Probabilistic Model Checking

Lecture 4
Probabilistic temporal logics

Alessandro Abate

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

- Temporal logics

Non-probabilistic temporal logic
— CTL

Probabilistic temporal logic
— PCTL = CTL + probabilities

- Qualitative vs. quantitative

Linear-time properties
— LTL, PCTL*

Temporal logic

- Temporal logic

— formal language for specifying and reasoning about how the
behaviour of a system changes over time

— extends propositional logic with modal/temporal operators

— one important use: representation of properties of reactive
system, to be verified by a model checker

- Logics used in this course are probabilistic extensions of
temporal logics devised for non-probabilistic systems

— So we revert briefly to (labelled) state-transition diagrams

{fail}

S

0.01 isucc} {succ}

State-transition systems

- Labelled state-transition system (LTS) (or Kripke structure)

— is a tuple (S,Sinit,—,L) where:

— Sis a set of states (“state space”)

— Sinit € Sis the initial state Me
— — < S xS is the transition relation ' @

— L:S — 2AP s function labelling {succ}
states with atomic propositions
(taken from a set AP)

- DTMC (§,s;,i,P,L) has underlying LTS (S,Siqit,—,L)

— where - ={ (s,s’) s.t. P(s,s’) > 0}

Paths - some notation

- Path w = s545;S,... such that (s;,s;,;) € — fori >0
— we write s; — s;.; as shorthand for (s;,s;.1) € —

« w(i) is the (i+1)th state of w, i.e. s;

- wI...i] denotes the (finite) prefix ending in the (i+1)th state
— i.e. W[...i] = spS7._S;

- wli...] denotes the suffix starting from the (i+1)th state
— l.e, U.)[l] = SiSi+1Sj+2---

- As for DTMCs, Path(s) = set of all infinite paths from s

CTL

- CTL - Computation Tree Logic

- Syntax split into state and path formulae

— specify properties of states/paths, respectively
— a CTL formula is a state formula

Some of these

- State formulae: . operators (e.g.
. A F,G)are
- ¢ u=tuelaldnd|-b[Aw[EY . derivable from
— where a € AP and y is a path formula others :
Path formulae X:“next”
-~ = X$|Fd|Cd|dUD F = "finally”
— where ¢ is a state formula G ="globally

: U = “until”

CTL semantics

- Semantics of state formulae:

— s = ¢ denotes “s satisfies ¢” or “P is true in s’

— s E true
—SkEa

- SE Q1 A
—sE -}
—SEAVY
—SEEY

I R

- For a state s of an LTS (S,s;nit,—,L):

always

a € L(s)

sE¢; and s E ¢,

S ¥ ¢

w = P for all w € Path(s)

w = P for some w € Path(s)

CTL semantics

- Semantics of path formulae:

— w E P denotes “w satisfies P” or “Y is true along w”

- For a path w of an LTS (S,s,i,—,L):

-~ wEXd < wl)Edod

—wkEF < Jk=0s.t. wk) = ¢

—wkEG < Viz0w() Eod

—wWEd U, < Jk=0 s.t. w(k) = ¢, and Vi<k w(i) = ¢,

— (incidentally, Fd = true U ¢)

CTL semantics

- Intuitive semantics:
— of quantifiers (A/E) and temporal operators (F/G/U)

Al AN A0

EF red EG red E [yellow U red]

AN AAL A4

AF red AG red A [yellow U red]

CTL examples

- Some examples of satisfying paths:

— Wp E X succ {try} {succ} {succ} {succ}

— w; = —fail U succ

{try} {try} {succ} {succ}

orototolos fa

oy A
- Example CTL formulae: @ 9

— 57 E try A —fail ' e’

— Sy E[Xsucc]and s3s A[X succ] {succ}
— So & E [—fail U succ] but so= A [—fail U succ]

10

CTL examples

* AG (—'(Cl’lt1/\CI‘It2))
— mutual exclusion

- AG EF initial

— for every computation, it is always possible to return to the
initial state

- AG (request — AF response)

— every request will eventually be granted

- AG AF crit; A AG AF crit,

— for both critical sections, each process has access to each
infinitely often

11

CTL equivalences

- Basic propositional logic equivalences:

— false = —true (false)
— &1 Vb = (=dy A) (disjunction)
— ¢~ b=~ V P, (implication)

- Path quantifiers (proof via semantics):
- AyY = —E(=y)
- Ep = -A(=Y)

- Temporal operators for paths:
— Fd=trueU ¢
- G = ~F(-9)
Hence, e.qg.:
AG ¢ = —~EF(— ¢)

12

CTL - Alternative notation

- Some commonly used notation (cf. [BKO8] book)

- Temporal operators:

—F¢d = 0P (“diamond”’)
-G = oo (“box")

- Xb = 0o

- Path quantifiers:
— Ay =V Y
—EY =4y

- Bracketing: none/round/square

_ AF y
- A(Y,UY,)
—Alv Uy,]

13

PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H)94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P.g s [F=10 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

14

PCTL syntax

--

. PCTL syntax: . s true with
/ probability ~p
— ¢ =true|la|dAd| b | PpolW] (state formulae)
—p =Xd | dUxkd | dUD (path formulae)
T R A : T

sl seeeerg “bounded ,“ ”

next” | : “until” ¢

until -

TaamsssssssssssEEEssEEEEEEat H I Seessssssssssssssssssensd

— where a is an atomic proposition, p € [0,1] is a probability
bound, ~ € {<,>,<,=2}, k e N

- A PCTL formula is always a state formula (same as CTL)
— path formulae only occur inside the P operator

15

PCTL semantics for DTMCs

- Semantics for non-probabilistic operators same as for CTL:

— s = ¢ denotes “s satisfies ¢” or “P is true in s’
— w E P denotes “w satisfies P” or “Y is true along w”

- For a state s of a DTMC (S, si,it,P,L):

- For a path w of a DTMC (§5,s,,;,P,L):

_ S |: true aIWayS g U.g.l-(.-.H.a.t-.-.i-.ﬁ-.-é-;-l:i: ----- g
-skFa < a € L) . (but could easily :
— S F d)] N CI)Z < S F CI)] and s E CI)Z be added) :

—sE ¢ S sE

—wEX$ < w()E

— wkE ¢ Uskdp, < i<k such that w(i) = ¢,
and Vj<i, w(j) = o,
- wE ¢ Udd, < dk=0s.t. w(k) E ¢, and Vi<k w(i) F

16

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s & P., [W] means that “the probability,
from state s, that P holds on outgoing paths, satisfies ~p”

— example: s = P_gos [X fai/] & “the probability of atomic
proposition fa// being true in the next state of outgoing paths

from s is less than 0.25”
— formally: s & P., [¢] < Prob(s,) ~p
— where: Prob(s,) = Prs { w € Path(s) | w = Y }

U Prob(s,) ~p ?

17

PCTL equivalences for DTMCs

- Basic logical equivalences:

— false = —true (false)
— b1 vV by = (=P A) (disjunction)
— ¢ =~ Pr=—y V Py (implication)

- Negation and probabilities

—eg. P, [d1Udrl= P[P U]

18

Reachability and invariance

Derived temporal operators, like CTL...

Probabilistic reachability: P., [F ¢]
— the probability of reaching a state satisfying ¢
— Fd=trueU ¢
— “@ is eventually true”
— bounded version: F=k ¢ = true U=k ¢

. strictly speaking,
i G ¢ cannot be

Probabilistic invariance: P_, [G ¢ | derived from the |
— the probability of ¢ always remaining true PE_T'— syntax in

: this way since
~ G =—(F~¢) =~(true U ~9) 4/ there is no :
— “¢d is always true” . negation of PCTL :

- bounded version: G= ¢ = ~(F=k ~¢) G e

Derivation of P, [G ¢]

- In fact, we can derive P, [G ¢] directly in PCTL...

—-SEP.,[Cd]

D R

Prob(s, G) > p

Prob(s, —=(F —=¢)) > p
1 - Prob(s, F =) > p
Prob(s, F =) <1 -p

S':P<1—p[F_'¢]
W ores
oge.

.................

20

Derivation of P, [G ¢]

- In fact, we can derive P, [G ¢] directly in PCTL...
- SEP.,[CD] Prob(s, G) > p
Prob(s, —=(F —=¢)) > p
1 - Prob(s, F =) > p
Prob(s, F =) <1 -p
S|:P<1—p[F_‘¢]

- Other equivalences:
~Pp[Gd] = Py [F-d] O
P<p[G¢] P>1—p[F'c|)]

g 00 0¢

o P>p [G=k ¢]
— etc.

.................

21

PCTL examples

P<O.4 [_'fa.||A U fa.||B]

— “the probability that component B fails before component A is
less than 0.4

—oper — Py [F(P.gg9 [G=10 0Oper])]

— “if the system is not operational, it almost surely reaches a
state from which it has a greater than 0.99 chance of staying

operational for 100 time units”

P.oos [Ferr/total>0.1]

— “with probability at most 0.05, more than 10% of the NAND
gate outputs are erroneous?’

P.os [F=k reply_count=n]

— “the probability that the sender has received n
acknowledgements within k clock-ticks is at least 0.8

22

PCTL and measurability

Recall: probability space (Path(s), 2p,ins), Prs)

—3pathis) contains cylinder sets C(w) for all finite paths w starting
in s and is closed under complementation & countable union

. All the sets of paths expressed by PCTL are measurable
—i.e. are elements of the og-algebra Zpans)
—see [Var85] (which has a stronger result)

Next (X ¢)
—cylinder sets constructed from paths of length one
Bounded until (¢, U=k ¢,)
—(finite number of) cylinder sets from paths of length at most k

Until (¢, U ¢,)

—countable union of finite paths satisfying ¢; U=k ¢, for all k=0
23

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

- Qualitative PCTL properties

— P, [@] where p is either O or 1

- Quantitative PCTL properties

— P., [@] where p is in the range (0,1)

- P.o[Fd]is identical to EF ¢
— there exists a finite path to a ¢-state

- P_, [F &]is (similar to but) weaker than AF ¢

— a ¢-state is reached “almost surely”
— see next slide...

24

Example: Qualitative/quantitative

- Toss a coin repeatedly until “tails” is thrown

Is “tails” always eventually thrown? 1 {heads}
— CTL: AF “tails”
— Result: false
— Counterexample: s5S1505150S1 ...

Does the probability of eventually
throwing “tails” equal one?

— PCTL: P [F “tails”]
— Result: true

— Infinite path s9S15¢5150S1... has zero probability

25

Quantitative properties

Consider a PCTL formula P, [@]
— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
— PRISM allows formulae of the form P_, []
— “what is the probability that path formula @ is true?”
Model checking is no harder, it computes the values anyway
Useful to spot patterns, trends |,
Example
— P_, [F err/total>0.1]

— “what is the probability
that 10% of the NAND

gate outputs are erroneous?”

PRISM [21]

—e— A =0.01
—a— A =0.02
—a&—) =0.03
—— L=0.04
Analytical [7]
-&-e- L =0.01
-8- A=0.02
-4- 31 =0.03
-9~ A=0.04

Probability

1 2 3 4 5 8 7
Number of restorative stages

26

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (possibly, within k time steps)

- Alternative logics can be used, for example:

— LTL [Pnu77], the non-probabilistic linear-time temporal logic
— PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

- To introduce these logics, we return briefly again to
non-probabilistic logics and models...

27

Branching vs. Linear time

- In CTL, temporal operators (on paths) always appear inside
AorkE

— in LTL, temporal operators can be combined

LTL but not CTL:
— F[reg A X ack]

— “eventually a request occurs, followed immediately by an
acknowledgement”

- CTL but not LTL;

— AG EF initial

— “for every computation, it is always possible to return to the
initial state”

28

LTL

- LTL syntax

— path formulae only

Wou=true [alwAap|-w|[Xw|[pUuy
— where a € AP is an atomic proposition

w E true
W Ea
wE P AW
wE Y
wEXY
wE W Uy,

I R

- LTL semantics (for a path w)

always

a € L(w(0))

wE P; and w E P,
w P

w[l...]EY

k>0 s.t. wlk...] = p, and
Vi<k wli...] & Yy

29

LTL

LTL semantics
— implicit universal quantification over paths
— ji.e. for an LTS M = (5,snit,—,L) and LTL formula g
— s = Y iff w = @ for all paths w € Path(s)
— MEYIiff sisir =W

- e.g:

— AF[reg A Xack]

— “it is always the case that, eventually, a request occurs,
followed immediately by an acknowledgement”

Derived operators like CTL, for example:
—FyY =truelU Y
- Gy = ~F(—y)

30

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:
— Prob(s, @) = Prg { w € Path(s) | w = @ }
— all such path sets are measurable
Examples from DTMC lectures
Repeated reachability: “always eventually...”
— Prob(s, GF send)

— e.g. “what is the probability that the protocol successfully
sends a message infinitely often?”

Persistence properties: “eventually forever...”
— Prob(s, FG stable)

— e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

31

PCTL*

- PCTL* subsumes both (probabilistic) LTL and PCTL

. State formulae:

~¢ u=truelaldAd| b |P,lw]

— where a € AP and is a path formula

- Path formulae:

—p = |wAay|-w|Xy|lwUuy
— where ¢ is a state formula

- A PCTL* formula is a state formula ¢
— e.g. P.o1 [GF crity] A Psgq [GF crit;]

32

Summing up...

- Temporal logics:

— formal languages for specifying and reasoning about the
behaviour of a system evolving over time

CTL ¢
non-probabilistic
.g. LTS

LTL P (.9)
PCTL ®

probabilistic

LTL + prob. | Prob(s,) (e.g. DTMCs)
PCTL* ¢

33

