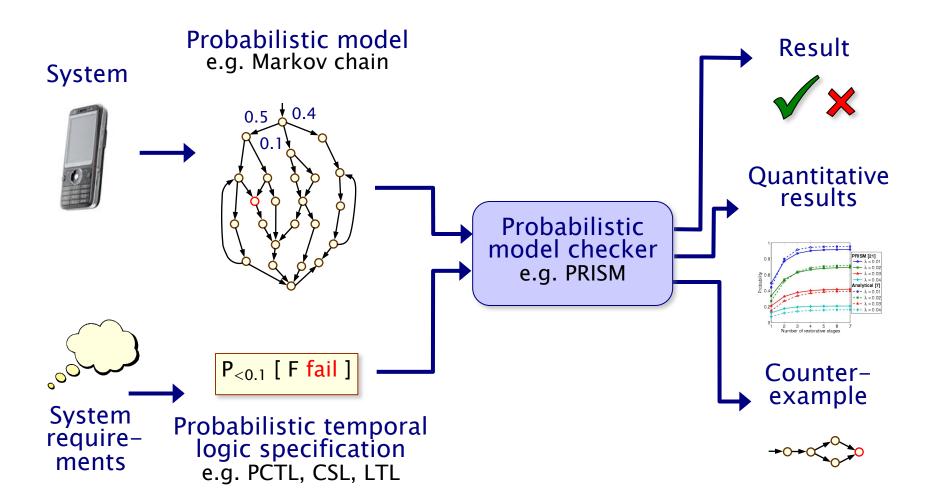
Probabilistic Model Checking

Lecture 5 PCTL Model Checking for DTMCs

Alessandro Abate

Department of Computer Science University of Oxford

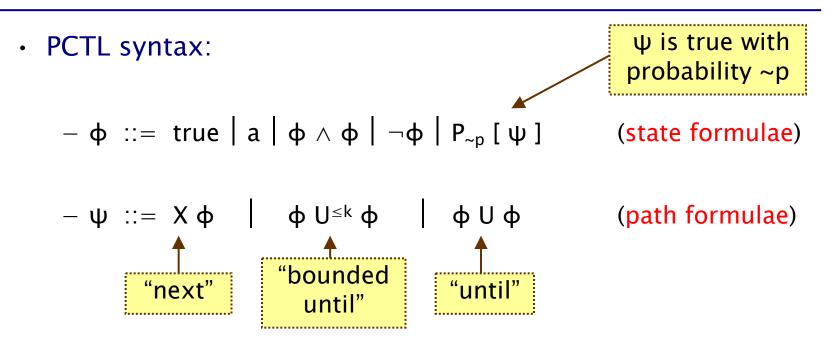
Probabilistic model checking



Overview

- PCTL model checking for DTMCs
- Computation of probabilities for PCTL formulae
 - next
 - bounded until
 - (unbounded) until
- Solving large systems of linear equations
 - direct vs. iterative methods
 - iterative solution methods

PCTL



- where a is an atomic proposition, $p\in[0,1]$ is a probability bound, $\textbf{\sim}\in\{<,>,\leq,\geq\},\,k\in\mathbb{N}$
- Remaining operators can be derived (false, ∨, →, F, G, …)
 hence will not be discussed here

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D=(S,s_{init},P,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s \in S | s $\models \phi$ } = set of states satisfying ϕ
- What does it mean for a DTMC D to satisfy a formula $\varphi?$
 - often, just want to know if $s_{init} \vDash \phi$, i.e. if $s_{init} \in Sat(\phi)$

- sometimes, want to check that $s \models \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$

- Sometimes, focus on quantitative results
 - e.g. compute result of P_{=?} [F error]
 - e.g. compute result of $P_{=?}$ [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of $\boldsymbol{\varphi}$

Λ

fail

try

- − example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [$\neg fail U succ$]
- For the non-probabilistic operators:
 - Sat(true) = S
 - $Sat(a) = \{ s \in S \mid a \in L(s) \}$
 - $Sat(\neg \varphi) = S \setminus Sat(\varphi)$
 - $\ Sat(\varphi_1 \ \land \ \varphi_2) = Sat(\varphi_1) \ \cap \ Sat(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator:
 - need to compute the probabilities $Prob(s, \psi)$ for all states $s \in S$
 - $\ Sat(P_{\sim p} \, [\ \psi \]) = \{ \ s \in S \ | \ Prob(s, \ \psi) \sim p \ \}$

 $P_{>0.95}$ [· U ·]

fail

succ

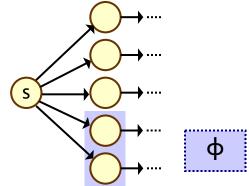
Probability computation

- Three temporal operators to consider:
- Next: P_{~p}[X φ]
- Bounded until: $P_{-p}[\varphi_1 U^{\leq k} \varphi_2]$
 - adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}[\varphi_1 \cup \varphi_2]$
 - adaptation of reachability for DTMCs
 - graph-based "precomputation" algorithms
 - techniques for solving (large) systems of linear equations

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
 - $\ \underline{Sat(P_{\sim p}[\ X \ \varphi \])} = \{ \ s \in S \ | \ Prob(s, X \ \varphi) \sim p \ \}$
 - need to compute $Prob(s, X \varphi)$ for all $s \in S$
- Sum outgoing probabilities for transitions to φ-states

- Prob(s, X
$$\varphi$$
) = $\Sigma_{s' \in Sat(\varphi)} \mathbf{P}(s,s')$



- Compute vector <u>Prob(X φ)</u> of probabilities for all states s (useful for Sat set)
 - $\underline{Prob}(X \varphi) = \mathbf{P} \cdot \underline{\varphi}$
 - where $\underline{\Phi}$ is a 0-1 vector over S with $\underline{\Phi}(s) = 1$ iff $s \models \varphi$
 - computation requires a single matrix-vector multiplication

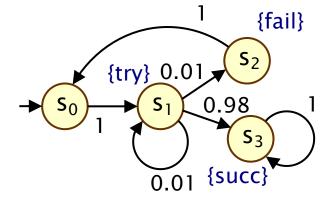
PCTL next – Example

• Model check: $P_{\geq 0.9}$ [X (\neg try \lor succ)]

$$- Sat (¬try ∨ succ) = (S ∧ Sat(try)) ∪ Sat(succ) = ({s0,s1,s2,s3} ∧ {s1}) ∪ {s3} = {s0,s2,s3}$$

$$- \underline{Prob}(X (\neg try \lor succ)) = \mathbf{P} \cdot \underline{(\neg try \lor succ)} = \dots$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{bmatrix}$$

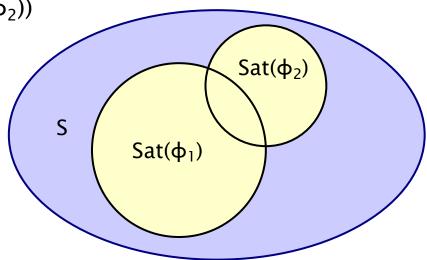


- Results:
 - <u>Prob</u>(X (\neg try \lor succ)) = [0, 0.99, 1, 1]

- Sat(P_{≥ 0.9} [X (\neg try \lor succ)]) = {s₁, s₂, s₃}

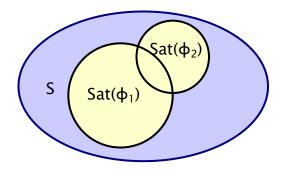
PCTL bounded until for DTMCs

- Computation of probabilities for PCTL $U^{\leq k}$ operator
 - $\text{ Sat}(P_{\sim p}[\ \varphi_1 \ U^{\leq k} \ \varphi_2 \]) = \{ \ s \in S \ | \ Prob(s, \ \varphi_1 \ U^{\leq k} \ \varphi_2) \sim p \ \}$
 - need to compute $Prob(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$ for all $s\in S$
- First identify (some) states where probability is trivially 1/0
 - $S^{yes} = Sat(\varphi_2)$
 - $S^{no} = S \setminus (Sat(\varphi_1) \cup Sat(\varphi_2))$



PCTL bounded until for DTMCs

- Let:
 - $S^{yes} = Sat(\varphi_2)$
 - $S^{no} = S \setminus (Sat(\varphi_1) \cup Sat(\varphi_2))$
- And let:
 - $S^{?} = S \setminus (S^{yes} \cup S^{no})$



Compute solution of recursive equations:

$$Prob(s, \varphi_1 U^{\leq k} \varphi_2) = \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s, s') \cdot Prob(s', \varphi_1 U^{\leq k-1} \varphi_2) & \text{if } s \in S^? \text{ and } k = 0 \\ \text{if } s \in S^? \text{ and } k > 0 \end{cases}$$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\underline{\text{Prob}}(\phi_1 | U^{\leq k} | \phi_2)$
 - i.e. probabilities $Prob(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$ for all $s\in S$
 - (important in order to find Sat set of formula)
- Iteratively define in terms of matrices and vectors
 - define matrix P' as follows:
 - if $s \in S^{?} P'(s,s') = P(s,s')$;
 - · if $s \in S^{yes}$, P'(s,s') = 1 if s=s', otherwise P'(s,s') = 0
 - $\underline{\operatorname{Prob}}(\varphi_1 \ U^{\leq 0} \ \varphi_2) = \underline{\varphi}_2$
 - $\underline{Prob}(\varphi_1 \ U^{\leq k} \ \varphi_2) = \mathbf{P'} \cdot \underline{Prob}(\varphi_1 \ U^{\leq k-1} \ \varphi_2)$
 - requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
 - $\underline{Prob}(\varphi_1 \ U^{\leq k} \ \varphi_2) = (\mathbf{P'})^k \cdot \underline{\varphi}_2$ and compute $(\mathbf{P'})^k$ in $\log_2 k$ steps
 - but this can be inefficient, as $(\mathbf{P'})^k$ is much less sparse than $\mathbf{P'}_{12}$

PCTL bounded until – Example

- Model check: $P_{>0.98}$ [$F^{\leq 2}$ succ] $\equiv P_{>0.98}$ [true U^{≤ 2} succ]
 - Sat (true) = S = $\{s_0, s_1, s_2, s_3\}$, Sat(succ) = $\{s_3\}$
 - $S^{yes} = \{s_3\}, S^{no} = \emptyset, S^{?} = \{s_0, s_1, s_2\}, P' = P$
 - <u>Prob</u>(true U^{≤0} succ) = <u>succ</u> = [0, 0, 0, 1]

$$\underline{\operatorname{Prob}(\operatorname{true}\ U^{\leq 1}\operatorname{succ})} = \mathbf{P}' \cdot \underline{\operatorname{Prob}(\operatorname{true}\ U^{\leq 0}\operatorname{succ})} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix}$$
$$\underbrace{\operatorname{Prob}(\operatorname{true}\ U^{\leq 2}\operatorname{succ})}_{1} = \mathbf{P}' \cdot \underline{\operatorname{Prob}(\operatorname{true}\ U^{\leq 1}\operatorname{succ})}_{0} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.98 \\ 0.9898 \\ 0 \\ 1 \end{bmatrix}$$

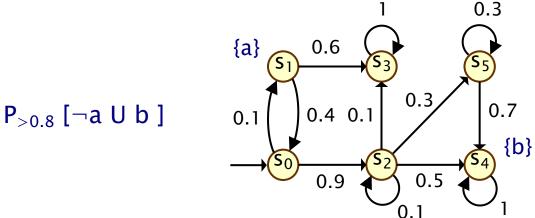
- Sat($P_{>0.98}$ [$F^{\leq 2}$ succ]) = {s₁, s₃}

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0

$$- S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$$

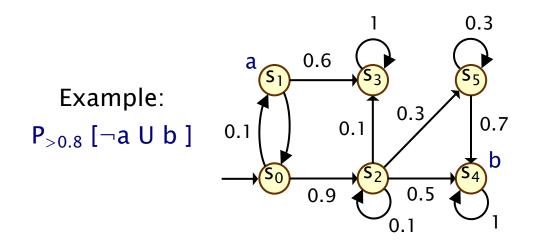
- $\ S^{no} = Sat(P_{\leq 0} \left[\ \varphi_1 \ U \ \varphi_2 \ \right])$
- Then solve system of linear equations for remaining states
- Running example:



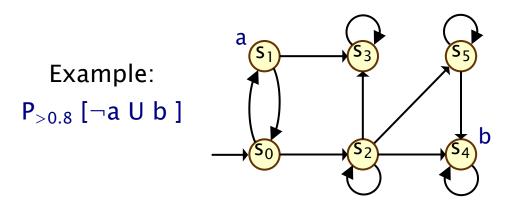
Precomputation

- We refer to the first phase (identifying sets S^{yes} and S^{no}) as "precomputation"
 - two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - Prob0 ensures unique solution to system of linear equations
 - both reduce the set of states for which probabilities must be computed numerically
 - give exact results for the states in Syes and Sno (no round-off)
 - (of course, for model checking of qualitative properties $(P_{\sim p}[\cdot])$ where p is 0 or 1), no further computation is required)

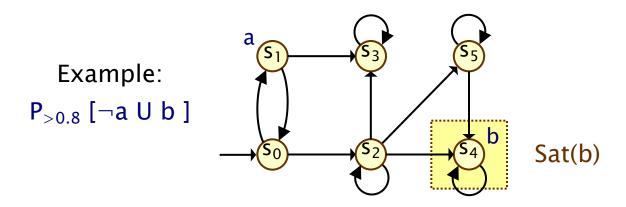
- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S



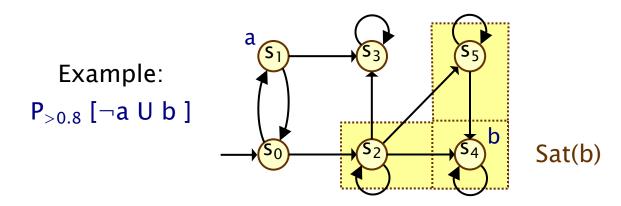
- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S



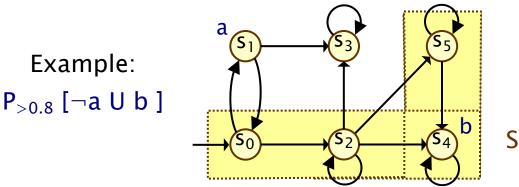
- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S



- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

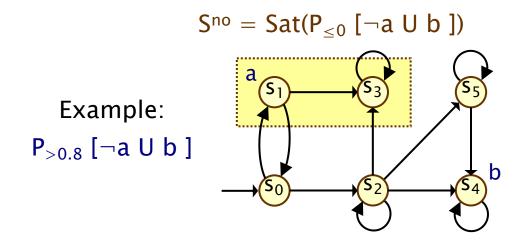


- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

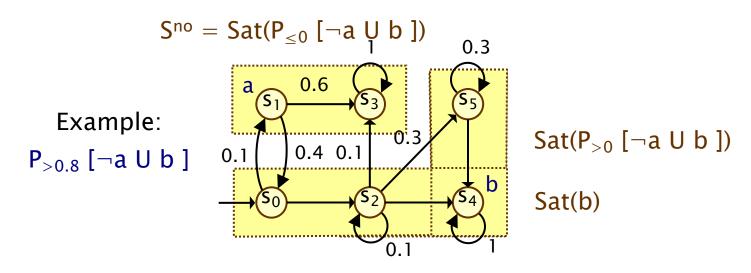


Sat(P_{>0} [¬a U b])

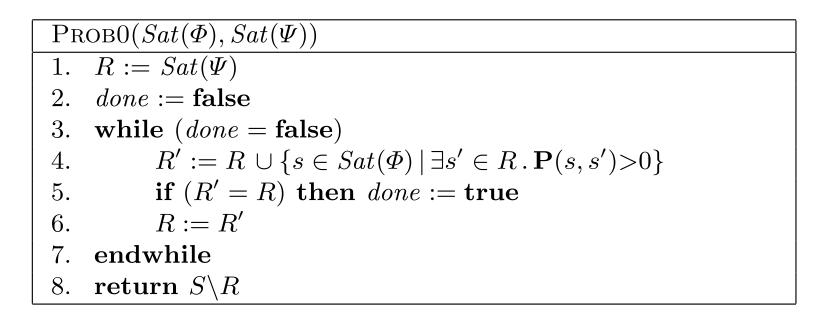
- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S



- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

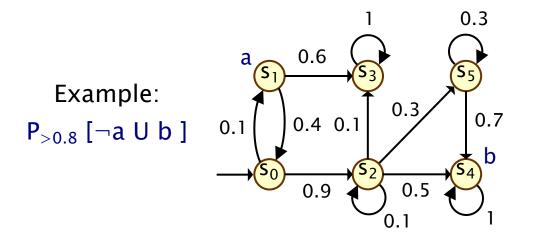


Prob0 algorithm

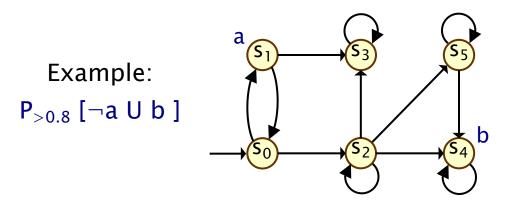


- Note: can be formulated as a least fixed point computation
 - also well suited to symbolic computations, e.g., with binary decision diagrams

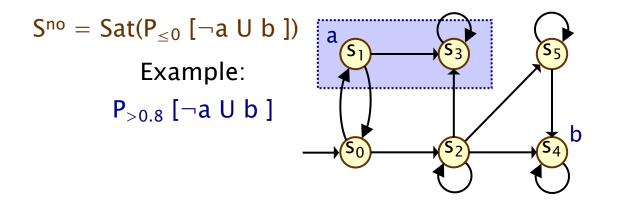
- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{<1} [ϕ_1 U ϕ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S



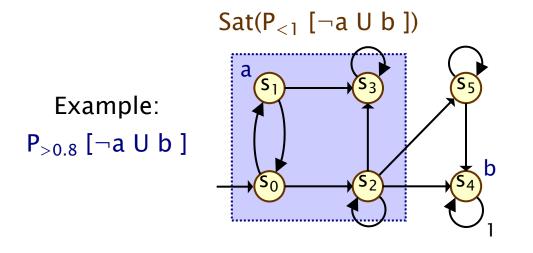
- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{<1} [ϕ_1 U ϕ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S



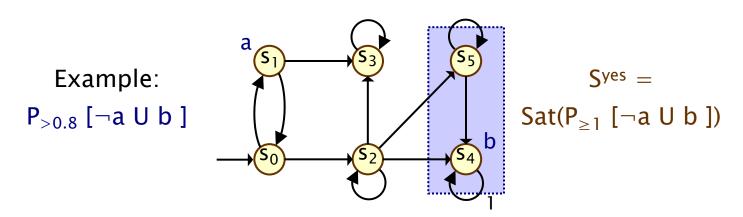
- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{<1} [ϕ_1 U ϕ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S



- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{<1} [ϕ_1 U ϕ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S



- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{<1} [ϕ_1 U ϕ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S



- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{<1} [ϕ_1 U ϕ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S

$$Sat(P_{<1} [\neg a | b]) = 0.3$$

$$Sno = Sat(P_{\leq 0} [\neg a | b]) = 0.3$$

$$Example:$$

$$P_{>0.8} [\neg a | b] = 0.4 = 0.1$$

$$Syes = 0.4 = 0.4 = 0.1$$

$$Syes = 0.4 = 0.4 = 0.1$$

$$Syes = 0.4 = 0.4 = 0.1$$

$$Sat(P_{\geq 1} [\neg a | b]) = 0.3$$

$$Syes = 0.4 = 0.4 = 0.1$$

$$Sat(P_{\geq 1} [\neg a | b]) = 0.3$$

Prob1 algorithm

 $\begin{array}{ll} \operatorname{PROB1}(Sat(\varPhi), Sat(\varPsi), Sat(\operatorname{P}_{\leqslant 0}[\varPhi ~ {\tt U} ~ \varPsi])) \\ 1. \quad R := Sat(\operatorname{P}_{\leqslant 0}[\varPhi ~ {\tt U} ~ \varPsi]) \\ 2. \quad done := {\tt false} \\ 3. \quad {\tt while} ~ (done = {\tt false}) \\ 4. \quad R' := R \cup \{s \in (Sat(\varPhi) \backslash Sat(\varPsi)) \mid \exists s' \in R . ~ {\tt P}(s,s') > 0\} \\ 5. \quad {\tt if} ~ (R' = R) ~ {\tt then} ~ done := {\tt true} \\ 6. \quad R := R' \\ 7. ~ {\tt endwhile} \\ 8. ~ {\tt return} ~ S \backslash R \end{array}$

PCTL until – linear equations

- Probabilities Prob(s, $\phi_1 \cup \phi_2$) can now be obtained as the unique solution of the following set of linear equations
 - essentially the same as for probabilistic reachability

$$Prob(s, \phi_1 \cup \phi_2) = \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s', \phi_1 \cup \phi_2) & \text{otherwise} \end{cases}$$

- Can also be reduced to a system in $|S^{?}|$ unknowns instead of |S| where $S^{?}$ = S \setminus (S^{yes} \cup S^no)

PCTL until - linear equations

- Example: P_{>0.8} [¬a U b]
- Let $x_i = Prob(s_i, \neg a \cup b)$

b]
$$S^{no} =$$

Jb) $Sat(P_{\leq 0} [\neg a \cup b])$
 $1 \quad 0.3$
 $1 \quad 0.3$
 $5^{5} \quad 0.7$
 $5^{5} \quad 0.7$
 $5^{5} \quad 0.7$
 $5^{5} \quad 0.7$
 $S^{yes} =$
 $Sat(P_{\geq 1} [\neg a \cup b])$

$$x_1 = x_3 = 0$$

 $x_4 = x_5 = 1$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = \frac{8}{9}$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

<u>Prob</u>(\neg a U b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]

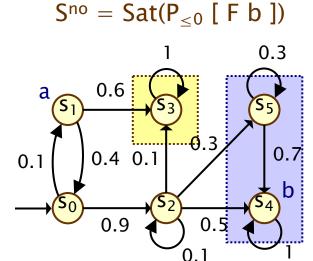
Sat($P_{>0.8}$ [$\neg a \cup b$]) = { s_2, s_4, s_5 }

PCTL Until – Example 2

- Example: $P_{>0.5}$ [$G \neg b$]
- $Prob(s_i, G \neg b)$ = $Prob(s_i, \neg(F b))$ = 1 - $Prob(s_i, F b)$

• Let
$$x_i = Prob(s_i, F b)$$

 $x_3 = 0$ and $x_4 = x_5 = 1$



 $S^{yes} =$ Sat(P_{≥1} [F b])

$$x_{2} = 0.1x_{2}+0.1x_{3}+0.3x_{5}+0.5x_{4} = 8/9$$

$$x_{1} = 0.6x_{3}+0.4x_{0} = 0.4x_{0}$$

$$x_{0} = 0.1x_{1}+0.9x_{2} = 5/6 \text{ and } x_{1} = 1/3$$

$$\underline{Prob}(G\neg b) = \underline{1}-\underline{x} = [1/6, 2/3, 1/9, 1, 0, 0]$$

$$\underline{Sat}(P_{>0.5} [G\neg b]) = \{s_{1}, s_{3}\}$$

System of linear equations

- Solution of large (likely sparse) systems of linear equations
 - size of system (number of variables) typically O(|S|)
 - state space S gets very large in practice
- Two main classes of solution methods:
 - direct methods compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
 - iterative methods, e.g. matrix power, Jacobi, Gauss-Seidel, ...
 - the latter are preferred in practice due to scalability
- General form: $\mathbf{A} \cdot \underline{\mathbf{x}} = \underline{\mathbf{b}}$
 - indexed over integers,
 - i.e. assume S = { 0,1,...,|S|-1 }

$$\sum_{j=0}^{|S|-1} \mathbf{A}(i,j) \cdot \underline{x}(j) = \underline{b}(i)$$

Iterative solution methods

- Start with an initial estimate for the vector \underline{x} , say $\underline{x}^{(0)}$
- Compute successive (increasingly accurate) approximations
 - approximation (solution vector) at k^{th} iteration denoted $\underline{x}^{(k)}$
 - computation of $x^{(k)}$ uses values of $x^{(k-1)}$
- Terminate when solution vector has converged sufficiently
- Several possibilities for convergence criteria, e.g.:
 - maximum absolute difference

$$\max_{i} \left| \underline{x}^{(k)}(i) - \underline{x}^{(k-1)}(i) \right| < \varepsilon$$

- maximum relative difference

$$\max_{i} \left(\frac{|\underline{x}^{(k)}(i) - \underline{x}^{(k-1)}(i)|}{|\underline{x}^{(k)}(i)|} \right) < \varepsilon$$

Jacobi method

Based on fact that:

$$\sum_{j=0}^{|S|-1} \mathbf{A}(i,j) \cdot \underline{x}(j) = \underline{b}(i)$$

• can be rearranged as:

$$\underline{x}(i) = \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}(j) \right) / \mathbf{A}(i, i)$$

• yielding this update scheme:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i, i)$$

non-zero

For probabilistic model checking, **A**(i,i) is always

Gauss-Seidel

• The update scheme for Jacobi:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j) \right) / \mathbf{A}(i, i)$$

- can be improved by using the most up-to-date values of $\underline{x}^{(k)}$ that are available
- This is known as the Gauss-Seidel method:

$$\underline{x}^{(k)}(i) := \left(\underline{b}(i) - \sum_{j < i} \mathbf{A}(i, j) \cdot \underline{x}^{(k)}(j) - \sum_{j > i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)$$

(uses just one vector, as opposed to Jacobi's)

Over-relaxation

- Over-relaxation:
 - compute new values with existing schemes (e.g. Jacobi)
 - but use weighted average with previous vector
- Example: Jacobi + over-relaxation

$$\underline{x}^{(k)}(i) := (1-\omega) \cdot \underline{x}^{(k-1)}(i) + \omega \cdot \left(\underline{b}(i) - \sum_{j \neq i} \mathbf{A}(i,j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i,i)$$

- where $\omega \in (0,2)$ is a parameter to the algorithm

Comparison

- Gauss-Seidel typically outperforms Jacobi
 - i.e. faster convergence
 - Also, it requires only storing single solution vector
- Both Gauss-Seidel and Jacobi usually outperform the matrix power method (see least fixed point method from Lecture 2)
- However Power method has guaranteed convergence
 - Jacobi and Gauss-Seidel do not
- Over-relaxation methods may converge faster in practice
 - for well chosen values of ω
 - need to rely on heuristics for this selection

Model checking complexity

- Model checking of DTMC (S,s_{init},P,L) against PCTL formula Φ complexity is linear in $|\Phi|$ and polynomial in |S|
- Size $|\Phi|$ of Φ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
 - model checking is performed for each operator
- Worst-case operator is $P_{-p} [\Phi_1 \cup \Phi_2]$
 - main task: solution of system of linear equations, of size |S|
 - can be solved with Gaussian elimination: cubic in |S|
 - and also precomputation algorithms (max |S| steps)
- Strictly speaking, $U^{\leq k}$ could be worse than U for large k
 - but in practice k is usually small

Summing up...

- Model checking a PCTL formula ϕ on a DTMC
 - i.e. determine set $Sat(\phi)$
 - recursive: bottom-up traversal of parse tree of $\boldsymbol{\varphi}$
- Atomic propositions and logical connectives: trivial
- Key part: computing probabilities for P_{~p} [...] formulae
 - $X \Phi$: one matrix-vector multiplications
 - $\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications
 - $\Phi_1 U \Phi_2$: graph-based precomputation algorithms + solution of linear equation system in at most |S| variables
- Iterative methods to solve large systems of linear equations