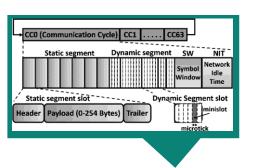


Aurix[™] Embedded Automotive COM protocols

Nicolò Spagnolo (DC ATV MC TM CES3) 27/03/2024

Introduction


Type of COM protocols in Automotive

- UART
- SPI
- LIN
- CAN/CANFD
- ETH
- Flexray
- I2C
- I2S
- SENT
- PSI5

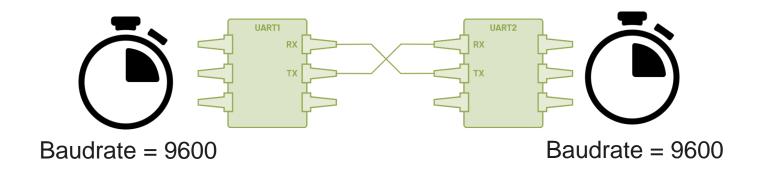
01010111 01101000 01100001 01110100 00100111 01110011 00100000 01110101 01110000 00111111 00001010

Comparison between Automotive COM protocols

Parameters	UART	LIN	CAN	FlexRay	
Architecture	Two devices	Single master and up to 15 slaves	Multiple nodes (20, 32)	Multiple nodes (up to 64)	
Тороlоду	Direct connection	Bus topology	Bus topology	Bus/Star topology	
Message transmission	Asynchronous	Synchronous	Asynchronous	Synchronous/Async	
Data rate or Baud rate	Max typ ≈ 115kbps	Max. 20kbps	Max. 1Mbps	Max. 10Mbps	
Error checking mechanism	Parity bit	Checksum over the Protected Identifier and Data fields	CRC computation over the entire frame	Two CRC computations	
Physical layer	Single electrical wire	Single electrical wire	Electrical dual wire	Dual wire	
Cabling impedance	/	1k ohms	120 ohms	80-110 ohms	
Range	/	1-5 kilometers	40 meters	10 meters	

Type of COM protocols in AURIX™

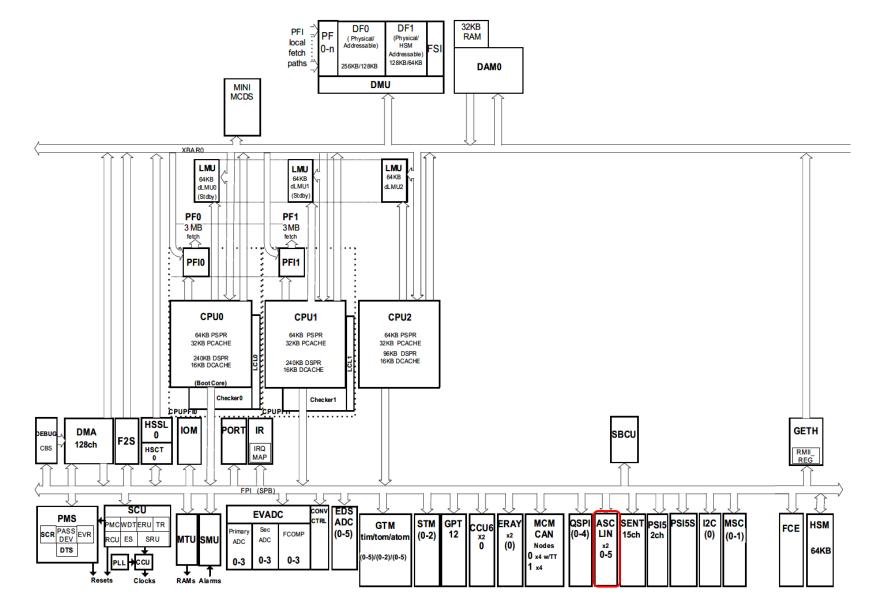
– Aurix[™] TC39x Architecture



			gle voltage ply 5 V or 3.3	5V/3,3 V EV 8-bit SCR		Ambient temperature range -40+150°C			
TriCore™ 300 MHz DSP functionality		-	Safe DMA annels 128	AUTOSAF 4.2 suppo		ISO 26262 safety up to ASIL-D			
			TA Full HSM (56 and SHA2)	I/O 3.3 V CM 5V input on AD		Packages LFBGA-516 LFBGA-292			
TIMER/PWM									
6x STM			GTM	1x GPT12		1x CCU6			
Communication									
12x CAN FD	6xF	PSI 2xl ² C		4xQSPI	2xFle	xRay	1x Gbit Ethernet		
2xHSSL	25xS	ENT	4x MSC	12xASCLIN	EB	U	1xeMMC		
Memory	_			Analog	_	_			
Up to 6912 KB RAM ECC protection Up to 16 MB flash ECC protection Up to 100x ADC channels									

UART Communication – Clocking system

- UART stands for Universal Asynchronous Receiver-Transmitter and refers to an electronic module capable of communicating asynchronously with another module by both transmitting and receiving data
- By "asynchronous", as we shall see, we mean the characteristic of not having synchronism between the two modules, there is no particular signal that keeps the modules synchronized with each other. This has both positive (simplicity) and negative (possibility of frequency drift) implications. To guarantee correct communication the baudrate of the two devices must be set to the same value


UART Communication – Where it's used

AURIX[™] TC37x - Block Diagram

AURIX[™] TC37x – ASCLIN module

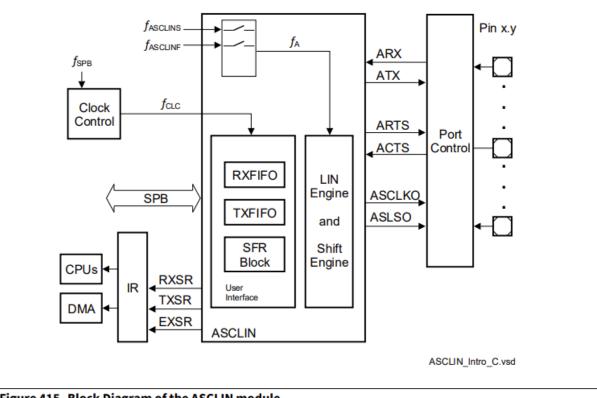
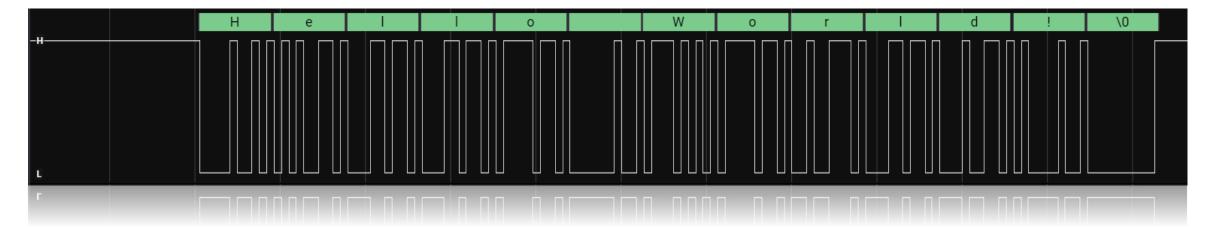


Figure 415 Block Diagram of the ASCLIN module.

Standard ASC Features

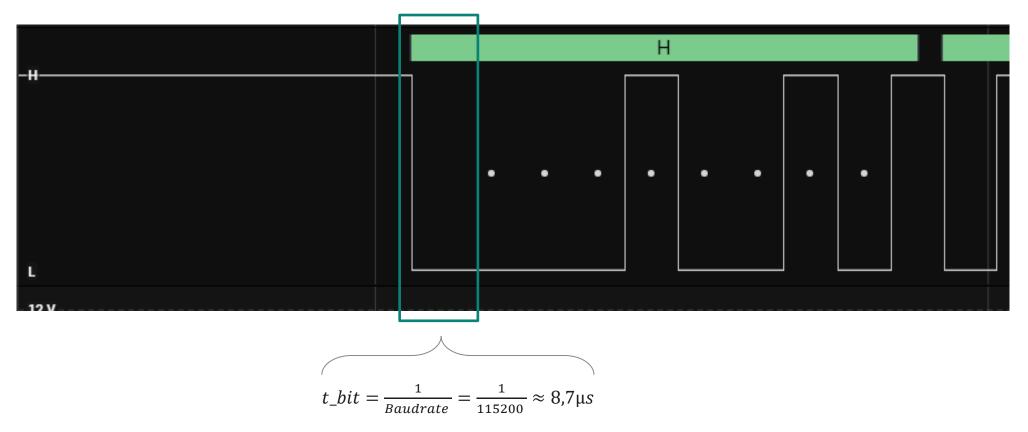
- Full-duplex asynchronous operating mode
 - 7-bit, 8-bit or 9-bit (or up to 16-bit) data frames, LSB first
 - Parity-bit generation/checking
 - One or two stop bits
 - Max baud rate f_A / 16 (6.25 MBaud @ 100 MHz f_A module clock)
 - Min. baud rate f_A / 268 435 456 (0.37 Baud @ 100 MHz f_A module clock)
- Optional RTS / CTS handshaking



How UART frame is composed?

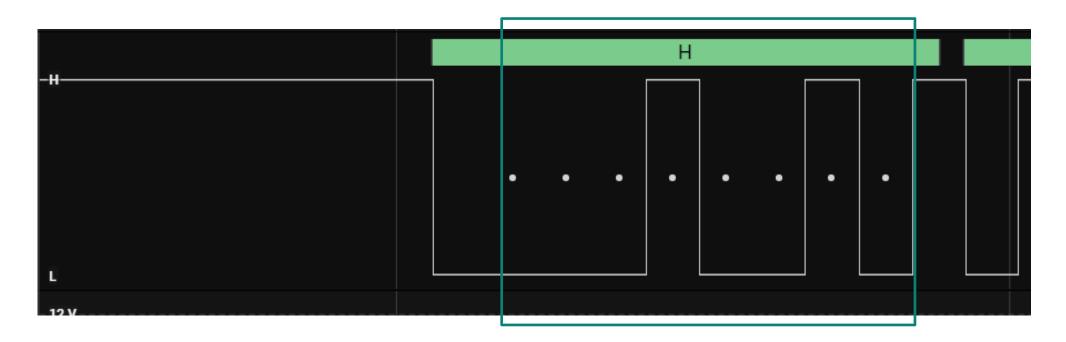
Analog Signal

Physical layer


- How the analog signal can be interpreted by the microcontroller? According to DS

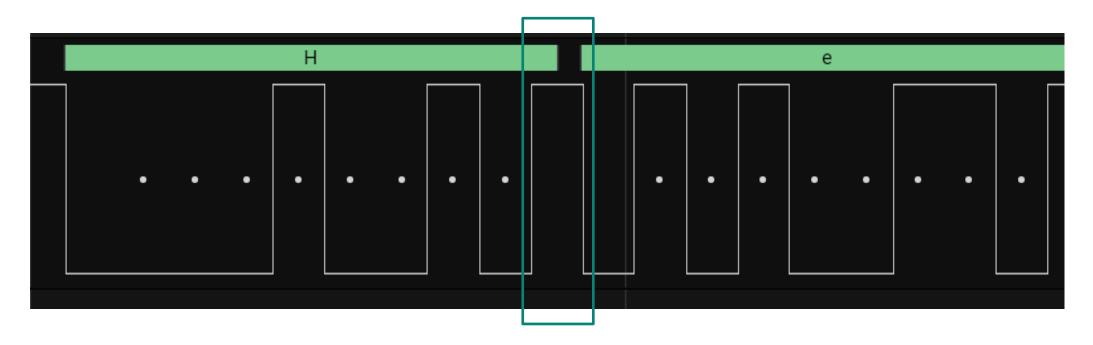
Input high voltage level	V _{IH} SR	0.7 * V _{EXT/FLEX/E}	-	-	V	AL
		VRSB				
		2.0	-	-	V	TTL
Input low voltage level	V _{IL} SR	-	-	0.44 * V _{EXT/FLEX/E}	V	AL
				VRSB		

- μ C recognize a digital «1» when the voltage level exceeds 0,7 * $V_{EXT} = 3,5V$ (minimum)
- μ C recognize a digital «0» when the voltage level exceeds 0,44 * $V_{EXT} = 2,2V$ (maximum)

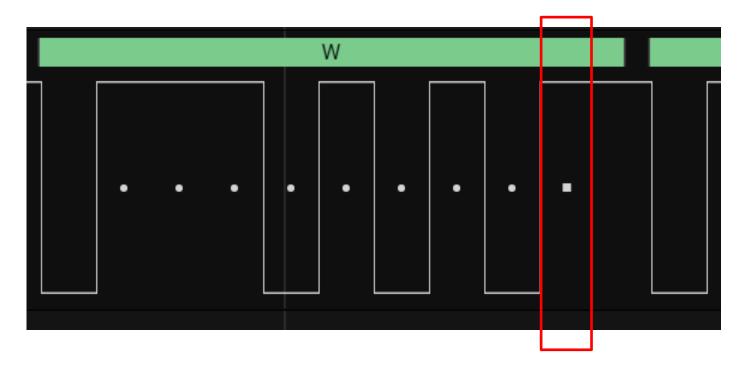

Start bit

Start bit: At the beginning of a UART frame, signal stays in idle mode (high logic). When the device send the message the first bit is always a «0»

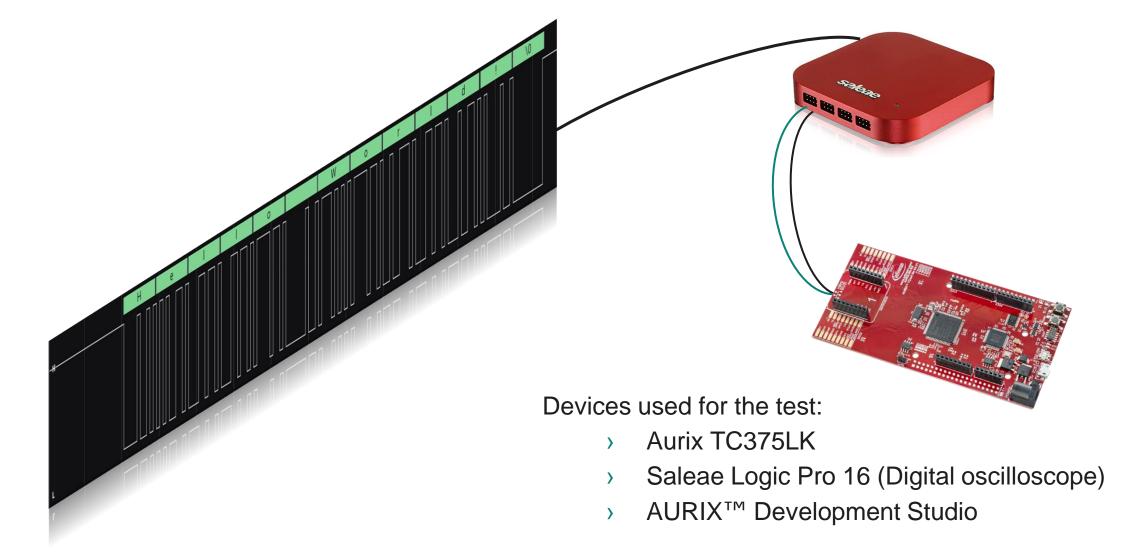
Data field



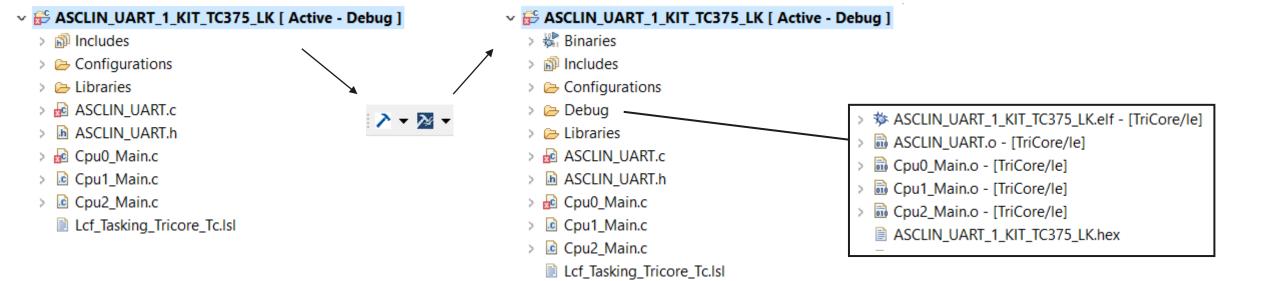
> Data: In this frame, the first data transmitted is the letter "H"


Stop bit

Stop Bit: After the 8 bits of data, UART frame ends with one or two stop bits. In this example we have only one stop bit followed by the start bit of the following data frame


Frame with one Parity Bit

Checksum: In this case the letter "W" is encoded with 0101 0111 (LSB) and counting the HIGH states (the "1") we realize that they are in an odd number. Here comes the parity bit that before the stop bit brings the state to HIGH so that the number of HIGHs in the frame is finally even



UART protocol seen by oscilloscope – Test with AURIX™

ASCLIN_UART example

in

Let's get into the code

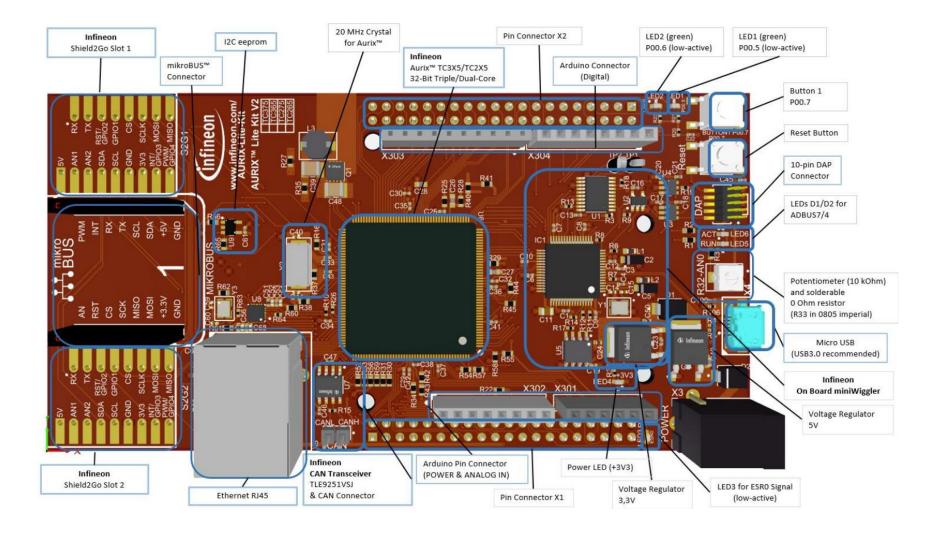
38 * \lastUpdated 2021-03-22	
Cpu0_Mainc × ***********************************	<pre> 20 * 21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR I 22 * WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND N 23 * COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAM4 24 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * IN THE SOFTWARE. 26 ************************************</pre>
<pre>60 61 init_ASCLIN_UART(); /* Initialize the module */ 62 IfxCpu_enableInterrupts(); /* Enable interrupts after initialization */ 63 send_receive_ASCLIN_UART_message(); /* Send the string */ 64 65 while(1) 66 { 67 } 68 } 67 </pre>	

- What does it mean?

39 #define UART_PIN_RX
40 #define UART PIN TX

IfxAsclin1_RXB_P15_5_IN IfxAsclin1 TX P15 5 OUT

/*	UART	receive port pin	*/
/*	UART	transmit port pin	*/


Pinout

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	NC1	VEXT	P10.7	P10.6	P10.2	P10.3	P10.0	P11.11	P11.9	P11.2	P13.3	P13.1	P14.8	P14.5	P14.1	P15.6	P15.4	P15.1	VDDP3	VSS
в	P02.0	VSS	VEXT	P10.8	P10.5	P10.4	P10.1	P11.12	P11.10	P11.3	P13.2	P13.0	P14.6	P14.3	P14.4	P14.0	P15.3	VDDP3	VSS	P15.0
с	P02.2	P02.1																	P15.2	P20.14
D	P02.4	P02.3		VSS	VFLEX	P11.15	P11.14	P11.5	P11.6	P11.4	P14.10	P14.9	P14.7	P15.8	P15.7	VDD	VSS		P20.12	P20.13
E	P02.6	P02.5		P02.9	VSS	P11.13	P11.8	P11.7	P11.1	P11.0	P12.1	P12.0	P14.2	P15.5	VDD	VSS	P20.9		P20.10	P20.11
F	P02.8	P02.7		P02.11	P02.10											ESRO	P20.6		P20.7	P20.8
G	P00.0	P00.1		P01.4	P01.3			VDDSB (VDD)	VSS	DAPE2	DAPE1	VSS	VDD			ESR1	PORST		P20.1	P20.3
н	P00.2	P00.3		P01.6	P01.5		VDDSB (VDD)		VSS	VSS	VSS	VSS		VDD		P21.7 / TDO	P21.6 / TDI		P20.2	P20.0
J	P00.4	P00.5		P00.6	P01.7		VSS	VSS		VSS	VSS		VSS	VSS		тск	P21.1		P21.3	P21.5
к	P00.7	P00.9		P00.8	P00.10		AGBTC LKP (VSS)	VSS	VSS	VSS	VSS	VSS	VSS	DAPE0		TMS	P21.0		P21.2	P21.4
L	P00.11	P00.12		AN43	AN42		AGBTC LKN (VSS)	VSS	VSS	VSS	VSS	VSS	VSS	AGBTE RR (VSS)		P22.10	P22.11		TRST	VSS
м	AN46	AN47		AN41	AN40		VSS	VSS		VSS	VSS		VSS	VSS		P22.8	P22.9		XTAL2	XTAL1
N	AN44	AN45		AN36 / P40.6	AN38 / P40.8		VDD		VSS	VSS	VSS	VSS		VDD		P22.6	P22.7		VDD	VEXT
Р	AN39 / P40.9	AN37 / P40.7		AN32 / P40.4	AN34	'		VDD	VSS	AGBTT XN (VSS)	AGBTT XP (VSS)	VSS	VDD			P22.4	P22.5		P22.1	P22.0
R	AN33 / P40.5	AN35		AN31	AN23					(100)	(100)					P23.7	P23.6		P22.3	P22.2
т	VAREF 2	VAGND 2		AN30	AN22	AN15	AN12	AN6	AN4	ANO	VEVRS B	P34.2	P34.4	P33.14	P32.5	VSS	P23.5		P23.3	P23.4
U	AN29 / P40.14	AN28 / P40.13		NC1	AN17/ P40.10	AN14	AN9	AN7	AN3	AN1	P34.1	P34.3	P34.5	P33.15	P32.6	P32.7	VSS		P23.1	P23.2
v	AN27 / P40.3	AN26 / P40.2																	VEXT	P23.0
w	AN25 / P40.1	AN24 / P40.0	AN19 / P40.12	AN18/ P40.11	AN16	AN13	AN11	AN8	AN2	P33.0	P33.2	P33.4	P33.6	P33.8	P33.10	P33.12	P32.1 / VGATE 1P	P32.4	VSS	VEXT
Y	NC1	AN21	AN20	VSSM	VDDM	VAREF 1	VAGND 1	AN10	AN5	P33.1	P33.3	P33.5	P33.7	P33.9	P33.11	P33.13	P32.0 / VGATE 1N	P32.2	P32.3	VSS
	1	2	3	4	5	6	7	8	9	10 C39xed -	11 /top view	12	13	14	15	16	17	18	19	20

Ball	Symbol	Ctrl.	Buffer Type	Function
E14	P15.5	1	FAST /	General-purpose input
	GTM_TIM3_IN0_4		PU1/	Mux input channel 0 of TIM module 3
	GTM_TIM2_IN0_4		VEXT /	Mux input channel 0 of TIM module 2
	ASCLIN1_ARXB			Receive input
	I2C0_SDAC			Serial Data Input 2
	QSPI2_MTSRA			Slave SPI data input
	SCU_E_REQ4_3			ERU Channel 4 inputs 0 to 5 (0 is the LSB and 5 is the MSB)
	P15.5	00		General-purpose output
	GTM TOUT76	01		GTM muxed output
	ASCLIN1_ATX	02		Transmit output
	IOM_MON2_13			Monitor input 2
	IOM_REF2_13			Reference input 2
	QSPI2_MTSR	O3		Master SPI data output
	_	O4		Reserved
	MSC0_EN0	O5		Chip Select
	I2C0_SDA	O 6		Serial Data Output
	CCU60_CC61	07		T12 PWM channel 61
	IOM_MON1_1			Monitor input 1
	IOM_REF1_5			Reference input 1

TC375LiteKit board

TC375LK

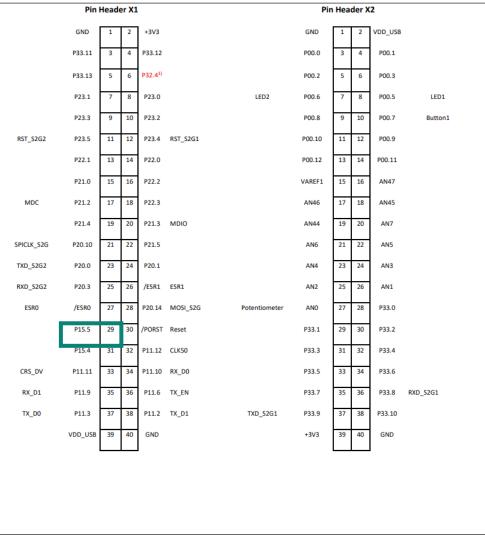


Figure 5 Signal mapping of the pin headers X1 and X2

UART protocol seen by oscilloscope – Test with AURIX

 The "<u>ASCLIN_UART_1 for KIT_AURIX_TC375_LK</u>" script has been loaded on TC375LK. Through the digital analyser it is possible to decode the output signal from the board. Specifically, this script allowed TC375LK to be used as a master in UART communication by sending the "Hello world!" message. (the figure shows the initial part of the message)

That's your turn!

- Open Aurix Development Studio
- Press «Import AURIX Project»
- Search for «ASCLIN_Shell_UART_1_KIT_TC375_LK» and select it
- Press finish

Quick Links	Х	

First Steps

- Create new AURIX Project
- Manual Ma
- Flash && Start Project

🊳 Import AURIX Development Studio Project		\times
Select an AURIX Development Studio Project to import		

Select a Code Examples repository		Repository root							
Infineon Code Examples Repository									
Search Code Examples									
ASCLIN shell 375									
Select a project to import					3 of 428 Proje				
Name	Abstract		Boards	Last Updat	Documents				
ASCLIN_Shell_UART_1_KIT_TC375_LK	A Shell is used the correspon	d to parse a command line and nding command execution. The	AURIX TC375 lite Kit, k	22.03.2021	https://www.in				

First task

- The code example is ready to toggle (change the status) the ports where two LEDs are connected
- The UART communication is provided using ASCLIN0 module and the physical connection is routed through the USB port
- The terminal shows the messages sent by the microcontroller to the PC and you can send back too some commands
- The goal is to modify the code in order to have the possibility to send a command to Aurix forcing the status of both LEDs to turn them OFF

Second task

- The code example is ready to toggle (change the status) the ports where two LEDs are connected
- The UART communication is provided using ASCLIN0 module and the physical connection is routed through the USB port
- The terminal shows the messages sent by the microcontroller to the PC and you can send back too some commands
- The goal is to modify the code in order to have the possibility to turn on both LEDs with a button available in the board

