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Overview

• PCTL model checking for DTMCs

• Computation of probabilities for PCTL formulae
− next
− bounded until
− (unbounded) until

• Solving large systems of linear equations
− direct vs. iterative methods
− iterative solution methods
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PCTL

• PCTL syntax:

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulae)

− ψ  ::=  X φ    | φ U≤k φ     | φ U φ (path formulae)

− where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Remaining operators can be derived (false, ∨, →, F, G, …)
− hence will not be discussed here

“until”

ψ is true with 
probability ~p

“bounded 
until”“next”
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PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]
− inputs:  DTMC D=(S,sinit,P,L),  PCTL formula φ
− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?
− often, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)
− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

• Sometimes, focus on quantitative results
− e.g. compute result of P=? [ F error ]
− e.g. compute result of P=? [ F≤k error ] for 0≤k≤100
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PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ
− example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ]

• For the non-probabilistic operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ ψ ] operator: 
− need to compute the

probabilities Prob(s, ψ)
for all states s ∈ S

− Sat(P~p [ ψ ]) = { s ∈ S | Prob(s, ψ) ~ p }

∧

¬

→

P>0.95 [ · U · ]

¬

fail fail

succtry
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Probability computation

• Three temporal operators to consider:

• Next: P~p[ X φ ]

• Bounded until: P~p[ φ1 U≤k φ2 ]
− adaptation of bounded reachability for DTMCs

• Until: P~p[ φ1 U φ2 ]
− adaptation of reachability for DTMCs
− graph-based “precomputation” algorithms
− techniques for solving (large) systems of linear equations 



8

PCTL next for DTMCs

• Computation of probabilities for PCTL next operator
− Sat(P~p[ X φ ]) = { s ∈ S | Prob(s, X φ) ~ p }
− need to compute Prob(s, X φ) for all s ∈ S

• Sum outgoing probabilities for
transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• Compute vector Prob(X φ) of
probabilities for all states s (useful for Sat set)
− Prob(X φ) = P · φ
− where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ
− computation requires a single matrix-vector multiplication

s

φ
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PCTL next - Example

• Model check: P≥0.9 [ X (¬try ∨ succ) ]
− Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)

= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

− Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

• Results:
− Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]
− Sat(P≥0.9 [ X (¬try ∨ succ) ]) = {s1, s2, s3}
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PCTL bounded until for DTMCs

• Computation of probabilities for PCTL U≤k operator
− Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p }
− need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S

• First identify (some) states where probability is trivially 1/0
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

Sat(φ2)

Sat(φ1)
S

Syes = Sat(φ2)
Sno = S \ (Sat(φ1) ∪ Sat(φ2))
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PCTL bounded until for DTMCs

• Let:
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• And let:
− S? = S \ (Syes ∪ Sno)

• Compute solution of recursive equations:

Sat(φ2)

Sat(φ1)S

0k and Ss if
0k and Ss if

Ss if
Ss if

)φ U φ ,Prob(s')s'(s,
0
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1
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PCTL bounded until for DTMCs
• Simultaneous computation of vector Prob(φ1 U≤k φ2)

− i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S
− (important in order to find Sat set of formula)

• Iteratively define in terms of matrices and vectors
− define matrix P’ as follows: 

• if s ∈ S?  P’(s,s’) = P(s,s’); 
• if s ∈ Syes, P’(s,s’) = 1 if s=s’, otherwise P’(s,s’) = 0

− Prob(φ1 U≤0 φ2) = φ2

− Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2)
− requires k matrix-vector multiplications

• Note that we could express this in terms of matrix powers
− Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps
− but this can be inefficient, as (P’)k is much less sparse than P’
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PCTL bounded until - Example

• Model check: P>0.98 [ F≤2 succ ] ≡ P>0.98 [ true U≤2 succ ]
− Sat (true) = S = {s0,s1,s2,s3},  Sat(succ) = {s3}
− Syes = {s3},  Sno = ∅,  S? = {s0,s1,s2},  P’ = P
− Prob(true U≤0 succ) = succ = [0, 0, 0, 1]

− Sat(P>0.98 [ F≤2 succ ]) = {s1, s3}
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PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S
• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [ φ1 U φ2 ])
− Sno = Sat(P≤0 [ φ1 U φ2 ])

• Then solve system of linear equations for remaining states

• Running example:

P>0.8 [¬a U b ] 0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9
1

{a}

{b}

0.1

s0

s1 s3

s2 s4

s5
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Precomputation

• We refer to the first phase (identifying sets Syes and Sno) as 
“precomputation”
− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons
− Prob0 ensures unique solution to system of linear equations
− both reduce the set of states for which probabilities must be 

computed numerically
− give exact results for the states in Syes and Sno (no round-off)
− (of course, for model checking of qualitative properties (P~p[·] 

where p is 0 or 1), no further computation is required)
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0.1

0.6

1 0.3

0.70.3

0.50.9
0.1

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

1

a

bs0

s1 s3

s2 s4

s5

0.1
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Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5
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Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5
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Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5
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Sat(P>0 [¬a U b ])

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5



21

Sno = Sat(P≤0 [¬a U b ])

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5



22

Sno = Sat(P≤0 [¬a U b ])

0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9
0.1

Sat(P>0 [¬a U b ])

Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ]) ≡ Sat(E[ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

1

a

bs0

s1 s3

s2 s4

s5
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Prob0 algorithm

• Note: can be formulated as a least fixed point computation
− also well suited to symbolic computations, e.g., with binary 

decision diagrams

12 Marta Kwiatkowska, Gethin Norman, and David Parker

Prob0(Sat(�),Sat( ))
1. R := Sat( )
2. done := false
3. while (done = false)
4. R0 := R [ {s 2 Sat(�) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Prob1(Sat(�),Sat( ),Sat(P60[� U  ]))
1. R := Sat(P60[� U  ])
2. done := false
3. while (done = false)
4. R0 := R [ {s 2 (Sat(�)\Sat( )) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Fig. 3. The Prob0 and Prob1 algorithm

To simplify the computation we transform this system of equations into one
with a unique solution. This is achieved by first finding all the states s for which
Prob

D(s,� U  ) is exactly 0 or 1; more precisely, we compute the sets of states:

Sat(P60[� U  ]) = {s 2 S |ProbD(s,� U  )=0}
Sat(P>1[� U  ]) = {s 2 S |ProbD(s,� U  )=1} .

These sets can be determined with the algorithms Prob0 and Prob1 which are
described in Fig. 3:

Sat(P60[� U  ]) = Prob0(Sat(�),Sat( ))

Sat(P>1[� U  ]) = Prob1(Sat(�),Sat( ),Sat(P60[� U  ])) .

Prob0 computes all the states from which it is possible, with non-zero proba-
bility, to reach a state satisfying  without leaving states satisfying �. It then
subtracts these from S to determine the states which have a zero probability.
Prob1 first determines the set of states for which the probability is less than

1 of reaching a state satisfying  without leaving states satisfying �. These
are the states from which there is a non-zero probability of reaching a state
in Sat(P60[� U  ]), passing only through states satisfying � but not  . It then
subtracts this set from S to produce Sat(P>1[� U  ]). Note that both algorithms
are based on the computation of a fixpoint operator, and hence require at most
|S| iterations.
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Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

1

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
0.1
0.5

s0

s1 s3

s2 s4

s5
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Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5
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Sno = Sat(P≤0 [¬a U b ])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

a

bs0

s1 s3

s2 s4

s5
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Sat(P<1 [¬a U b ])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

1

a

bs0

s1 s3

s2 s4

s5
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Syes =
Sat(P≥1 [¬a U b ])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

1

a

bs0

s1 s3

s2 s4

s5
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Syes =
Sat(P≥1 [¬a U b ])

Sat(P<1 [¬a U b ])
Sno = Sat(P≤0 [¬a U b ])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S

Example:
P>0.8 [¬a U b ]

1

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
0.1
0.5

s0

s1 s3

s2 s4

s5
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Prob1 algorithm

12 Marta Kwiatkowska, Gethin Norman, and David Parker

Prob0(Sat(�),Sat( ))
1. R := Sat( )
2. done := false
3. while (done = false)
4. R0 := R [ {s 2 Sat(�) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Prob1(Sat(�),Sat( ),Sat(P60[� U  ]))
1. R := Sat(P60[� U  ])
2. done := false
3. while (done = false)
4. R0 := R [ {s 2 (Sat(�)\Sat( )) | 9s0 2 R .P(s, s0)>0}
5. if (R0 = R) then done := true
6. R := R0

7. endwhile
8. return S\R

Fig. 3. The Prob0 and Prob1 algorithm

To simplify the computation we transform this system of equations into one
with a unique solution. This is achieved by first finding all the states s for which
Prob

D(s,� U  ) is exactly 0 or 1; more precisely, we compute the sets of states:

Sat(P60[� U  ]) = {s 2 S |ProbD(s,� U  )=0}
Sat(P>1[� U  ]) = {s 2 S |ProbD(s,� U  )=1} .

These sets can be determined with the algorithms Prob0 and Prob1 which are
described in Fig. 3:

Sat(P60[� U  ]) = Prob0(Sat(�),Sat( ))

Sat(P>1[� U  ]) = Prob1(Sat(�),Sat( ),Sat(P60[� U  ])) .

Prob0 computes all the states from which it is possible, with non-zero proba-
bility, to reach a state satisfying  without leaving states satisfying �. It then
subtracts these from S to determine the states which have a zero probability.
Prob1 first determines the set of states for which the probability is less than

1 of reaching a state satisfying  without leaving states satisfying �. These
are the states from which there is a non-zero probability of reaching a state
in Sat(P60[� U  ]), passing only through states satisfying � but not  . It then
subtracts this set from S to produce Sat(P>1[� U  ]). Note that both algorithms
are based on the computation of a fixpoint operator, and hence require at most
|S| iterations.
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PCTL until - linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the 
unique solution of the following set of linear equations
− essentially the same as for probabilistic reachability

• Can also be reduced to a system in |S?| unknowns instead 
of |S| where S? = S \ (Syes ∪ Sno)

  

 

Prob(s, f1 U f2)  =   
1
0

P(s,s' )× Prob(s',  f1 U f2)
s'ÎS
å

ì 

í 
ï 
ï 

î 
ï 
ï 

if s Î Syes

if s Î Sno

otherwise
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PCTL until - linear equations

• Example: P>0.8 [¬a U b ]
• Let xi = Prob(si, ¬a U b) 

x1 = x3 = 0
x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9
x0 = 0.1x1+0.9x2  =  0.8
Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]
Sat(P>0.8 [ ¬a U b ]) = { s2,s4,s5 }

Sno =
Sat(P≤0 [¬a U b ])

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b ])

0.1
0.5

s0

s1 s3

s2 s4

s5
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PCTL Until – Example 2

• Example: P>0.5 [ G¬b ]
• Prob(si, G¬b)

= Prob(si, ¬(F b))
= 1 - Prob(si, F b)

• Let xi = Prob(si, F b)

x3 = 0 and x4 = x5 = 1
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9
x1 = 0.6x3+0.4x0 = 0.4x0

x0 = 0.1x1+0.9x2  = 5/6 and x1= 1/3
Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0 ]
Sat(P>0.5 [ G¬b ]) = { s1,s3 }

Sno = Sat(P≤0 [ F b ])

Syes =
Sat(P≥1 [ F b ])

a

b
0.40.1

0.6

1 0.3

0.70.1
0.3

0.9
10.1

0.5
s0

s1 s3

s2 s4

s5
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System of linear equations

• Solution of large (likely sparse) systems of linear equations
− size of system (number of variables) typically O(|S|)
− state space S gets very large in practice

• Two main classes of solution methods:
− direct methods - compute exact solutions in fixed number of 

steps, e.g. Gaussian elimination, L/U decomposition
− iterative methods, e.g. matrix power, Jacobi, Gauss-Seidel, …
− the latter are preferred in practice due to scalability

• General form: A·x = b
− indexed over integers,
− i.e. assume S = { 0,1,…,|S|-1 }
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Iterative solution methods

• Start with an initial estimate for the vector x, say x(0)

• Compute successive (increasingly accurate) approximations
− approximation (solution vector) at kth iteration denoted x(k)

− computation of x(k) uses values of x(k-1)

• Terminate when solution vector has converged sufficiently
• Several possibilities for convergence criteria, e.g.:

− maximum absolute difference

− maximum relative difference
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Jacobi method

• Based on fact that:

• can be rearranged as:

• yielding this update scheme:

For probabilistic 
model checking, 
A(i,i) is always 

non-zero
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Gauss-Seidel

• The update scheme for Jacobi:

• can be improved by using the most up-to-date values of
x(k) that are available

• This is known as the Gauss-Seidel method: 

• (uses just one vector, as opposed to Jacobi’s)
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Over-relaxation

• Over-relaxation:
− compute new values with existing schemes (e.g. Jacobi)
− but use weighted average with previous vector

• Example: Jacobi + over-relaxation

• where ω ∈ (0,2) is a parameter to the algorithm



39

Comparison

• Gauss-Seidel typically outperforms Jacobi
− i.e. faster convergence
− Also, it requires only storing single solution vector

• Both Gauss-Seidel and Jacobi usually outperform the 
matrix power method (see least fixed point method from 
Lecture 2)

• However Power method has guaranteed convergence
− Jacobi and Gauss-Seidel do not

• Over-relaxation methods may converge faster in practice 
− for well chosen values of ω
− need to rely on heuristics for this selection
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Model checking complexity

• Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ
complexity is linear in |Φ| and polynomial in |S|

• Size |Φ| of Φ is defined as number of logical connectives 
and temporal operators plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operator is P~p [ Φ1 U Φ2 ]
− main task: solution of system of linear equations, of size |S|
− can be solved with Gaussian elimination: cubic in |S|
− and also precomputation algorithms (max |S| steps)

• Strictly speaking, U≤k could be worse than U for large k
− but in practice k is usually small
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Summing up…

• Model checking a PCTL formula φ on a DTMC
− i.e. determine set Sat(φ)
− recursive: bottom-up traversal of parse tree of φ

• Atomic propositions and logical connectives: trivial

• Key part: computing probabilities for P~p [ … ] formulae
− X Φ : one matrix-vector multiplications
− Φ1 U≤k Φ2 : k matrix-vector multiplications
− Φ1 U Φ2 : graph-based precomputation algorithms + solution 

of linear equation system in at most |S| variables

• Iterative methods to solve large systems of linear equations


