Probabilistic Model Checking

Lecture 5
PCTL Model Checking for DTMCs

Alessandro Abate

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford



Probabilistic model checking

System

Probabilistic model
e.g. Markov chain

0.5 Y 0.4

) 0.1

®)

. —

rSeychtJ(iarng_ Probabilistic temporal
ments logic specification

e.g. PCTL, CSL, LTL

—

Pooq [ Ffail ]| —

Probabilistic

model checker

e.g. PRISM

) Result

v X

Quantitative

)

j ‘
08| ”
_oge== 1=0.02
2o g A=0.03
5 U K ~ 1= 0.04
3 Analytical
@04 °- 22001
1=002
(] 4-2=003

Counter-
) example

ol




Overview

» PCTL model checking for DTMCs

- Computation of probabilities for PCTL formulae

— next
— bounded until
— (unbounded) until

- Solving large systems of linear equations

— direct vs. iterative methods
— iterative solution methods



PCTL

--------------------------------------------------

. PCTL syntax: . s true with
/ probability ~p
— ¢ =true|la|dAd| b | PpolW] (state formulae)
—p =Xd | dUxkd | dUD (path formulae)
T R A : T

sl seeeerg “bounded ,“ ......... ”

next” | : “until” ¢

until -

TaamsssssssssssEEEssEEEEEEat H I Seessssssssssssssssssensd

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,=2}, k e N

- Remaining operators can be derived (false, v, —, F, G, ...)

— hence will not be discussed here



PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
— inputs: DTMC D=(S,sini,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k&= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— often, just want to know if s;,;; E &, i.e. if s;,;; € Sat(d)
— sometimes, want to check that s E ¢ V s € S, i.e. Sat(p) = S

- Sometimes, focus on quantitative results
— e.g. compute result of P_; [ F error ]
— e.g. compute result of P_; [ F=k error ] for 0<k<100



PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ¢

— example: ¢ = (—fail A try) = P.gos5 [ —fail U succ ]

- For the non-probabilistic operators:

— Sat(true) = S —

—Sat@ ={seS|aeclLs)} ‘\

— Sat(—¢) = S \ Sat(d) Pooos[-U -]

A
— Sat(d; A ¢p) = Sat(dg) N Sat(d,) / ; / ;
- For the P_, [ @ ] operator: _ i
— need to compute the _ :
probabilities Prob(s, V) @ fail
for all states s € S
— Sat(P.,[w]) ={s eS| Prob(s, v) ~p}




Probability computation

- Three temporal operators to consider:
- Next: P, [ X ¢ ]

- Bounded until: P_,[ ¢; U=k ¢, ]
— adaptation of bounded reachability for DTMCs

- Until: P.,[ ¢, U §, ]

— adaptation of reachability for DTMCs

— graph-based “precomputation” algorithms

— techniques for solving (large) systems of linear equations



PCTL next for DTMCs

- Computation of probabilities for PCTL next operator

— Sat(P.,[ X d]) ={s &S| Prob(s,Xp) ~p}
— need to compute Prob(s, X ¢) forall s € S

- Sum outgoing probabilities for

transitions to ¢-states
— Prob(s, X ¢) = s csane) P(S,S7) O_,

- Compute vector Prob(X ¢) of

probabilities for all states s (useful for Sat set)
~ ProbX ¢) =P - &
— where ¢ is a 0-1 vector over S with ¢(s) = 1 iffs=E ¢
— computation requires a single matrix-vector multiplication



PCTL next - Example

- Model check: P.yq [ X (—try V succ) ]

- Results:

— Sat (—try Vv succ) = (S \ Sat(try)) U Sat(succ)
= ({s0,51,52,53} \ {51} U {s3} = {s0,52,53}

— Prob(X (—try v succ)) = P - (=try Vv succ) = ...

0 1 0 o0 71[17ToO
|0 0.01 0.01 0.98| |0 [0.99
110 0 o |[1] ] 1
0 0 O 1]

— Prob(X (—try v succ)) = [0, 0.99, 1, 1]
— Sat(P.o9 [ X (—try Vv sucq) ]) = {sy, s, s3}



PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U=k operator

— Sat(P.,[ 7 Usk b, 1) ={s €S| Prob(s, d; Usk ) ~p}
— need to compute Prob(s, ¢; Usk §,) forall s € S

- First identify (some) states where probability is trivially 1/0

— Sves = Sat(d,)
— Sno =S\ (Sat(d;) U Sat(d,))

YR\
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PCTL bounded until for DTMCs

- Let:
— Sves = Sat(d,)

— Sno = S\ (Sat(d;) U Sat(d,))

- And let:

_ S? — S \ (Syes U Sno)

Prob(s, ¢, U* ¢,) =

ZP(s,s')-Pro

L s'eS

]
0
0
b(s

@‘@

- Compute solution of recursive equations:

L6 U" )

if s € SY®
if s e S™
ifseS’and k=0

ifseS’and k>0
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PCTL bounded until for DTMCs

- Simultaneous computation of vector Prob(d, U=k &,)
— i.e. probabilities Prob(s, &; U=k ¢,) for all s € S
— (important in order to find Sat set of formula)

Iteratively define in terms of matrices and vectors

— define matrix P’ as follows:
. if s € S P’(s,s’) = P(s,s”);
. if s € Syes, P’(s,s’) = 1 if s=s’, otherwise P’(s,s’) = 0
— Prob(¢; U=0 ¢,) = &,
— Prob(¢p; U=k ¢d,) = P’ - Prob(d; U=k-T ¢,)
— requires k matrix-vector multiplications

Note that we could express this in terms of matrix powers
— Prob(¢d; Usk ¢,) = (P)k - b, and compute (P’)k in log,k steps
— but this can be inefficient, as (P’)k is much less sparse than P’;>



PCTL bounded until - Example

- Model check: P95 [ F=2 succ ] = P95 [ true U=2 succ ]
— Sat (true) = S = {sq,S1,5>,53}, Sat(succ) = {s3}
- Syes - {53}1 SI’IO = ®1 S?: {50151’52}1 P’ = P

— Prob(true U=0 succ) = succ = [0, O, O, 1]
0 1 0 0

0
O 0.01 0.01 0.98| |0 0.98
Prob(true U succ) = P'-Prob(true U< succ) = :
0

1 0 0 0 0
0 0 0 1] |
0 1 0 0 [ 07 [0098]
0 0.01 0.01 0.98]0.98| |0.9898

Prob(true U¥* succ) = P'-Prob(true U¥' succ) = : -
1 0 0 0 0

0 0 0 1 1

— Sat(P.g9g [ F=2 succ]) = {s;, s3}
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PCTL until for DTMCs

- Computation of probabilities Prob(s, ¢, U $,) forall s € S
- First, identify all states where the probability is 1 or O

— Sves = Sat(P [ 1 U o ]

— Sno = Sat(Po[ ¢ U &y ])

- Then solve system of linear equations for remaining states

- Running example:

14



Precomputation

- We refer to the first phase (identifying sets Sves and Sm°) as
“precomputation”
— two algorithms: ProbO (for Sn°) and Prob1 (for Sves)

— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons
— ProbO ensures unique solution to system of linear equations

— both reduce the set of states for which probabilities must be
computed numerically

— give exact results for the states in Syesand S"° (no round-off)

— (of course, for model checking of qualitative properties (P.p[-]
where p is 0 or 1), no further computation is required)
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Precomputation - ProbO

ProbO algorithm to compute S"° = Sat(P_o[ ¢, U $, ]):
— first compute Sat(P-o[ &; U ¢, ]) = Sat(E[ d; U > ])

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - ProbO

- Prob0 algorithm to compute S* = Sat(P_,[ &, U b, ]):

— first compute Sat(P-qo[ &1 U &, 1) = Sat(E[ ¢; U >, 1)

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - ProbO

- Prob0 algorithm to compute S* = Sat(P_,[ &, U b, ]):

— first compute Sat(P-qo[ &1 U &, 1) = Sat(E[ ¢; U >, 1)

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - ProbO

- Prob0 algorithm to compute S* = Sat(P_,[ &, U b, ]):

— first compute Sat(P-qo[ &1 U &, 1) = Sat(E[ ¢; U >, 1)

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - ProbO

- Prob0 algorithm to compute S* = Sat(P_,[ &, U b, ]):

— first compute Sat(P-qo[ &1 U &, 1) = Sat(E[ ¢; U >, 1)

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Example:
P.os[—aUb]

Sat(P.o[-a Ub])
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Precomputation - ProbO

- Prob0 algorithm to compute S* = Sat(P_,[ &, U b, ]):

— first compute Sat(P-qo[ &1 U &, 1) = Sat(E[ ¢; U >, 1)

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Sno = Sat(P.o[-aUb])

Example:
P.os[—aUb]
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Precomputation - ProbO

- Prob0 algorithm to compute S* = Sat(P_,[ &, U b, ]):

— first compute Sat(P-qo[ &1 U &, 1) = Sat(E[ ¢; U >, 1)

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢;-states

— i.e. find all states from which there is a finite path through
¢d;-states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Sno = Sat(P_o [—a L]J b ])

Example:

Sat(P-o [-a UDb
P.os[-aUb] atP>o [~a b

Sat(b)
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Prob0 algorithm

PrROBO(Sat(®), Sat(¥))

1. R:= Sat(¥)

2. done := false

3. while (done = false)

4. R := R U{s € Sat(®)|3s' € R.P(s,s')>0}
5. if (R = R) then done := true

6 R:=FR

7. endwhile

8. return S\R

Note: can be formulated as a least fixed point computation

— also well suited to symbolic computations, e.g., with binary
decision diagrams
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Precomputation - Prob]

Prob1 algorithm to compute Sv¢s = Sat(P.,; [ ¢; U &, ]):
— first compute Sat(P.; [ &; U ¢, ]), reusing Sn°

— this is equivalent to the set of states which have a non-zero
probability of reaching Sn°, passing only through ¢,-states

— again, this is a simple graph-based computation
— subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - Prob]

Prob1 algorithm to compute Sv¢s = Sat(P.,; [ ¢; U &, ]):

first compute Sat(P.; [ ¢; U ¢, 1), reusing Sn°

this is equivalent to the set of states which have a non-zero
probability of reaching Sn°, passing only through ¢,-states

again, this is a simple graph-based computation
subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - Prob]

Prob1 algorithm to compute Sv¢s = Sat(P.,; [ ¢; U &, ]):

first compute Sat(P.; [ ¢; U ¢, 1), reusing Sn°

this is equivalent to the set of states which have a non-zero
probability of reaching Sn°, passing only through ¢,-states

again, this is a simple graph-based computation
subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - Prob]

Prob1 algorithm to compute Sv¢s = Sat(P.,; [ ¢; U &, ]):

first compute Sat(P.; [ ¢; U ¢, 1), reusing Sn°

this is equivalent to the set of states which have a non-zero
probability of reaching Sn°, passing only through ¢,-states

again, this is a simple graph-based computation
subtract the resulting set from S

Example:
P.os[—aUb]
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Precomputation - Prob]

Prob1 algorithm to compute Sv¢s = Sat(P.,; [ ¢; U &, ]):
— first compute Sat(P.; [ &; U ¢, ]), reusing Sn°

— this is equivalent to the set of states which have a non-zero
probability of reaching Sn°, passing only through ¢,-states

— again, this is a simple graph-based computation
— subtract the resulting set from S

Example:
P.os[—aUb]

: Syes —
. Sat(P.; [-aUb])
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Precomputation - Prob]

Prob1 algorithm to compute Sv¢s = Sat(P.,; [ ¢; U &, ]):
first compute Sat(P.; [ ¢; U ¢, 1), reusing Sn°

this is equivalent to the set of states which have a non-zero
probability of reaching Sn°, passing only through ¢,-states

again, this is a simple graph-based computation

subtract the resulting set from S

Example:
P.os[—aUb]

Sat(P_, [~ay b))

07 Sat(P-

Syes —

y [maUDb])
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Prob1 algorithm

PROB1(Sat(P), Sat(¥), Sat(P<o[® U ¥]))

1. R := Sal(P<o[® U ¥])

2. domne := false

3. while (done = false)

4. R := R U {s € (Sat(®)\Sat(¥))|3s’ € R.P(s,s')>0}
5. if (R' = R) then done := true

6 R: =R

7. endwhile

8. return S\R
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PCTL until - linear equations

- Probabilities Prob(s, ¢; U ¢,) can now be obtained as the

unique solution of the following set of linear equations
— essentially the same as for probabilistic reachability

1 if s € S¥
Prob(s, ¢, U ¢,) = 0 if s eS™
ZP(S s')- Prob(s', ¢, U ¢,) otherwise
L s'eS

- Can also be reduced to a system in |S?| unknowns instead

of |S| where S? =S\ (Syes U Sno)



PCTL until - linear equations

. Example: P.gs[-aUb] Sne =
- Let x; = Prob(s;, ma U b) Sat(P<o [a U b))
1 0.3

5 Syes —
%% sat(P.; [-aUb])

X1 =X3=0 —
X4 = X5 = 1 S -
X> = 0.1X,+0.1x3+0.3x5+0.5x4 = 8/9

Xo = 0.1x;+0.9x, = 0.8

Prob(-aUb) =x=1[0.8,0,8/9,0,1, 1]

Sat(P-og [ "aUb]) =1{52,54,55}
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PCTL Until - Example 2

. Example: P.,s [ G—b ] Sre = Sat(Po [Fb])

- Prob(s;, G—b) 03
= Prob(s;, —(F b)) : :
=1 - Prob(s;, F b)

Sves —

Sat(P.; [F b1
- Let x; = Prob(s;, F b)

X3 =0 and x4 = x5 = 1
X, = 0.1X,+0.1x3+0.3Xx5+0.5x4, = 8/9

X1 = 0.6x3+0.4%x9 = 0.4X,

Xg = 0.1%x3+40.9x, = 5/6 and x;=1/3
Prob(G—-b) =1-x=1[1/6,2/3,1/9,1,0, 0]
Sat(P.os5 [ G—=b ]) ={s,53}
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System of linear equations

- Solution of large (likely sparse) systems of linear equations
— size of system (number of variables) typically O(|S|)
— state space S gets very large in practice

- Two main classes of solution methods:

- General form: A-x =b

— direct methods - compute exact solutions in fixed number of
steps, e.g. Gaussian elimination, L/U decomposition

— iterative methods, e.g. matrix power, Jacobi, Gauss-Seidel, ...
— the latter are preferred in practice due to scalability

5|1
— indexed over integers, Z A, 4)-z(§) = b(i)
— j.e. assume S ={0,1,...,|S|-1} =0
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lterative solution methods

Start with an initial estimate for the vector x, say x©@
Compute successive (increasingly accurate) approximations
— approximation (solution vector) at kth iteration denoted x®
— computation of x® uses values of xk-1
- Terminate when solution vector has converged sufficiently
Several possibilities for convergence criteria, e.g.:
— maximum absolute difference

g(k)(i)_g(k—l)(i)‘ < =

— maximum relative difference

2% (i) — 25D (7))
max; < €&
1 ( 2®) (7)|

max;
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Jacobi method

- Based on fact that: ettt et :
i For probabilistic

IS . model checking, :
Z Ali,g)-z(3) = bli) L ACG,i) is always
=0 non-zero

- can be rearranged as:

r(i) = (fg{ii— -
e

- yielding this update scheme:

2™ (i) = (Q(z’)—ZA(LJ‘)-g'i"'-“(.z’)) A1)

—
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Gauss-Seidel

- The update scheme for Jacobi:

M) = (b(z Z”\“’ p(k- 1'(1)) JA(i, 1)

can be improved by using the most up-to-date values of
x® that are available

- This is known as the Gauss-Seidel method:

2®)() = (g;, i) _Z Ali, ) - 2™ Z Ad,f) -z l*'ij?) JA(i, 1)

J<t j>i

(uses just one vector, as opposed to Jacobi’s)
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Over-relaxation

- Over-relaxation:
— compute new values with existing schemes (e.g. Jacobi)
— but use weighted average with previous vector

- Example: Jacobi + over-relaxation

2®(i) = (1—w) 2% ()

+ w- | b(7) — Z Ali, 7) 'lw_l’]{j'.} JA(t, 1)
JFi

- where w € (0,2) is a parameter to the algorithm
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Comparison

Gauss-Seidel typically outperforms Jacobi
— i.e. faster convergence
— Also, it requires only storing single solution vector

Both Gauss-Seidel and Jacobi usually outperform the
matrix power method (see least fixed point method from
Lecture 2)

However Power method has guaranteed convergence
— Jacobi and Gauss-Seidel do not

Over-relaxation methods may converge faster in practice
— for well chosen values of w
— need to rely on heuristics for this selection
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Model checking complexity

- Model checking of DTMC (S,s,it,P,L) against PCTL formula ¢
complexity is linear in |®| and polynomial in |S|

- Size |®| of @ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators

— model checking is performed for each operator

- Worst-case operatoris P, [ ®; U &, ]

— main task: solution of system of linear equations, of size |S|
— can be solved with Gaussian elimination: cubic in |S|

— and also precomputation algorithms (max |S| steps)

- Strictly speaking, U=k could be worse than U for large k

— but in practice k is usually small
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Summing up...

Model checking a PCTL formula ¢ on a DTMC
— i.e. determine set Sat(¢)
— recursive: bottom-up traversal of parse tree of ¢

- Atomic propositions and logical connectives: trivial

Key part: computing probabilities for P_, [ ... | formulae
— X @ : one matrix-vector multiplications
— ®; U=k d, : k matrix-vector multiplications

— &, U &, : graph-based precomputation algorithms + solution
of linear equation system in at most |S| variables

lterative methods to solve large systems of linear equations
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