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Overview

• Temporal logics

• Non-probabilistic temporal logic
− CTL

• Probabilistic temporal logic
− PCTL = CTL + probabilities

• Qualitative vs. quantitative

• Linear-time properties
− LTL, PCTL*
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Temporal logic

• Temporal logic
− formal language for specifying and reasoning about how the 

behaviour of a system changes over time
− extends propositional logic with modal/temporal operators
− one important use: representation of properties of reactive 

system, to be verified by a model checker
• Logics used in this course are probabilistic extensions of 

temporal logics devised for non-probabilistic systems
− So we revert briefly to (labelled) state-transition diagrams
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State-transition systems

• Labelled state-transition system (LTS) (or Kripke structure)
− is a tuple (S,sinit,→,L) where: 
− S is a set of states (“state space”)
− sinit ∈ S is the initial state
− → ⊆ S x S is the transition relation
− L : S → 2AP is function labelling

states with atomic propositions
(taken from a set AP)

• DTMC (S,sinit,P,L) has underlying LTS (S,sinit,→,L) 
− where → = { (s,s’) s.t. P(s,s’) > 0 }
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Paths - some notation

• Path ω = s0s1s2… such that (si,si+1) ∈ → for i ≥ 0
− we write si → si+1 as shorthand for (si,si+1) ∈ →

• ω(i) is the (i+1)th state of ω, i.e. si

• ω[…i] denotes the (finite) prefix ending in the (i+1)th state
− i.e. ω[…i] = s0s1…si

• ω[i…] denotes the suffix starting from the (i+1)th state
− i.e. ω[i…] = sisi+1si+2…

• As for DTMCs, Path(s) = set of all infinite paths from s
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CTL

• CTL - Computation Tree Logic
• Syntax split into state and path formulae

− specify properties of states/paths, respectively
− a CTL formula is a state formula

• State formulae:
− φ  ::=  true | a | φ ∧ φ | ¬φ | A ψ | E ψ
− where a ∈ AP and ψ is a path formula

• Path formulae
− ψ  ::=  X φ | F φ | G φ | φ U φ
− where φ is a state formula

Some of these 
operators (e.g. 

A, F, G) are 
derivable from 

others

X = “next”
F = “finally”
G = “globally”
U = “until”
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CTL semantics

• Semantics of state formulae:
− s ⊨ φ  denotes  “s satisfies φ” or “φ is true in s”

• For a state s of an LTS (S,sinit,→,L):

− s ⊨ true always
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊭ φ
− s ⊨ A ψ ⇔ ω ⊨ ψ for all ω ∈ Path(s)
− s ⊨ E ψ ⇔ ω ⊨ ψ for some ω ∈ Path(s)
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CTL semantics

• Semantics of path formulae:
− ω ⊨ ψ denotes  “ω satisfies ψ” or “ψ is true along ω”

• For a path ω of an LTS (S,sinit,→,L):

− ω ⊨ X φ ⇔ ω(1) ⊨ φ
− ω ⊨ F φ ⇔ ∃k≥0 s.t. ω(k) ⊨ φ
− ω ⊨ G φ ⇔ ∀i≥0 ω(i) ⊨ φ
− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1

− ( incidentally, F φ = true U φ )
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CTL semantics

• Intuitive semantics:
− of quantifiers (A/E) and temporal operators (F/G/U)

EF red EG red E [ yellow U red ]

AF red AG red A [ yellow U red ]
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CTL examples

• Some examples of satisfying paths:
− ω0 ⊨ X succ

− ω1 ⊨ ¬fail U succ

• Example CTL formulae:
− s1 ⊨ try ∧ ¬fail
− s1 ⊨ E [ X succ ] and s3 ⊨  A [ X succ ]
− s0 ⊨ E [¬fail U succ] but s0 ⊭ A [¬fail U succ]
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CTL examples

• AG (¬(crit1∧crit2))
− mutual exclusion

• AG EF initial
− for every computation, it is always possible to return to the 

initial state

• AG (request → AF response)
− every request will eventually be granted

• AG AF crit1 ∧ AG AF crit2
− for both critical sections, each process has access to each 

infinitely often
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CTL equivalences

• Basic propositional logic equivalences:
− false ≡ (false)
− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
− φ1 → φ2 ≡¬φ1 ∨ φ2 (implication)

• Path quantifiers (proof via semantics):
− A ψ ≡ ¬E(¬ψ)
− E ψ ≡ ¬A(¬ψ)

• Temporal operators for paths:
− F φ ≡ true U φ
− G φ ≡ ¬F(¬φ)

Hence, e.g.:
AG φ ≡

¬true
¬(¬φ1 ∧ ¬φ2)
¬φ1 ∨ φ2

¬EF(¬ φ)
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CTL - Alternative notation

• Some commonly used notation (cf. [BK08] book) 

• Temporal operators:
− F φ ≡  ◊ φ  (“diamond”)
− G φ ≡  □ φ  (“box”)
− X φ ≡  ○ φ

• Path quantifiers:
− A ψ ≡ ∀ ψ
− E ψ ≡ ∃ ψ

• Bracketing: none/round/square
− AF ψ
− A ( ψ1 U ψ2 )
− A [ ψ1 U ψ2 ]
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PCTL

• Temporal logic for describing properties of DTMCs
− PCTL = Probabilistic Computation Tree Logic [HJ94]
− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL
− key addition is probabilistic operator P
− quantitative extension of CTL’s A and E operators

• Example
− send → P≥0.95 [ F≤10 deliver ]
− “if a message is sent, then the probability of it being delivered 

within 10 steps is at least 0.95”
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PCTL syntax

• PCTL syntax:

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulae)

− ψ  ::=  X φ    | φ U≤k φ     | φ U φ (path formulae)

− where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula (same as CTL) 
− path formulae only occur inside the P operator

“until”

ψ is true with 
probability ~p

“bounded 
until”“next”
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PCTL semantics for DTMCs

• Semantics for non-probabilistic operators same as for CTL:
− s ⊨ φ  denotes  “s satisfies φ” or “φ is true in s”
− ω ⊨ ψ denotes  “ω satisfies ψ” or “ψ is true along ω”

• For a state s of a DTMC (S,sinit,P,L):
− s ⊨ true always
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊭ φ
• For a path ω of a DTMC (S,sinit,P,L):

− ω ⊨ X φ ⇔ ω(1) ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that ω(i) ⊨ φ2

and ∀j<i, ω(j) ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1

U≤k not in CTL 
(but could easily 

be added)



17

PCTL semantics for DTMCs

• Semantics of the probabilistic operator P
− informal definition:  s ⊨ P~p [ ψ ] means that “the probability, 

from state s, that ψ holds on outgoing paths, satisfies ~p”
− example:  s ⊨ P<0.25 [ X fail ] ⇔ “the probability of atomic 

proposition fail being true in the next state of outgoing paths 
from s is less than 0.25”

− formally:  s ⊨ P~p [ψ]  ⇔  Prob(s, ψ) ~ p
− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

s

¬ψ

ψ Prob(s, ψ) ~ p ?
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PCTL equivalences for DTMCs

• Basic logical equivalences:
− false ≡ ¬true (false)
− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
− φ1 → φ2 ≡¬φ1 ∨ φ2 (implication)

• Negation and probabilities
− e.g. ¬P>p [ φ1 U φ2 ] ≡ P≤p [ φ1 U φ2 ] 
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Reachability and invariance

• Derived temporal operators, like CTL…

• Probabilistic reachability: P~p [ F φ ]
− the probability of reaching a state satisfying φ
− F φ ≡ true U φ
− “φ is eventually true”
− bounded version: F≤k φ ≡ true U≤k φ

• Probabilistic invariance: P~p [ G φ ]
− the probability of φ always remaining true
− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ)
− “φ is always true”
− bounded version: G≤k φ ≡ ¬(F≤k ¬φ)

strictly speaking, 
G φ cannot be 

derived from the 
PCTL syntax in 
this way since 

there is no 
negation of PCTL 

path formulae
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Derivation of P~p [ G φ ] 

• In fact, we can derive P~p [ G φ ] directly in PCTL…

− s ⊨ P>p [ G φ ] ⇔ Prob(s, G φ) > p
⇔ Prob(s, ¬(F ¬φ)) > p
⇔ 1 - Prob(s, F ¬φ) > p
⇔ Prob(s, F ¬φ) < 1 - p
⇔ s ⊨ P<1-p [ F ¬φ ]

• Other equivalences:
− P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ]
− P<p [ G φ ] ≡ P>1-p [ F ¬φ ]
− P>p [ G≤k φ ] ≡ P<1-p [ F≤k ¬φ ]
− etc.

− s ⊨ P>p [ G φ ] ⇔ Prob(s, G φ) > p
⇔ Prob(s, ¬(F ¬φ)) > p
⇔ 1 - Prob(s, F ¬φ) > p
⇔ Prob(s, F ¬φ) < 1 - p
⇔ s ⊨ P<1-p [ F ¬φ ]

− s ⊨ P>p [ G φ ] ⇔ Prob(s, G φ) > p
⇔ Prob(s, ¬(F ¬φ)) > p
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Derivation of P~p [ G φ ] 

• In fact, we can derive P~p [ G φ ] directly in PCTL…

− s ⊨ P>p [ G φ ] ⇔ Prob(s, G φ) > p
⇔ Prob(s, ¬(F ¬φ)) > p
⇔ 1 - Prob(s, F ¬φ) > p
⇔ Prob(s, F ¬φ) < 1 - p
⇔ s ⊨ P<1-p [ F ¬φ ]

• Other equivalences:
− P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ]
− P<p [ G φ ] ≡ P>1-p [ F ¬φ ]
− P>p [ G≤k φ ] ≡ P<1-p [ F≤k ¬φ ]
− etc.
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PCTL examples

• P<0.4 [ ¬failA U failB ]
− “the probability that component B fails before component A is 

less than 0.4”
• ¬oper → P≥1 [ F ( P>0.99 [ G≤100 oper ] ) ]

− “if the system is not operational, it almost surely reaches a 
state from which it has a greater than 0.99 chance of staying 
operational for 100 time units”

• P<0.05 [ F err/total>0.1 ]
− “with probability at most 0.05, more than 10% of the NAND 

gate outputs are erroneous?”
• P≥0.8 [ F≤k reply_count=n ]

− “the probability that the sender has received n 
acknowledgements within k clock-ticks is at least 0.8”
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PCTL and measurability

• Recall: probability space (Path(s), ΣPath(s), Prs)
−ΣPath(s) contains cylinder sets C(ω) for all finite paths ω starting 
in s and is closed under complementation & countable union

• All the sets of paths expressed by PCTL are measurable
−i.e. are elements of the σ-algebra ΣPath(s)

−see [Var85] (which has a stronger result)

• Next (X φ)
−cylinder sets constructed from paths of length one

• Bounded until (φ1 U≤k φ2)
−(finite number of) cylinder sets from paths of length at most k

• Until (φ1 U φ2)
−countable union of finite paths satisfying φ1 U≤k φ2 for all k≥0
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Qualitative vs. quantitative properties

• P operator of PCTL can be seen as a quantitative analogue 
of the CTL operators A (for all) and E (there exists)

• Qualitative PCTL properties
− P~p [ ψ ] where p is either 0 or 1

• Quantitative PCTL properties
− P~p [ ψ ] where p is in the range (0,1)

• P>0 [ F φ ] is identical to EF φ
− there exists a finite path to a φ-state

• P≥1 [ F φ ] is (similar to but) weaker than AF φ
− a φ-state is reached “almost surely”
− see next slide…

identical to EF φ
there exists a finite path to a φ-state

(similar to but) weaker than AF φ
a φ-state is reached “almost surely”
see next slide…
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Example: Qualitative/quantitative

• Toss a coin repeatedly until “tails” is thrown

• Is “tails” always eventually thrown?
− CTL:  AF “tails”
− Result:  false
− Counterexample: s0s1s0s1s0s1…

• Does the probability of eventually
throwing “tails” equal one?
− PCTL:  P≥1 [ F “tails” ]
− Result:  true
− Infinite path s0s1s0s1s0s1… has zero probability
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Quantitative properties
• Consider a PCTL formula P~p [ ψ ]

− if the probability is unknown, how to choose the bound p?
• When the outermost operator of a PTCL formula is P

− PRISM allows formulae of the form P=? [ ψ ]
− “what is the probability that path formula ψ is true?”

• Model checking is no harder, it computes the values anyway
• Useful to spot patterns, trends
• Example

− P=? [ F err/total>0.1 ]
− “what is the probability

that 10% of the NAND
gate outputs are erroneous?”
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Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity
− essentially: probability of reaching states in X, passing only 

through states in Y (possibly, within k time steps)

• Alternative logics can be used, for example:
− LTL [Pnu77], the non-probabilistic linear-time temporal logic
− PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

• To introduce these logics, we return briefly again to
non-probabilistic logics and models…
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Branching vs. Linear time

• In CTL, temporal operators (on paths) always appear inside 
A or E
− in LTL, temporal operators can be combined

• LTL but not CTL:
− F [ req ∧ X ack ]
− “eventually a request occurs, followed immediately by an 

acknowledgement”

• CTL but not LTL:
− AG EF initial
− “for every computation, it is always possible to return to the 

initial state”
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LTL

• LTL syntax
− path formulae only
− ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
− where a ∈ AP is an atomic proposition

• LTL semantics (for a path ω)
− ω ⊨ true always
− ω ⊨ a ⇔ a ∈ L(ω(0))
− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ
− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ
− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 and

∀i<k ω[i…] ⊨ ψ1
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LTL

• LTL semantics
− implicit universal quantification over paths
− i.e. for an LTS M = (S,sinit,→,L)  and LTL formula ψ
− s ⊨ ψ iff ω ⊨ ψ for all paths ω ∈ Path(s)
− M ⊨ ψ iff sinit ⊨ ψ

• e.g:
− A F [ req ∧ X ack ]
− “it is always the case that, eventually, a request occurs, 

followed immediately by an acknowledgement”

• Derived operators like CTL, for example:
− F ψ ≡ true U ψ
− G ψ ≡ ¬F(¬ψ)
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LTL + probabilities

• Same idea as PCTL: probabilities of sets of path formulae
− for a state s of a DTMC and an LTL formula ψ:
− Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }
− all such path sets are measurable 

• Examples from DTMC lectures 
• Repeated reachability: “always eventually…”

− Prob(s, GF send)
− e.g. “what is the probability that the protocol successfully 

sends a message infinitely often?”
• Persistence properties: “eventually forever…”

− Prob(s, FG stable)
− e.g. “what is the probability of the leader election algorithm 

reaching, and staying in, a stable state?”
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PCTL*

• PCTL* subsumes both (probabilistic) LTL and PCTL

• State formulae:
− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]
− where a ∈ AP and ψ is a path formula

• Path formulae:
− ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
− where φ is a state formula

• A PCTL* formula is a state formula φ
− e.g. P>0.1 [ GF crit1 ] ∧ P>0.1 [ GF crit2 ]
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Summing up…

• Temporal logics:
− formal languages for specifying and reasoning about the 

behaviour of a system evolving over time 

non-probabilistic
(e.g. LTSs)

probabilistic
(e.g. DTMCs)

CTL

LTL

PCTL

LTL + prob.

PCTL*

Φ

ψ

Φ

Prob(s, ψ)

Φ


