
Natural Language Processing

Lecture 7 : Part-of-Speech Tagging

Master Degree in Computer Engineering
University of Padua

Lecturer : Giorgio Satta

Lecture partially based on material originally developed by :
Marco Kuhlman, Linköping University

Mark-Jan Nederhof, University of St. Andrews

Natural Language Processing Part-of-Speech Tagging

Part-of-speech tagging

©T
he

N
ew

Yo
rk

Ti
m

es

Natural Language Processing Part-of-Speech Tagging

Part-of-speech

©s
eo

-h
er

d

Natural Language Processing Part-of-Speech Tagging

Part-of-speech

Part-of-speech (POS) tags are lexical categories such as noun,
verb, adjective, adverb, pronoun, preposition, article, etc.
Also known as word classes or morphological classes. Recall these classes are
defined either distributionally or else functionally (see essentials of linguistics
lecture).

We call tagset the set of all POS tags used by some model.

Different languages, different grammatical theories, and different
applications may require different tagsets.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech

POS tags fall into two broad categories: closed class and open
class.

Closed class includes prepositions, pronouns, articles, etc. New
words in this class are rarely coined.

Open class consists of four major groups: nouns (including proper
nouns), verbs, adjectives, and adverbs. New words appear almost
always in this class.
Interjections are also a (minor) group in open class.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech

The Universal Dependencies (UD) tagset contains 17 tags:

UD dataset has POS tagged corpora for 100+ languages, at time of writing.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech

The English-specific Penn Treebank (PTB) tagset is also very
popular; it contains 45 tags.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech tagging

Natural Language Processing Part-of-Speech Tagging

Part-of-speech tagging

Words are ambiguous: depending on the context in which they
appear, they may have different tags.

Example : Word ‘book’ can be tagged as VERB or as NOUN
book/VERB that flight
hand me that book/NOUN

Only about 15% of the word types in the Brown corpus are
ambiguous. But 67% of the word tokens are ambiguous.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech tagging

The task of part-of-speech tagging involves the assignment of
the proper (unique) POS tag to each word in an input sentence.

POS tagging must be done in the context of an entire sentence, on
the basis of the grammatical relationship of a word with its
neighboring words.
This is an instance of a more general task called sequence labelling, which we
will discuss later.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech tagging

The input is a sequence x1, x2, . . . , xn of (tokenized) words, and
the output is a sequence y1, y2, . . . , yn of tags, with yi the tag
assigned to xi .
We assume the tagset is fixed, not part of the input.

Natural Language Processing Part-of-Speech Tagging

Part-of-speech tagging

In POS tagging we need to output a whole sequence of tags
y1, y2, . . . , yn for the input string, not just a category.

POS tagging is therefore a structured prediction task, not a
classification task.
Structured prediction already mentioned in the introduction lecture.

The number of output structures can be exponentially large in
the length of the input, which makes structured prediction more
challenging than classification.

Natural Language Processing Part-of-Speech Tagging

Evaluation

Natural Language Processing Part-of-Speech Tagging

Evaluation

The accuracy of a part-of-speech tagger is the percentage of test
set tags that match human gold labels.

Human ceiling: how often do human annotators agree on the
same tag? For PTB this is around 97%.

Accuracies over 97% have been reported across several languages,
using the UD tagset.
This also holds for the algorithms we will present in this lecture.

Natural Language Processing Part-of-Speech Tagging

Evaluation

Most Frequent Class baseline: assigning each token to the class
it occurred in most often in the training set. This baseline has an
accuracy of about 92%.
The most frequent tag NOUN is assigned to unknown words.

Always compare your classifier against a baseline at least as good
as the most frequent class baseline.

Natural Language Processing Part-of-Speech Tagging

Practical issues

Qualitative evaluation: generate a confusion matrix for
development set. This is a record of how often a word with gold
tag yi was mistagged as yj , j ‰ i .

Natural Language Processing Part-of-Speech Tagging

Hidden Markov model

ht
tp

s:
//

en
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/
Ba

ye
s%

27
_

th
eo

re
m

Natural Language Processing Part-of-Speech Tagging

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem

Hidden Markov model

Hidden Markov models (HMMs) first applied in speech
recognition, starting in the mid-1970s.
Later applied in several areas, including NLP and analysis of biological
sequences.

HMM is a generative model: it models how a class could generate
some input data. You might use the model to generate examples.
Contrast with discriminative models, discussed later, which only learn to
distinguish classes, without learning much about them.

Natural Language Processing Part-of-Speech Tagging

Hidden Markov model

Let w1:n “ w1,w2, . . . ,wn be an input sequence of words,
and let Ypw1:nq be the set of all possible tag sequences
t1:n “ t1, t2, . . . , tn for w1:n.

The goal of POS tagging is to choose the most probable tag
sequence pt1:n P Ypw1:nq

pt1:n “ argmax
t1:nPYpw1:nq

Ppt1:n | w1:nq

This is the typical formulation for a structured prediction problem. Note that
Ypw1:nq is not the set of all strings of length n over the tagset.

Term Ppt1:n | w1:nq is referred to as the posterior probability and
can be difficult to model/compute.

Natural Language Processing Part-of-Speech Tagging

Hidden Markov model
We break down the posterior probability using Bayes rule:

pt1:n “ argmax
t1:nPYpw1:nq

Ppt1:n | w1:nq

“ argmax
t1:nPYpw1:nq

Ppw1:n | t1:nq ¨ Ppt1:nq

Ppw1:nq

“ argmax
t1:nPYpw1:nq

Ppw1:n | t1:nq ¨ Ppt1:nq

where we have used the fact that w1:n is given, so Ppw1:nq is a
constant.

The term Ppt1:nq is referred to as the prior or marginal
probability. The term Ppw1:n | t1:nq is the likelihood of the words
given the tags.

HMM models Ppw1:n | t1:nq ¨ Ppt1:nq, which equals the joint
probability Ppt1:n,w1:nq.

Natural Language Processing Part-of-Speech Tagging

Hidden Markov model

HMM POS taggers make two simplifying assumptions.

The first is that the probability of a word depends only on its own
POS tag and is independent of neighboring words and tags:

Ppw1:n | t1:nq «

n
ź

i“1
Ppwi | tiq

The factor Ppwi | tiq is referred to as the emission probability.
The emission probability answers the following questions: If we were going to
generate ti , how likely is it that the associated word would be wi?

Natural Language Processing Part-of-Speech Tagging

Hidden Markov model

The second assumption is the Markov assumption that the
probability of a tag is dependent only on the previous tag, rather
than the entire tag sequence

Ppt1:nq «

n
ź

i“1
Ppti | ti´1q

This is connected with 2-gram models. The right-hand side requires start- and
end-markers which are ignored here for simplicity and will be discussed later.

The factor Ppti | ti´1q is referred to as the transition probability.

Natural Language Processing Part-of-Speech Tagging

Hidden Markov model

Putting everything together we have:

pt1:n “ argmax
t1:nPYpw1:nq

Ppw1:n | t1:nq ¨ Ppt1:nq

« argmax
t1:nPYpw1:nq

˜

n
ź

i“1
Ppwi | tiq ¨ Ppti | ti´1q

¸

Natural Language Processing Part-of-Speech Tagging

Probability estimation

Natural Language Processing Part-of-Speech Tagging

Probability estimation

Assume a tagged corpus, where each word has been tagged with
its gold label. We implement supervised learning using the
relative frequency estimator.
See lecture on language model for definition of count Cp¨q.

For the transition probability we obtain:

Ppti | ti´1q “
Cpti´1tiq

Cpti´1q

Similarly, for the emission probability we obtain:

Ppwi | tiq “
Cpti ,wiq

Cptiq

Natural Language Processing Part-of-Speech Tagging

Probability estimation

Example :

PpNN | DTq “
CpDT NNq

CpDTq
“

56509
116454 « 0.49

Ppis | VBZq “
CpVBZ, isq

CpVBZq
“

10073
21627 « 0.47

Using the WSJ tagset: VBZ = verb 3rd singular, NN = singular noun,
DT = determiner.

Natural Language Processing Part-of-Speech Tagging

Probability estimation

Example :

He/PPS is/VBZ expected/VBN to/TO race/VB tomorrow/NR

Why is VB more likely than NN for token race in sentence above?

There are at least two sequences of tags which we could consider:

TO VB NR

to race tomorrow

TO NN NR

to race tomorrow

Natural Language Processing Part-of-Speech Tagging

Probability estimation

The two emission probabilities turn out not to differ too much:

Pprace | VBq “ 0.00012
Pprace | NNq “ 0.00057

Nor is there much difference on whether NR follows NN or VB:

PpNR | VBq “ 0.0027
PpNR | NNq “ 0.0012

However, the big difference is in whether NN or VB follows TO:

PpVB | TOq “ 0.83
PpNN | TOq “ 0.00047

Natural Language Processing Part-of-Speech Tagging

Probability estimation

Altogether we get:

PpVB | TOq Pprace | VBq PpNR | VBq “ 0.00000027
PpNN | TOq Pprace | NNq PpNR | NNq “ 0.00000000032

therefore VB is the more likely tag for race in this sentence,
assuming the preceding one is TO and the next one is NR.

Natural Language Processing Part-of-Speech Tagging

HMMs as automata

©P
ex

els

Natural Language Processing Part-of-Speech Tagging

HMMs as automata

We can formally define an HMM as a special type of probabilistic
finite state automaton which generates sentences (instead of
accepting sentences).

The states represent ‘hidden’ information, that is, the POS tags
which are not observed.
Special start and final states are also used which are not POS tags.

The transition function is defined according to the transition
probabilities.

Each state generates a word according to the emission
probabilities. The generated output is an observable word
sequence.

Natural Language Processing Part-of-Speech Tagging

HMMs as automata

HMM definition:
finite set of output symbols V
finite set of states Q, with initial state q0 and final state qf

transition probabilities aq,q1 for each pair q, q1,
q P Q ∖ tqf u, q1 P Q ∖ tq0u

emission probabilities bqpuq for each pair q, u,
q P Q ∖ tq0, qf u, u P V

Textbook uses distribution πq as initial state, that is, aq0,q “ πq.

Natural Language Processing Part-of-Speech Tagging

HMMs as automata

Transition and emission probabilities are subject to:
ř

q1 aq,q1 “ 1 for all q P Q ∖ tqf u
ř

u bqpuq “ 1 for all q P Q ∖ tq0, qf u

Probabilities aq0,q define the so-called initial probability
distribution, sometimes also denoted as πpqq.

Probabilities aq,qf are the stop probabilities, not used in the
textbook.

Natural Language Processing Part-of-Speech Tagging

HMMs as automata

Example : Small excerpt, q0 ad qf not shown:

Natural Language Processing Part-of-Speech Tagging

Viterbi algorithm

An
ki

t
D

em
bl

a
fro

m
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Decoding

Decoding problem for HMMs: Given a sequence of observations
w1:n, find the most probable sequence of states/tags pt1:n

pt1:n “ argmax
t1:nPYpw1:nq

Ppt1:n | w1:nq

“ argmax
t1:nPYpw1:nq

˜

n
ź

i“1
Ppwi | tiq ¨ Ppti | ti´1q

¸

Also called inference problem.
In the context of systems with hidden variables, the decoding problem asks to
retrieve some hidden structure underlying the observed (input) structure.

Natural Language Processing Part-of-Speech Tagging

Decoding

In order to compute pt1:n we can use the following naive algorithm
enumerate all sequences (paths) of POS tags t1:n consistent
with observed sentence w1:n

perform a max search over all the joint probabilities
Ppt1:n,w1:nq

This algorithm requires exponential time, since there can be
exponentially many t1:n sequences in Ypw1:nq!
This is a very common scenario for structured prediction problems.

Natural Language Processing Part-of-Speech Tagging

Viterbi algorithm

The classical decoding algorithm for HMMs is the Viterbi
algorithm, an instance of dynamic programming.
Related to algorithms for computing minimum edit distance.

The Viterbi algorithm computes the optimal sequence pt1:n and the
associated joint probability Pppt1:n,w1:nq in polynomial time,
exploiting dynamic programming.

Natural Language Processing Part-of-Speech Tagging

Viterbi algorithm

Let w1:n “ w1,w2, . . . ,wn be the input sequence.

In what follows
q denotes a state/tag of the HMM
i denotes an input position, 0 ď i ď n ` 1

Input positions 0 and n ` 1 represent start and end markers, respectively.

We use a two-dimensional table vtrq, is denoting the probability of
the best path to get to state q after scanning w1:i .
This table is also called the Viterbi lattice.

We use a two-dimensional table bkptrq, is for retrieving the best
path.

Natural Language Processing Part-of-Speech Tagging

Viterbi algorithm

Initialisation step: for all q
vtrq, 1s “ aq0,q ¨ bqpw1q

bkptrq, 1s “ q0

Recursive step: for all i “ 2, . . . , n and for all q
vtrq, is “ maxq1 vtrq1, i ´ 1s ¨ aq1,q ¨ bqpwiq

bkptrq, is “ argmaxq1 vtrq1, i ´ 1s ¨ aq1,q ¨ bqpwiq

Termination step:
vtrqf , n ` 1s “ maxq1 vtrq1, ns ¨ aq1,qf

bkptrqf , n ` 1s “ argmaxq1 vtrq1, ns ¨ aq1,qf

Natural Language Processing Part-of-Speech Tagging

Viterbi algorithm

After execution of the algorithm we have

vtrqf , n ` 1s “ Pppt1:n,w1:nq

where pt1:n “ q1, . . . , qn is the most likely sequence of tags
for w1:n.

The sequence of tags pt1:n can be reconstructed starting with
bkptrqf , n ` 1s and following the backpointers.

Natural Language Processing Part-of-Speech Tagging

Example

The above graph is called trellis, we will come back to this structure later.

Natural Language Processing Part-of-Speech Tagging

Forward algorithm

M
itc

he
ll

Lu
o

fro
m

Un
sp

la
sh

Natural Language Processing Part-of-Speech Tagging

Forward algorithm

With the goal of developing an unsupervised algorithm for the
estimation of HMM, we now develop some auxiliary algorithms.

Consider the probability of the sequence w1:n, defined as

Ppw1:nq “
ÿ

t1:nPYpw1:nq

Ppt1:n,w1:nq

“
ÿ

t1:nPYpw1:nq

˜

n
ź

i“1
Ppwi | tiq ¨ Ppti | ti´1q

¸

This is also called the likelihood of the sequence w1:n.

Natural Language Processing Part-of-Speech Tagging

Forward algorithm

The forward algorithm computes Ppw1:nq in polynomial time,
exploiting dynamic programming.

The forward algorithm is very similar to Viterbi’s algorithm, but
using summation instead of maximisation.
The two algorithms use two different semirings.

No use of backpointers, since we do not need to retrieve an
optimal sequence.

Natural Language Processing Part-of-Speech Tagging

Forward algorithm

Let w1:n “ w1,w2, . . . ,wn be the input sequence.

We use a two-dimensional table αrq, is denoting the sum of
probabilities of all paths that reach state q after scanning w1:i .

Formally, this is the joint probability of w1:i and state q at i , and
can be written as

αrq, is “
ÿ

t1:i P Ypw1:i q
s.t. ti “ q

Ppt1:i ,w1:iq

Each of the above quantities is called forward probability.

Natural Language Processing Part-of-Speech Tagging

Forward algorithm

Initialisation step: for all q
αrq, 1s “ aq0,q ¨ bqpw1q

Recursive step: for all i “ 2, . . . , n and for all q
αrq, is “

ř

q1 αrq1, i ´ 1s ¨ aq1,q ¨ bqpwiq

Termination step:
αrqf , n ` 1s “

ř

q1 αrq1, ns ¨ aq1,qf

After execution of the algorithm we have

αrqf , n ` 1s “ Ppw1:nq

Natural Language Processing Part-of-Speech Tagging

Trellis

An intuitive interpretation of the forward algorithm is in terms of
expansion of the HMM into a trellis, defined as follows.
We have already used a trellis in a previous example for Viterbi algorithm.

Given input w1:n “ w1,w2, . . . ,wn

introduce special nodes for q0 and qf

for each token wi and for each state q ‰ q0, qf , introduce a
node with label q
for each pair of nodes q, q1 associated with tokens wi´1,wi ,
respectively, introduce an arc with weight provided by the
product aq,q1 ¨ bq1pwiq

introduce special arcs for node qf

Each path through the trellis corresponds to a sequence t1:n of
states consistent with input w1:n.

Natural Language Processing Part-of-Speech Tagging

Trellis

q0

q1

...

qm

w1

q1

...

qm

w2

. . .

. . .

. . .

q1

...

qm

wn

qF

aq0,q1 ¨ bq1pw1q

aq0,qm ¨ bqmpw1q

aq1,q1 ¨ bq1pw2q

aqm,qm ¨ bqmpw2q

aq1,qf

aqm,qf

Natural Language Processing Part-of-Speech Tagging

Trellis

In the forward algorithm we compute one value for each node
the value at initial node q0 is 1
the value at each intermediate node is αrq, is, computed by
summing a sequence of values, one for each incoming edge
for each incoming edge, this value is obtained by multiplying
edge value and value of previous node
value at final node qf is the desired probability Ppw1:nq

Natural Language Processing Part-of-Speech Tagging

Summation in trellis

q1

...

qm

qj

wi´1 wi

aq1,qj ¨ bqj pwiq

aqm,qj ¨ bqj pwiq

αrqj , is “

αrq1, i ´ 1s ¨ aq1,qj ¨ bqj pwiq `

¨ ¨ ¨ `

αrqm, i ´ 1s ¨ aqm,qj ¨ bqj pwiq

Natural Language Processing Part-of-Speech Tagging

Backward algorithm

Si
lv

io
K

un
dt

fro
m

Un
sp

la
sh

Natural Language Processing Part-of-Speech Tagging

Backward algorithm

The backward algorithm uses a two-dimensional table βrq, is
denoting the sum of probabilities of all paths that start at state q,
scan sequence wpi`1q:n, and reach state qf .

Formally this is the joint probability of wpi`1q:n and state q at i ,
and can be expressed as

βrq, is “
ÿ

tpi`1q:n
P Ypwpi`1q:nq

s.t. ti “ q

Pptpi`1q:n,wpi`1q:nq

Each of the above quantities is called backward probability.

Natural Language Processing Part-of-Speech Tagging

Backward algorithm

Initialisation step: for all q:
βrq, ns “ aq,qf

Recursive step: for all i “ n ´ 1, . . . , 1 and for all q:
βrq, is “

ř

q1 βrq1, i ` 1s ¨ aq,q1 ¨ bq1pwi`1q

Termination step:
βrq0, 0s “

ř

q1 βrq1, 1s ¨ aq0,q1 ¨ bq1pw1q

After execution of the algorithm we have

βrq0, 0s “ αrqf , n ` 1s “ Ppw1:nq

Natural Language Processing Part-of-Speech Tagging

Duality

We observe that the backward probability is the dual of the
forward probability. More precisely, we have

αrq, is ¨ βrq, is “
ÿ

t1:n P Ypw1:nq

s.t. ti “ q

Ppt1:n,w1:nq

In words, this is the probability of all paths in the HMM trellis for
w1:n that go through state q at position i .
A relation similar to the above plays an important role in our unsupervised
learning algorithm.

Natural Language Processing Part-of-Speech Tagging

Forward-backward algorithm

Ri
ca

rd
o

Go
m

ez
An

ge
lf

ro
m

Un
sp

la
sh

Natural Language Processing Part-of-Speech Tagging

Forward-backward algorithm

We have already seen that, given a corpus annotated with POS
tags, we can do supervised training of HMM using the relative
frequency estimator.

Suppose we are given an unannotated corpus and a tagset. Now
we cannot count transitions and emissions directly, because we
don’t know which path through the HMM is the right one.

Can we train HMM with tags as internal states? This is possible
using the forward-backward algorithm.
Also called Baum-Welch algorithm.

Natural Language Processing Part-of-Speech Tagging

Forward-backward algorithm

To keep discussion simple, assume we have a single unannotated
sentence w1:n to train the model.

Let vector θ be an assignment for all the parameters aq,q1 and
bqpwiq of the HMM.

We write Pθpt1:n,w1:nq to denote the joint distribution for t1:n and
w1:n, t1:n P Ypw1:nq, based on θ.

Natural Language Processing Part-of-Speech Tagging

Forward-backward algorithm

All of the expectations defined below are computed under
distribution Pθpt1:n | w1:nq, over all paths in Ypw1:nq.

cpq, q1q is the expectation of the transition pq, q1q.

cpq, uq is the expectation of the emission of symbol u P V at
state q.

cpqq is the expectation of each state q.

Natural Language Processing Part-of-Speech Tagging

Forward-backward algorithm

The forward-backward algorithm is an iterative algorithm for the
unsupervised learning of parameter vector θ.

The algorithm starts with some initial assignment θ, and updates θ
by iterating the following steps

E-step (expectation) computes feature expectations cpq, q1q,
cpq, uq and cpqq, on the basis of Pθ

M-step (maximization) estimates a new assignment θ̂, in a
way that maximizes the log-likelihood of the training data

The algorithm stops when the parameters do not change much
anymore.

Natural Language Processing Part-of-Speech Tagging

E-step

We show how to compute expectations cpq, q1q, cpq, uq and cpqq.

The sum of probabilities of all paths t1:n P Ypw1:nq that go through
transition pq, q1q at input position i is

αrq, is ¨ aq,q1 ¨ bq1pwi`1q ¨ βrq1, i ` 1s

Dividing by the sum of probabilities of all paths, we obtain the
probability of pq, q1q at position i given w1:n

cpq, q1, iq “
αrq, is ¨ aq,q1 ¨ bq1pwi`1q ¨ βrq1, i ` 1s
ř

t1:nPYpw1:nq Ppt1:n,w1:nq “ Ppw1:nq

Summing up for all positions i in w1:n we get

cpq, q1q “
ÿ

i
cpq, q1, iq

Natural Language Processing Part-of-Speech Tagging

E-step

The sum of probabilities of all paths t1:n P Ypw1:nq that go through
transition q at input position i while emitting wi is

αrq, is ¨ βrq, is

Dividing by the sum of probabilities of all paths, we obtain the
probability of emitting wi at state q, given w1:n

cpq,wi , iq “
αrq, is ¨ βrq, is

Ppw1:nq

Summing up for all positions i with emission u P V we get

cpq, uq “
ÿ

i :wi “u
cpq, u, iq

Natural Language Processing Part-of-Speech Tagging

E-step

We have that
an occurrence of a state must be followed by a transition
an occurrence of a state must be associated with an emission

Then it is not difficult to see that

cpqq “
ÿ

q1

cpq, q1q “
ÿ

u
cpq, uq

Natural Language Processing Part-of-Speech Tagging

M-step

We estimate a new parameter assignment θ̂ based on expectations
cpq, q1q, cpq, uq and cpqq.

âq,q1 “
cpq, q1q

cpqq

b̂qpuq “
cpq, uq

cpqq

Very similar to the relative frequency estimator, but we now use feature
expectations in place of counts.

We now have a refined probability distribution Pθ̂pt1:n,w1:nq.

Natural Language Processing Part-of-Speech Tagging

Forward-backward algorithm

The forward-backward algorithm generally converges to some local
optimum, with a (relative) maximum for the likelihood of training
data.

Starting with different initial guesses for parameter vector θ may
lead to different solutions (different local optima).

No effective algorithm is known to compute global optimum,
maximising likelihood of unannotated training material.

The forward-backward algorithm is an instance of a more general
class of algorithms called EM (expectation-maximisation).

Natural Language Processing Part-of-Speech Tagging

Research papers

Iñ
ak

id
el

O
lm

o
fro

m
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Research papers

Title: An Interactive Spreadsheet for Teaching the Forward-
Backward Algorithm
Authors: Jason Eisner
Conference: Proceedings of the ACL-02 Workshop on Effective
Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics
Content: This paper introduces the forward-backward algorithm.
https://aclanthology.org/W02-0102

Natural Language Processing Part-of-Speech Tagging

https://aclanthology.org/W02-0102

Research papers

Title: Inside-Outside and Forward-Backward Algorithms Are Just
Backprop (tutorial paper)
Author: Jason Eisner
Conference: Workshop on Structured Prediction for NLP
Content: Computing the expected counts of features requires an
algorithm such as inside-outside or forward-backward.
Conveniently, each such algorithm can be obtained by
automatically differentiating an algorithm that computes the
log-probability of the the sentence. This mechanical procedure
produces correct and efficient code.
https://www.aclweb.org/anthology/W16-5901.pdf

Natural Language Processing Part-of-Speech Tagging

https://www.aclweb.org/anthology/W16-5901.pdf

HMM Limitations

In general, it is hard for generative models like HMMs to add rich
features directly in a clean way.
We might need special morphological features in HMM for unknown words.

Independence assumptions for the model features are quite
strong.
When multiplying model features we assume independence, if this does not
hold sequence probabilities do not sum up to one.

Inconsistency between local training and global testing:
probabilities of each label are trained locally, but output is the
highest probability sequence, which is searched globally.
This mismatch is detrimental to performance.

Natural Language Processing Part-of-Speech Tagging

Conditional random fields

Fe
de

ric
o

Re
sp

in
if

ro
m

Un
sp

la
sh

Natural Language Processing Part-of-Speech Tagging

Conditional random fields

Conditional random fields (CRF) are discriminative sequence
models based on log-linear models. Discriminative classifiers learn
what features from the input are most useful to discriminate
between the different possible classes.
The model can only distinguish the classes, perhaps without learning much
about them: it is unable to generate observations/examples.

We describe the linear chain CRF, the version of CRF that is
most commonly used for language processing, and the one whose
conditioning closely matches HMM.

Natural Language Processing Part-of-Speech Tagging

Conditional random fields

Let x1:n “ x1, x2, . . . , xn be the input word sequence, and let
Ypx1:nq be the set of all possible tag sequences y1:n “ y1, y2, . . . , yn
for x1:n.

CRFs solve the problem:

py1:n “ argmax
y1:nPYpx1:nq

Ppy1:n | x1:nq

In contrast with HMMs, we directly model the posterior probability
Ppy1:n | x1:nq.

Natural Language Processing Part-of-Speech Tagging

Conditional random fields

In contrast to HMM, the CRF does not compute a probability for
each tag at each time step.

Instead, at each time step the CRF computes log-linear functions
over a set of relevant local features, and these features are
aggregated and normalised to produce a global probability.
In this way we do not need the independence assumption of HMM.

We can think of CRF as a multinomial logistic regression model,
but applied to a full sequence pair px1:n, y1:nq rather than a pair
px , yq of individual tokens.
See Jurafsky & Martin §5.3 for multinomial logistic regression.

Natural Language Processing Part-of-Speech Tagging

Conditional random fields

Let us assume we have K global feature functions Fkpx1:n, y1:nq,
and weights wk for each feature.

We define

Ppy1:n | x1:nq “
exp

´

řK
k“1 wkFkpx1:n, y1:nq

¯

ř

y 1
1:nPYpx1:nq exp

´

řK
k“1 wkFkpx1:n, y 1

1:nq

¯

The denominator is the so-called partition function Z px1:nq, a
normalization term that only depends on the input sequence x1:n

Z px1:nq “
ÿ

y 1
1:nPYpx1:nq

exp
˜

K
ÿ

k“1
wkFkpx1:n, y 1

1:nq

¸

Natural Language Processing Part-of-Speech Tagging

Conditional random fields

We compute the global features by decomposing into a sum of
local features, for each position i in y1:n

Fkpx1:n, y1:nq “

n
ÿ

i“1
fkpyi´1, yi , x1:n, iq

Practical assumption: Each local feature depends on the current
and previous output tokens, yi and yi´1 respectively.

The specific constrain above characterises linear chain CRF. This
limitation makes it possible to use the Viterbi algorithm.
In contrast, a general CRF allows a feature to make use of any output token,
representing long-distance dependencies and requiring more complex
inference/decoding algorithms.

Natural Language Processing Part-of-Speech Tagging

Local features

K
ili

m
an

ja
ro

ST
UD

IO
z

on
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Local features

For a predicate x , we write Itxu to denote 1 if x is true and 0
otherwise.

Example of features in linear-chain CRF:
Itxi “ the, yi “ DETu

Itxi`1 “ Street, yi “ PROPN, yi´1 “ NUMu

Ityi “ VERB, yi´1 “ AUXu

What features to use is a decision by the system designer.
This task is also called feature engineering or feature selection.

Natural Language Processing Part-of-Speech Tagging

Local features

To avoid feature handwriting, specific features are automatically
instantiated from feature templates.

Here are some templates using information from yi´1, yi , x1:n, i :

xyi , xiy, xyi , yi´1y, xyi , xi´1, xi`2y

Example : Using dataset

Janet/NNP will/MD back/VB the/DT bill/NN

when xi is the word back the following features would be
generated (indices generated at random)

f3743 : Itxi “ back, yi “ VBu

f156 : Ityi “ VB, yi´1 “ MDu

f99732 : Ityi “ VB, xi´1 “ will, xi`2 “ billu

Natural Language Processing Part-of-Speech Tagging

Local features

It is important to use special features for unknown words.

Word shape features are used to represent letter patterns.

Example : word ‘DC10-30’ can be captured by feature
f : Itxi “ X+d+-d+u, where X denotes capital letters, d denotes
digits, and + is the standard regular expression operator.

Prefix and suffix features are used to represent word
morphological patterns.

Example : word ‘well-dressed’ can be captured by feature
f : Itprefixpxiq “ well-u.

The result of the above feature templates can be a very large set
of features. Generally, features are thrown out if they have count
smaller than some cutoff in the training set.

Natural Language Processing Part-of-Speech Tagging

Inference

Sp
ac

eX
on

Un
sp

la
sh

Natural Language Processing Part-of-Speech Tagging

Inference

The inference problem for linear-chain CRF is espressed as:

py1:n “ argmax
y1:nPYpx1:nq

Ppy1:n | x1:nq

“ argmax
y1:nPYpx1:nq

1
Z px1:nq

¨ exp
˜

K
ÿ

k“1
wkFkpx1:n, y1:nq

¸

“ argmax
y1:nPYpx1:nq

K
ÿ

k“1
wkFkpx1:n, y1:nq

“ argmax
y1:nPYpx1:nq

n
ÿ

i“1

K
ÿ

k“1
wk fkpyi´1, yi , x1:n, iq

Natural Language Processing Part-of-Speech Tagging

Inference

We can still use the Viterbi algorithm, because the linear-chain
CRF depends at each time-step on only one previous output
token yi´1.

Recall that for HMMs the recursive step states, for each position i
and state q:

vtrq, is “ max
q1

vtrq1, i ´ 1s ¨ aq1,q ¨ bqpwiq

For CRF we need to replace the prior and the likelihood
probabilities with the CRF features (t, t 1 are tags):

vtrt, is “ max
t1

vtrt 1, i ´ 1s `

K
ÿ

k“1
wk fkpt 1, t, x1:n, iq

Natural Language Processing Part-of-Speech Tagging

Training Eisenstein §7.5.3

Ad
rie

n
Co

nv
er

se
fro

m
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Training Eisenstein §7.5.3

The parameters wi in CRF can be learned in a supervised way as
in the method of logistic regression.
See Jurafsky & Martin §5.5 and §5.6.

We minimise the negative log-likelihood as our objective
function.
It is possible to show that this is equivalent to minimising the expectation of
the cross-entropy of all the conditional probability distributions.

As in the case of multinomial logistic regression, L1 or L2
regularization is important.

To optimise the objective function, we use stochastic gradient
descent. The local nature of linear-chain CRFs can be exploited to
efficiently compute the necessary derivatives.

Natural Language Processing Part-of-Speech Tagging

Training Eisenstein §7.5.3

Let D “ tpy phq

1:nh
, x phq

1:nh
q | 1 ď h ď Nu be a training set, where each

x phq

1:nh
is a sentence and each y phq

1:nh
is the associated sequence label.

Let also w be the parameter vector.

The objective function is:

LpD,wq “
λ

2 ||w||2 ´

N
ÿ

h“1
log Ppy phq

1:nh
| x phq

1:nh
q

“
λ

2 ||w||2 ´

N
ÿ

h“1
log 1

Z px phq

1:nh
q

¨ exp
˜

K
ÿ

k“1
wkFkpy phq

1:nh
, x phq

1:nh
q

¸

“
λ

2 ||w||2 ´

N
ÿ

h“1

˜

K
ÿ

k“1
wkFkpy phq

1:nh
, x phq

1:nh
q

¸

`

N
ÿ

h“1
log Z px phq

1:nh
q

Natural Language Processing Part-of-Speech Tagging

Training Eisenstein §7.5.3

In order to compute the gradient of LpD,wq we have to be able to
efficiently compute feature expectations:

ÿ

y1:nPYpx1:nq

Ppy1:n | x1:nq ¨ Fkpx1:n, y1:nq

In practice, feature expectations are computed “under the hood”
by modern software libraries, as Pytorch, using automatic
differentiation of the objective function.

Alternatively, feature expectations can be efficiently computed
using the forward-backward algorithm, which we have already
seen for unsupervised learning with HMMs.

Natural Language Processing Part-of-Speech Tagging

Research papers

Iñ
ak

id
el

O
lm

o
fro

m
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Research papers

Title: Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data
Authors: John D. Lafferty, Andrew McCallum, Fernando C. N.
Pereira
Conference: ICML 2001
Content: This paper introduces a framework for building
probabilistic models to segment and label sequence data.
Conditional random fields offer several advantages over hidden
Markov models, including the ability to relax strong independence
assumptions made in those models. Conditional random fields also
avoid a fundamental limitation of hidden Markov models, which
can be biased towards states with few successor states.
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/crf.pdf

Natural Language Processing Part-of-Speech Tagging

http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/crf.pdf

Research papers

Title: The Label Bias Problem
Author: Awni Hannun
Blog: Writing About Machine Learning
Content: Many sequence classification models suffer from the
label bias problem. Understanding the label bias problem and when
a certain model suffers from it is essential to understand the design
of models like conditional random fields.
https://awni.github.io/label-bias/

Natural Language Processing Part-of-Speech Tagging

https://awni.github.io/label-bias/

Limitations

One limitation with HMM and CRF architectures is that the
models are exclusively run left-to-right.

Bidirectional models are quite standard for deep learning, as we
will see with the BiLSTM models to be introduced later.

Natural Language Processing Part-of-Speech Tagging

Neural POS tagger

O
m

id
Ar

m
in

fro
m

Un
sp

la
sh

Natural Language Processing Part-of-Speech Tagging

Neural POS tagger Eisenstein §7.6

In neural network approaches to POS tagging, we construct
distributed feature representations (dense vectors) for each tagging
decision, based on the word and its context.

We present two main approaches.

Local search: Neural networks can perform POS tagging as a
per-token classification decision.

Global search: Alternatively, feature representations can be
combined with the Viterbi algorithm to tag the entire sequence
globally (joint tagging).

Natural Language Processing Part-of-Speech Tagging

Local search

©G
ar

re
tt

W
ad

e
Natural Language Processing Part-of-Speech Tagging

Fixed-window neural model

Fixed-window models use a feed-forward neural network to
implement local search.

Second layer maps the feature space into the tagset space.

Natural Language Processing Part-of-Speech Tagging

Fixed-window neural model

The fixed-window model is very efficient, since it limits the context
from which information can be extracted.
Same limitation of Markov models.

Sliding windows makes it difficult for network to learn systematic
patterns arising from phenomena like constituency, since patterns
are shifted to different positions.

Natural Language Processing Part-of-Speech Tagging

Recurrent neural model Eisenstein §7.6

Let x1, x2, . . . , xn be the input word sequence and y1, y2, . . . , yn be
the associated output POS tags.

We assume word embeddings e1, e2, . . . , en for x1, x2, . . . , xn.

Recurrent neural networks can be generally described as
implementing the following recursive relation, for t “ 1, . . . , n:

ht “ f pgpet ,ht´1qq

“ f pWhht´1 ` Weet ` bq

with f some nonlinear component.
Wh, We , b are learnable parameters. Gated RNNs such as LSTM networks
implement more complex recurrence relations.

Natural Language Processing Part-of-Speech Tagging

Recurrent neural model Eisenstein §7.6

We score each POS tag y by means of a linear scalar function of
hidden state vector ht , and then retrive the highest score tag for xt :

ψpy ,htq “ βy ¨ ht

pyt “ argmax
y

ψpy ,htq

The score ψpy ,htq can also be converted into a probability using
the softmax operation:

Ppy | x1:tq “
expψpy ,htq

ř

y 1 expψpy 1,htq

Cross-entropy or hinge loss can be used as objective function.

Natural Language Processing Part-of-Speech Tagging

Recurrent bidirectional model Eisenstein §7.6

Hidden state vector ht encodes left context up to position t but it
ignores subsequent tokens, which might be relevant to yt as well.

Bidirectional RNN are used to address this problem:
ÝÑh t “ gpet ,

ÝÑh t´1q
ÐÝh t “ g 1pet ,

ÐÝh t`1q

ht “ r
ÝÑh t ;

ÐÝh ts

The scoring function ψpy ,htq is then applied to the concatenation
of the two vectors.

The model is still based on local search, each tagging decision is
made independently and no global search is performed.

Natural Language Processing Part-of-Speech Tagging

Global search

©B
et

h
D

ur
ha

m

Natural Language Processing Part-of-Speech Tagging

Neural structured prediction Eisenstein §7.6

Neural sequence labelling can be combined with global search by
augmenting local scores as:

ψpyt , yt´1,htq “ βyt ¨ ht ` ηyt´1,yt

where ηyt´1,yt is a scalar, learnable parameter for the POS tag
transition pyt´1, ytq.

As in CRF, Viterbi algorithm is used for inference (joint tagging)
and the forward-backward algorithm is used for training.

Natural Language Processing Part-of-Speech Tagging

Neural structured prediction Eisenstein §7.6

Global search neural model can be thought of as a combination of
recurrent bidirectional model and CRF: the feature vector is
extracted by the neural model and provided to the CRF algorithm.

When Bi-LSTM are used, the model is called LSTM-CRF.

Natural Language Processing Part-of-Speech Tagging

Research papers

Iñ
ak

id
el

O
lm

o
fro

m
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Research papers

Title: Bidirectional LSTM-CRF Models for Sequence Tagging
Authors: Zhiheng Huang, Wei Xu, Kai Yu
Repository: arXiv:1508.01991 [cs.CL]
Content: This paper proposes a combination of Long Short-Term
Memory based models with a Conditional Random Field layer. The
model can produce state of the art accuracy on POS, chunking
and NER data sets.
https://arxiv.org/abs/1508.01991

Natural Language Processing Part-of-Speech Tagging

https://arxiv.org/abs/1508.01991

Morphologically rich languages

Morphologically rich languages (MRL) have much more
information than English coded into word morphology, like case
(nominative, accusative, genitive) or gender (masculine, feminine).
This information is really important for tasks like parsing and coreference
resolution.

Tagsets for MRL are therefore sequences of morphological tags
rather than a single primitive tag.
Instances of MRL are Arabic, Czech, Hungarian, Turkish, etc. Tagsets for these
languages can be 4 to 10 times larger than English.

With such large tagsets, specialized POS taggers need to be
developed where each word needs to be morphologically analyzed.

Natural Language Processing Part-of-Speech Tagging

Sequence labelling

M
at

t
Br

in
ey

on
Un

sp
la

sh

Natural Language Processing Part-of-Speech Tagging

Sequence labelling

POS tagging is an instance of a more general problem called
sequence labelling, assigning to an input word sequence
x1, x2, . . . , xn an output sequence y1, y2, . . . , yn over an arbitrary
set of categories.
Again, this is a structured prediction problem, and categories must be assigned
contextually.

We are going to briefly overview other NLP tasks that can be cast
as sequence labelling problems.

Natural Language Processing Part-of-Speech Tagging

Named entity recognition

Named entity recognition (NER) seeks to locate multi-word
expressions referring to entities such as person names,
organizations, locations, time expressions, quantities, monetary
values, etc.
NER is a useful first step in lots of natural language understanding tasks.

Example : [PER Jane Villanueva] of [ORG United], a unit
of [ORG United Airlines Holding], said the fare applies to
the [LOC Chicago] route.

Besides tagging, in NER we also need to find the proper span of
the target expression.

Natural Language Processing Part-of-Speech Tagging

Named entity recognition

The standard approach for span-recognition is BIO tagging.

In BIO tagging
tokens that begin a span are marked with label B
tokens that occur inside a span in a position other than the
leftmost one are marked with I
tokens outside of any span of interest are marked with O

Spans never overlap.

Natural Language Processing Part-of-Speech Tagging

Example

BIO tagging along with alternative tagging techniques for span.

Note the difference between the sequences BI and BB, indicating
one 2-word expression vs. two 1-word expressions.

Natural Language Processing Part-of-Speech Tagging

Datasets

CoNLL-2003
Named entity recognition dataset released as a part of
CoNLL-2003 shared task: language-independent named entity
recognition. Covering two languages: English and German.

WikiNER Dataset
Manually-labelled Wikipedia articles across nine languages:
English, German, French, Polish, Italian, Spanish, Dutch,
Portuguese and Russian.

Many more datasets in kaggle: https://www.kaggle.com.

Natural Language Processing Part-of-Speech Tagging

https://www.kaggle.com

Evaluation

Natural Language Processing Part-of-Speech Tagging

Evaluation

Named entity recognizers are evaluated by precision, recall, and
F1-score.

Precision is the percentage of named entities found by the
learning system that are correct.

Recall is the percentage of named entities present in the corpus
that are found by the system.

F1-score is the harmonic mean of the two.

Natural Language Processing Part-of-Speech Tagging

Evaluation

More specialized evaluation can be obtained by considering
individual tokens rather than entire entities.

Precision, recall and F1-score are computed for each individual BIO
label. This accounts for

assignment of wrong entity types
wrong entity boundaries

In this multi-class setting, people also distinguish between
different types of per-class F1-score

macro averaged (unweighted mean)
micro averaged (accuracy)
weight averaged (considering each class support)

Natural Language Processing Part-of-Speech Tagging

Aspect-based sentiment analysis

Aspect-based sentiment analysis aims to identify the aspects of
the entities being reviewed and to determine the sentiment the
reviewers express for each aspect.

More fine-grained task than sentiment analysis.

Natural Language Processing Part-of-Speech Tagging

Word segmentation

Word segmentation is the task of dividing a text into its
component words.
Languages which do not have a trivial word segmentation process include
Chinese and Japanese, where words are not delimited.

Natural Language Processing Part-of-Speech Tagging

Code switching Eisenstein §8.5

Code switching is the phenomenon of switching between
languages in speech and in text.
Quite common in online social media.

Code switching can be viewed as a sequence labelling problem,
where the goal is to label tokens representing switch points.

Natural Language Processing Part-of-Speech Tagging

Rule-based systems

While machine learning sequence models are the norm in academic
research, many commercial approaches are often based on
hand-written lists of rules, with some smaller amount of
supervised machine learning.
This is especially true for NER.

One common approach is to
make repeated rule-based passes over a text, starting with
rules with very high precision but low recall
use machine learning methods in subsequent stages, that take
the output of the first pass into account

Natural Language Processing Part-of-Speech Tagging

