Probabilistic Model Checking

Lecture 5
 PCTL Model Checking for DTMCs

Alessandro Abate

Department of Computer Science University of Oxford

Probabilistic model checking

Overview

- PCTL model checking for DTMCs
- Computation of probabilities for PCTL formulae
- next
- bounded until
- (unbounded) until
- Solving large systems of linear equations
- direct vs. iterative methods
- iterative solution methods

PCTL

- PCTL syntax:

$-\phi::=$ true $|\mathrm{a}| \phi \wedge \phi|\neg \phi| \mathrm{P}_{\sim \mathrm{p}}[\psi]$
(state formulae)
$-\psi::=X \phi \quad\left|\quad \phi U^{\leq k} \phi \quad\right| \quad \phi \quad \phi$

- where a is an atomic proposition, $\mathrm{p} \in[0,1]$ is a probability bound, $\sim \in\{<,>, \leq, \geq\}, k \in \mathbb{N}$
- Remaining operators can be derived (false, $\vee, \rightarrow, F, G, \ldots$)
- hence will not be discussed here

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
- inputs: DTMC D=(S, sinit $, P, L)$, PCTL formula ϕ
- output: $\operatorname{Sat}(\phi)=\{s \in S \mid s \vDash \phi\}=$ set of states satisfying ϕ
- What does it mean for a DTMC D to satisfy a formula ϕ ?
- often, just want to know if $s_{\text {init }} \vDash \phi$, i.e. if $s_{\text {init }} \in \operatorname{Sat}(\phi)$
- sometimes, want to check that $s \vDash \phi \forall s \in S$, i.e. $\operatorname{Sat}(\phi)=S$
- Sometimes, focus on quantitative results
- e.g. compute result of $P_{=\text {? }}$ [F error]
- e.g. compute result of $P_{=?}[F \leq k$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ϕ

$$
\text { - example: } \phi=(\neg \text { fail } \wedge \text { try }) \rightarrow \mathrm{P}_{>0.95}[\neg \text { fail U succ }]
$$

- For the non-probabilistic operators:

$$
\begin{aligned}
& \text { - } \operatorname{Sat}(\text { true })=\mathrm{S} \\
& \text { - } \operatorname{Sat}(\mathrm{a})=\{\mathrm{s} \in \mathrm{~S} \mid \mathrm{a} \in \mathrm{~L}(\mathrm{~s})\} \\
& \text { - } \operatorname{Sat}(\neg \phi)=\mathrm{S} \backslash \operatorname{Sat}(\phi) \\
& -\operatorname{Sat}\left(\phi_{1} \wedge \phi_{2}\right)=\operatorname{Sat}\left(\phi_{1}\right) \cap \operatorname{Sat}\left(\phi_{2}\right)
\end{aligned}
$$

- For the $\mathrm{P}_{\sim \mathrm{p}}[\Psi]$ operator:
- need to compute the probabilities Prob(s, ψ) for all states $s \in S$
$-\operatorname{Sat}\left(\mathrm{P}_{\sim \mathrm{p}}[\psi]\right)=\{\mathrm{s} \in \mathrm{S} \mid \operatorname{Prob}(\mathrm{s}, \Psi) \sim \mathrm{p}\}$

Probability computation

- Three temporal operators to consider:
- Next: $\mathrm{P}_{\sim p}[\mathrm{X} \phi]$
- Bounded until: $P_{\sim p}\left[\phi_{1} U \leq k \phi_{2}\right]$
- adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}\left[\phi_{1} U \phi_{2}\right]$
- adaptation of reachability for DTMCs
- graph-based "precomputation" algorithms
- techniques for solving (large) systems of linear equations

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
$-\operatorname{Sat}\left(P_{\sim p}[X \phi]\right)=\{s \in S \mid \operatorname{Prob}(s, X \phi) \sim p\}$
- need to compute $\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)$ for all $\mathrm{s} \in \mathrm{S}$
- Sum outgoing probabilities for transitions to ϕ-states
$-\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)=\Sigma_{\mathrm{s}^{\prime} \in \operatorname{Sat}(\phi)} \mathrm{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$

- Compute vector $\operatorname{Prob}(X \phi)$ of probabilities for all states s (useful for Sat set)
$-\underline{\operatorname{Prob}}(X \phi)=\mathbf{P} \cdot \Phi$
- where ϕ is a $0-1$ vector over S with $\phi(s)=1$ iff $s \vDash \phi$
- computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: $\mathrm{P}_{\geq 0.9}$ [$\mathrm{X}(\neg$ try \vee succ $)$]
- Sat (\neg try \vee succ) $=(\mathrm{S} \backslash$ Sat(try)) \cup Sat(succ)

$$
=\left(\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \backslash\left\{\mathrm{s}_{1}\right\}\right) \cup\left\{\mathrm{s}_{3}\right\}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}
$$

$-\underline{\operatorname{Prob}}(X(\neg$ try \vee succ $))=\mathbf{P} \cdot \underline{(\neg \text { try } \vee \text { succ })}=\ldots$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0.01 & 0.01 & 0.98 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.99 \\
1 \\
1
\end{array}\right]
$$

- Results:

$-\underline{\operatorname{Prob}}(X(\neg$ try \vee succ $))=[0,0.99,1,1]$
$-\operatorname{Sat}\left(\mathrm{P}_{\geq 0.9}[\mathrm{X}(\neg\right.$ try $\left.\vee \operatorname{succ})]\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}$

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL $U \leq k$ operator
$-\operatorname{Sat}\left(P_{\sim p}\left[\phi_{1} U \leq k \phi_{2}\right]\right)=\left\{s \in S \mid \operatorname{Prob}\left(s, \phi_{1} U \leq k \phi_{2}\right) \sim p\right\}$
- need to compute $\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right)$ for all $\mathrm{s} \in \mathrm{S}$
- First identify (some) states where probability is trivially $1 / 0$
- Syes $=\operatorname{Sat}\left(\phi_{2}\right)$
$-S^{\text {no }}=S \backslash\left(\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)\right)$

PCTL bounded until for DTMCs

- Let:

$$
\begin{aligned}
& - \text { Syes }^{\text {y }} \operatorname{Sat}\left(\phi_{2}\right) \\
& -\operatorname{Sno}^{\text {no }}=\mathrm{S} \backslash\left(\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)\right)
\end{aligned}
$$

- And let:

$$
-S ?=S \backslash\left(S^{\text {yes }} \cup S^{\text {no }}\right)
$$

- Compute solution of recursive equations:

$$
\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \mathrm{U}^{\leq k} \phi_{2}\right)=\left\{\begin{array}{cl}
1 & \text { if } \mathrm{s} \in \mathrm{~S}^{\text {yes }} \\
0 & \text { if } \mathrm{s} \in \mathrm{~S}^{\text {no }} \\
0 & \text { if } \mathrm{s} \in \mathrm{~S}^{?} \text { and } k=0 \\
\sum_{s^{\prime} \in S} \mathrm{P}\left(\mathrm{~s}, \mathrm{~s}^{\prime}\right) \cdot \operatorname{Prob}\left(\mathrm{s}^{\prime}, \phi_{1} U^{\leq k-1} \phi_{2}\right) & \text { if } \mathrm{s} \in S^{?} \text { and } k>0
\end{array}\right.
$$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\operatorname{Prob}\left(\phi_{1} U \leq k \phi_{2}\right)$
- i.e. probabilities $\operatorname{Prob}\left(s, \phi_{1} U \leq k \phi_{2}\right)$ for all $s \in S$
- (important in order to find Sat set of formula)
- Iteratively define in terms of matrices and vectors
- define matrix P^{\prime} as follows:
. if $s \in S^{?} P^{\prime}\left(s, s^{\prime}\right)=P\left(s, s^{\prime}\right)$;
- if $s \in S^{\text {yes }}, P^{\prime}\left(s, s^{\prime}\right)=1$ if $s=s^{\prime}$, otherwise $P^{\prime}\left(s, s^{\prime}\right)=0$
$-\operatorname{Prob}\left(\phi_{1} \mathrm{U} \leq 0 \phi_{2}\right)=\Phi_{2}$
$-\operatorname{Prob}\left(\phi_{1} U \leq k \phi_{2}\right)=\mathbf{P}^{\prime} \cdot \underline{\operatorname{Prob}}\left(\phi_{1} \mathrm{U}{ }^{\leq k-1} \phi_{2}\right)$
- requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
$-\underline{\operatorname{Prob}}\left(\phi_{1} U \leq k \phi_{2}\right)=\left(P^{\prime}\right)^{k} \cdot \phi_{2}$ and compute $\left(P^{\prime}\right)^{k}$ in $\log _{2} k$ steps
- but this can be inefficient, as ($\left.P^{\prime}\right)^{k}$ is much less sparse than P_{12}^{\prime}

PCTL bounded until - Example

- Model check: $\mathrm{P}_{>0.98}$ [$\mathrm{F}^{\leq 2}$ succ] $\equiv \mathrm{P}_{>0.98}$ [true $\mathrm{U}^{\leq 2}$ succ]
- Sat (true) $=\mathrm{S}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}$, Sat(succ) $=\left\{\mathrm{s}_{3}\right\}$
- Syes $=\left\{\mathbf{s}_{3}\right\}, \mathrm{S}^{\mathrm{no}}=\varnothing, \mathrm{S}^{?}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right\}, \mathbf{P}^{\prime}=\mathbf{P}$
$-\underline{\text { Prob }}($ true $U \leq 0$ succ) $=\underline{\text { succ }}=[0,0,0,1]$

$-\operatorname{Sat}\left(\mathrm{P}_{>0.98}\left[\mathrm{~F}^{\leq 2}\right.\right.$ succ $\left.]\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}$

PCTL until for DTMCs

- Computation of probabilities $\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \cup \phi_{2}\right)$ for all $s \in S$
- First, identify all states where the probability is 1 or 0
- Syes $^{\text {y }}=\operatorname{Sat}\left(P_{\geq 1}\left[\begin{array}{lll}\phi_{1} & U \phi_{2}\end{array}\right]\right)$
$-S^{n o}=\operatorname{Sat}\left(P_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$
- Then solve system of linear equations for remaining states
- Running example:

$$
\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{~b} \mathrm{]}
$$

Precomputation

- We refer to the first phase (identifying sets Syes and $S^{\text {no }}$) as "precomputation"
- two algorithms: Prob0 (for Sno) and Probl (for Syes)
- algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
- Prob0 ensures unique solution to system of linear equations
- both reduce the set of states for which probabilities must be computed numerically
- give exact results for the states in Syes and Sno (no round-off)
- (of course, for model checking of qualitative properties ($\mathrm{P}_{\sim \mathrm{p}}[\cdot]$ where p is 0 or 1), no further computation is required)

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

$$
S_{\text {no }}=\operatorname{Sat}\left(P_{\leq 0}[\neg a \cup b]\right)
$$

Precomputation - Prob0

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right) \equiv \operatorname{Sat}\left(E\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S

Prob0 algorithm

```
Prob0(Sat(\Phi), Sat(\Psi))
    1. R := Sat(\Psi)
    2. done:= false
    3. while (done = false)
    4. }\quad\mp@subsup{R}{}{\prime}:=R\cup{s\inSat(\Phi)|\exists\mp@subsup{s}{}{\prime}\inR.\mathbf{P}(s,\mp@subsup{s}{}{\prime})>0
    5. if ( }\mp@subsup{R}{}{\prime}=R)\mathrm{ then done := true
    6. }\quadR:=\mp@subsup{R}{}{\prime
    7. endwhile
    8. return }S\backslash
```

- Note: can be formulated as a least fixed point computation
- also well suited to symbolic computations, e.g., with binary decision diagrams

Precomputation - Prob 1

- Probl algorithm to compute S $^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \mathrm{U} \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing $\mathrm{S}^{\text {no }}$
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{\text {no }}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

Precomputation - Prob 1

- Probl algorithm to compute S $^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \mathrm{U} \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing $\mathrm{S}^{\text {no }}$
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{\text {no }}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

Example:
$\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{b} \mathrm{]}$

Precomputation - Prob 1

- Probl algorithm to compute $S^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing $\mathrm{Sno}^{\text {no }}$
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{n o}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

$$
\text { Sno } \operatorname{Sat(P_{\leq 0}[\neg \mathrm {aUb}])} \text { Example: }
$$

Precomputation - Prob 1

- Probl algorithm to compute S $^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \mathrm{U} \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing $\mathrm{S}^{\text {no }}$
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{\text {no }}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

$$
\operatorname{Sat}\left(\mathrm{P}_{<1}[\neg \mathrm{a} \cup \mathrm{~b}]\right)
$$

Example:
$\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{b} \mathrm{]}$

Precomputation - Prob 1

- Probl algorithm to compute S $^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \mathrm{U} \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing $\mathrm{S}^{\text {no }}$
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{\text {no }}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

Example:
$\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{b}]$

Precomputation - Prob 1

- Probl algorithm to compute S $^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \mathrm{U} \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing $\mathrm{S}^{n o}$
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{\text {no }}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

Probl algorithm

```
Prob1 \(\left(\operatorname{Sat}(\Phi), \operatorname{Sat}(\Psi), \operatorname{Sat}\left(\mathrm{P}_{\leqslant 0}[\Phi \mathrm{U} \Psi]\right)\right)\)
1. \(\quad R:=\operatorname{Sat}\left(\mathrm{P}_{\leqslant 0}[\Phi \mathrm{U} \Psi]\right)\)
2. done := false
3. while \((\) done \(=\) false \()\)
4. \(\quad R^{\prime}:=R \cup\left\{s \in(S a t(\Phi) \backslash S a t(\Psi)) \mid \exists s^{\prime} \in R . \mathbf{P}\left(s, s^{\prime}\right)>0\right\}\)
5. if \(\left(R^{\prime}=R\right)\) then done \(:=\) true
6. \(\quad R:=R^{\prime}\)
7. endwhile
8. return \(S \backslash R\)
```


PCTL until - linear equations

- Probabilities $\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \cup \phi_{2}\right)$ can now be obtained as the unique solution of the following set of linear equations
- essentially the same as for probabilistic reachability

$$
\operatorname{Prob}\left(s, \phi_{1} \cup \phi_{2}\right)=\left\{\begin{array}{cl}
1 & \text { if } s \in S^{\text {yes }} \\
0 & \text { if } s \in S^{\text {no }} \\
\sum_{s^{\prime} \in S} \mathrm{P}\left(s, s^{\prime}\right) \cdot \operatorname{Prob}\left(s^{\prime}, \phi_{1} \cup \phi_{2}\right) & \text { otherwise }
\end{array}\right.
$$

- Can also be reduced to a system in $\mid S$? \mid unknowns instead of $|S|$ where S ? $=S \backslash\left(S^{\text {yes }} \cup S^{\text {no }}\right)$

PCTL until - linear equations

- Example: $\mathrm{P}_{>0.8}[\neg \mathrm{a} \mathrm{U} \mathrm{b}]$

$$
S^{\text {no }}=
$$

- Let $\mathrm{x}_{\mathrm{i}}=\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \neg \mathrm{a} \cup \mathrm{b}\right) \quad \operatorname{Sat}\left(\mathrm{P}_{\leq 0}[\neg \mathrm{a} \cup \mathrm{b}]\right)$
$x_{1}=x_{3}=0$
$x_{4}=x_{5}=1$

$x_{2}=0.1 x_{2}+0.1 x_{3}+0.3 x_{5}+0.5 x_{4}=8 / 9$
$x_{0}=0.1 x_{1}+0.9 x_{2}=0.8$
$\operatorname{Prob}(\neg a \cup b)=\underline{x}=[0.8,0,8 / 9,0,1,1]$
$\operatorname{Sat}\left(\mathrm{P}_{>0.8}[\neg \mathrm{aUb}]\right)=\left\{\mathrm{s}_{2}, \mathrm{~s}_{4}, \mathrm{~s}_{5}\right\}$

PCTL Until - Example 2

- Example: $\mathrm{P}_{>0.5}[\mathrm{G} \neg \mathrm{b}] \quad \mathrm{S}^{\text {no }}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}[\mathrm{Fb}]\right)$
- $\operatorname{Prob}\left(s_{i}, G \neg b\right)$
$=\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \neg(\mathrm{Fb})\right)$
$=1-\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{Fb}\right)$
- Let $x_{i}=\operatorname{Prob}\left(s_{i}, F b\right)$
$x_{3}=0$ and $x_{4}=x_{5}=1$

$\operatorname{Sat}\left(\mathrm{P}_{\geq 1}[\mathrm{Fb}]\right)$
$x_{2}=0.1 x_{2}+0.1 x_{3}+0.3 x_{5}+0.5 x_{4}=8 / 9$
$\mathrm{x}_{1}=0.6 \mathrm{x}_{3}+0.4 \mathrm{x}_{0}=0.4 \mathrm{x}_{0}$
$x_{0}=0.1 x_{1}+0.9 x_{2}=5 / 6$ and $x_{1}=1 / 3$
$\underline{\operatorname{Prob}}(G \neg b)=\underline{1}-\underline{x}=[1 / 6,2 / 3,1 / 9,1,0,0]$
$\operatorname{Sat}\left(\mathrm{P}_{>0.5}[\mathrm{G} \neg \mathrm{b}]\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}$

System of linear equations

- Solution of large (likely sparse) systems of linear equations
- size of system (number of variables) typically $\mathrm{O}(|\mathrm{S}|)$
- state space S gets very large in practice
- Two main classes of solution methods:
- direct methods - compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
- iterative methods, e.g. matrix power, Jacobi, Gauss-Seidel, ...
- the latter are preferred in practice due to scalability
- General form: $\mathbf{A} \cdot \underline{x}=\underline{b}$
- indexed over integers,
- i.e. assume $S=\{0,1, \ldots,|\mathrm{~S}|-1\} \quad \sum_{j=0} \mathbf{~}$

Iterative solution methods

- Start with an initial estimate for the vector \underline{x}, say $\underline{x}^{(0)}$
- Compute successive (increasingly accurate) approximations
- approximation (solution vector) at $\mathrm{k}^{\text {th }}$ iteration denoted $\underline{x}^{(k)}$
- computation of $x^{(k)}$ uses values of $x^{(k-1)}$
- Terminate when solution vector has converged sufficiently
- Several possibilities for convergence criteria, e.g.:
- maximum absolute difference

$$
\max _{i}\left|\underline{x}^{(k)}(i)-\underline{x}^{(k-1)}(i)\right|<\varepsilon
$$

- maximum relative difference

$$
\max _{i}\left(\frac{\left|\underline{x}^{(k)}(i)-\underline{x}^{(k-1)}(i)\right|}{\left|\underline{x}^{(k)}(i)\right|}\right)<\varepsilon
$$

Jacobi method

- Based on fact that:

$$
\sum_{j=0}^{|S|-1} \mathbf{A}(i, j) \cdot \underline{x}(j)=\underline{b}(i)
$$

For probabilistic model checking, $\mathrm{A}(\mathrm{i}, \mathrm{i})$ is always non-zero

- can be rearranged as:

$$
\underline{x}(i)=\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}(j)\right) / \mathbf{A}(i, i)
$$

- yielding this update scheme:

$$
\underline{x}^{(k)}(i):=\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)
$$

Gauss-Seidel

- The update scheme for Jacobi:

$$
\underline{x}^{(k)}(i):=\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)
$$

- can be improved by using the most up-to-date values of $\underline{x}^{(k)}$ that are available
- This is known as the Gauss-Seidel method:
$\underline{x}^{(k)}(i):=\left(\underline{b}(i)-\sum_{j<i} \mathbf{A}(i, j) \cdot \underline{x}^{(k)}(j)-\sum_{j>i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)$
- (uses just one vector, as opposed to Jacobi’s)

Over-relaxation

- Over-relaxation:
- compute new values with existing schemes (e.g. Jacobi)
- but use weighted average with previous vector
- Example: Jacobi + over-relaxation

$$
\begin{aligned}
\underline{x}^{(k)}(i): & (1-\omega) \cdot \underline{x}^{(k-1)}(i) \\
& +\omega \cdot\left(\underline{b}(i)-\sum_{j \neq i} \mathbf{A}(i, j) \cdot \underline{x}^{(k-1)}(j)\right) / \mathbf{A}(i, i)
\end{aligned}
$$

- where $\omega \in(0,2)$ is a parameter to the algorithm

Comparison

- Gauss-Seidel typically outperforms Jacobi
- i.e. faster convergence
- Also, it requires only storing single solution vector
- Both Gauss-Seidel and Jacobi usually outperform the matrix power method (see least fixed point method from Lecture 2)
- However Power method has guaranteed convergence
- Jacobi and Gauss-Seidel do not
- Over-relaxation methods may converge faster in practice
- for well chosen values of ω
- need to rely on heuristics for this selection

Model checking complexity

- Model checking of DTMC ($\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}$) against PCTL formula Φ complexity is linear in $|\Phi|$ and polynomial in $|S|$
- Size $|\Phi|$ of Φ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
- model checking is performed for each operator
- Worst-case operator is $\mathrm{P}_{\sim \mathrm{p}}$ [$\Phi_{1} \cup \Phi_{2}$]
- main task: solution of system of linear equations, of size |S|
- can be solved with Gaussian elimination: cubic in |S|
- and also precomputation algorithms (max |S| steps)
- Strictly speaking, $\mathrm{U} \leq \mathrm{k}$ could be worse than U for large k
- but in practice k is usually small

Summing up...

- Model checking a PCTL formula ϕ on a DTMC
- i.e. determine set Sat(ϕ)
- recursive: bottom-up traversal of parse tree of ϕ
- Atomic propositions and logical connectives: trivial
- Key part: computing probabilities for $\mathrm{P}_{\sim \mathrm{p}}$ [...] formulae
- X Φ : one matrix-vector multiplications
- $\Phi_{1} \mathrm{U} \leqslant \mathrm{k} \Phi_{2}$: k matrix-vector multiplications
- $\Phi_{1} \mathrm{U} \Phi_{2}$: graph-based precomputation algorithms + solution of linear equation system in at most $|\mathrm{S}|$ variables
- Iterative methods to solve large systems of linear equations

