector x, say x(0)

• Compute successive (increasingly accurate) approximations
− approximation (solution vector) at kth iteration denoted x(k)

− computation of x(k) uses values of x(k-1)

• Terminate when solution vector has converged sufficiently
• Several possibilities for convergence criteria, e.g.:

− maximum absolute difference

− maximum relative difference

36

Jacobi method

• Based on fact that:

• can be rearranged as:

• yielding this update scheme:

For probabilistic
model checking,
A(i,i) is always

non-zero

37

Gauss-Seidel

• The update scheme for Jacobi:

• can be improved by using the most up-to-date values of
x(k) that are available

• This is known as the Gauss-Seidel method:

• (uses just one vector, as opposed to Jacobi’s)

38

Over-relaxation

• Over-relaxation:
− compute new values with existing schemes (e.g. Jacobi)
− but use weighted average with previous vector

• Example: Jacobi + over-relaxation

• where ω ∈ (0,2) is a parameter to the algorithm

39

Comparison

• Gauss-Seidel typically outperforms Jacobi
− i.e. faster convergence
− Also, it requires only storing single solution vector

• Both Gauss-Seidel and Jacobi usually outperform the
matrix power method (see least fixed point method from
Lecture 2)

• However Power method has guaranteed convergence
− Jacobi and Gauss-Seidel do not

• Over-relaxation methods may converge faster in practice
− for well chosen values of ω
− need to rely on heuristics for this selection

40

Model checking complexity

• Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ
complexity is linear in |Φ| and polynomial in |S|

• Size |Φ| of Φ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operator is P~p [Φ1 U Φ2]
− main task: solution of system of linear equations, of size |S|
− can be solved with Gaussian elimination: cubic in |S|
− and also precomputation algorithms (max |S| steps)

• Strictly speaking, U≤k could be worse than U for large k
− but in practice k is usually small

41

Summing up…

• Model checking a PCTL formula φ on a DTMC
− i.e. determine set Sat(φ)
− recursive: bottom-up traversal of parse tree of φ

• Atomic propositions and logical connectives: trivial

• Key part: computing probabilities for P~p […] formulae
− X Φ : one matrix-vector multiplications
− Φ1 U≤k Φ2 : k matrix-vector multiplications
− Φ1 U Φ2 : graph-based precomputation algorithms + solution

of linear equation system in at most |S| variables

• Iterative methods to solve large systems of linear equations

