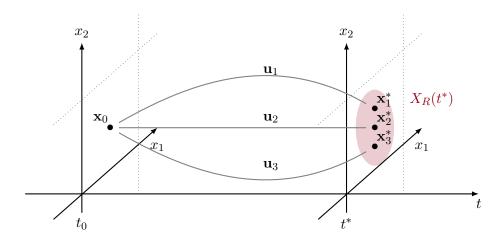
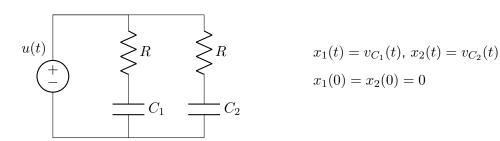
3 RAGGIUNGIBILITÀ E CONTROLLABILITÀ DEI SISTEMI DINAMICI

raggiungibilità di un sistema \sim possibilità di raggiungere un <u>qualsiasi</u> stato desiderato \mathbf{x}^* a partire da uno stato \mathbf{x}_0 <u>fissato</u> agendo su $\mathbf{u}(t)$

- stato raggiungibile: lo stato \mathbf{x}^* è raggiungibile dallo stato \mathbf{x}_0 al tempo t^* se esiste un ingresso $\mathbf{u}(t)$, $t_0 \le t \le t^*$, tale che $\mathbf{x}(t_0) = \mathbf{x}_0$ e $\mathbf{x}(t^*) = \mathbf{x}^*$
- spazio raggiungibile: spazio raggiungibile al tempo t $X_R(t)$ è l'insieme di tutti gli stati \mathbf{x}^* raggiungibili dallo stato \mathbf{x}_0 al tempo t
- ightharpoonup tipicamente: $\mathbf{x}_0 = \mathbf{0}$, $t_0 = 0$



esempio



modello di stato

$$\dot{x}_1(t) = \dot{v}_{C_1}(t) = \frac{1}{C_1} i_{C_1}(t) = \frac{1}{C_1} i_R(t) = \frac{1}{C_1} \left(\frac{u(t) - v_{C_1}(t)}{R} \right) = \frac{1}{RC_1} u(t) - \frac{1}{RC_1} x_1(t)$$

$$\dot{x}_2(t) = \dot{v}_{C_2}(t) = \frac{1}{C_2} i_{C_2}(t) = \frac{1}{C_2} i_R(t) = \frac{1}{C_2} \left(\frac{u(t) - v_{C_2}(t)}{R} \right) = \frac{1}{RC_2} u(t) - \frac{1}{RC_2} x_2(t)$$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \qquad \dot{\mathbf{x}}(t) = \begin{bmatrix} -\frac{1}{RC_1} & 0 \\ 0 & -\frac{1}{RC_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u$$

se $C_1=C_2=C$ allora $x_1(t)=x_2(t)$, $\forall u(t), \forall t\geq 0$, infatti

$$\begin{split} \mathbf{x}(t) &= e^{\mathbf{F}t} \mathbf{x}_0 + \int_0^t e^{\mathbf{F}(t-\tau)} \mathbf{g} u(\tau) d\tau = \int_0^t \begin{bmatrix} e^{-\frac{1}{RC}(t-\tau)} & 0 \\ 0 & e^{-\frac{1}{RC}(t-\tau)} \end{bmatrix} \begin{bmatrix} \frac{1}{RC} \\ \frac{1}{RC} \end{bmatrix} u(\tau) d\tau \\ &= \frac{1}{RC} \int_0^t \begin{bmatrix} e^{-\frac{1}{RC}(t-\tau)} \\ e^{-\frac{1}{RC}(t-\tau)} \end{bmatrix} u(\tau) d\tau \\ &= \frac{1}{RC} \begin{bmatrix} \int_0^t e^{-\frac{1}{RC}(t-\tau)} u(\tau) d\tau \\ \int_0^t e^{-\frac{1}{RC}(t-\tau)} u(\tau) d\tau \end{bmatrix} \end{split}$$

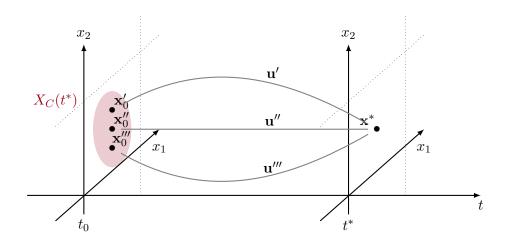
da cui

$$X_R(t) = \{x_1 = x_2\}, \ \forall t \ge 0$$

controllabilità di un sistema \sim possibilità di raggiungere uno stato desiderato \mathbf{x}^* <u>fissato</u> a partire da un qualsiasi stato \mathbf{x}_0 agendo su $\mathbf{u}(t)$

 \boxtimes

- stato controllabile: lo stato \mathbf{x}_0 è controllabile allo stato \mathbf{x}^* al tempo t^* se esiste un ingresso $\mathbf{u}(t)$, $t_0 \le t \le t^*$, tale che $\mathbf{x}(t_0) = \mathbf{x}_0$ e $\mathbf{x}(t^*) = \mathbf{x}^*$
- spazio controllabile: spazio controllabile al tempo t $X_C(t)$ è l'insieme di tutti gli stati \mathbf{x}_0 controllabili allo stato \mathbf{x}^* al tempo t
- ▶ tipicamente: $\mathbf{x}^* = \mathbf{0}$, $t_0 = 0$ (controllabilità a zero) si noti che se \mathbf{x}_0 è controllabile allo stato \mathbf{x}^* allora \mathbf{x}^* è raggiungibile dallo stato \mathbf{x}_0



3.1 Raggiungibilità di sistemi a tempo discreto

$$\begin{array}{l} \text{dato } \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \text{ con } \mathbf{x}(0) = \mathbf{x}_0, \\ \text{allora } \mathbf{x}^*(t) = \mathbf{x}(t) = \mathbf{F}^t\mathbf{x}_0 + \sum_{k=0}^{t-1} \mathbf{F}^{t-k-1}\mathbf{G}\mathbf{u}(k) \end{array}$$

in particolare, se
$$\mathbf{x}(0) = \mathbf{0}$$
 allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \sum_{k=0}^{t-1} \mathbf{F}^{t-k-1} \mathbf{G} \mathbf{u}(k) = \mathcal{R}_t \mathbf{u}_t$

$$\mathcal{R}_t = egin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{t-1}\mathbf{G} \end{bmatrix} \in \mathbb{R}^{n imes mt}$$
 matrice di raggiungibilità in t passi

qual è l'insieme di stati \mathbf{x}^* raggiungibili al tempo t (= in t passi) a partire da $\mathbf{x}(0) = \mathbf{0}$?

$$X_R(t) = \operatorname{im}(\mathcal{R}_t)$$
: spazio raggiungibile in t passi

Proposizione In un sistema di dimensione n, gli spazi raggiungibili in $1, 2, \ldots$ passi soddisfano la catena di inclusioni $X_R(1) \subseteq X_R(2) \subseteq \ldots X_R(t) \subseteq X_R(t+1) \subseteq \ldots$

La catena è stazionaria (almeno) dal t'-esimo passo in poi, ovvero $X_R(t') = X_R(t''), \forall t'' \geq t'$, con $t' \leq n$.

Dimostrazione. Per il teorema di Cayley-Hamilton, il polinomio caratteristico $\Delta_{\mathbf{F}}(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \ldots + \alpha_1\lambda + \alpha_0$ di $\mathbf{F} \in \mathbb{R}^{n \times n}$ è un polinomio annullatore per \mathbf{F} , ovvero

$$\Delta_{\mathbf{F}}(\mathbf{F}) = \mathbf{F}^n + \alpha_{n-1}\mathbf{F}^{n-1} + \ldots + \alpha_1\mathbf{F} + \alpha_0\mathbf{I} = \mathbf{0}$$

Sia $\mathbf{G} = \left[\mathbf{g}_1 \dots \mathbf{g}_m
ight] \in \mathbb{R}^{n imes m}$, si dimostra allora

1. catena di inclusioni: $X_R(t) \subseteq X_R(t+1) \ \forall t$

$$\mathcal{R}_t = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{t-1}\mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{g}_1 \dots \mathbf{g}_m & \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m & \dots & \mathbf{F}^{t-1}\mathbf{g}_1 \dots \mathbf{F}^{t-1}\mathbf{g}_m \end{bmatrix}$$

$$\mathcal{R}_{t+1} = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^t\mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{g}_1 \dots \mathbf{g}_m & \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m & \dots & \mathbf{F}^{t-1}\mathbf{g}_1 \dots \mathbf{F}^{t-1}\mathbf{g}_m & \mathbf{F}^t\mathbf{g}_1 \dots \mathbf{F}^t\mathbf{g}_m \end{bmatrix}$$

$$\Rightarrow X_R(t) = \operatorname{im}(\mathcal{R}_t) \subseteq \operatorname{im}(\mathcal{R}_{t+1}) = X_R(t+1)$$

le colonne della matrice di raggiungibilità in t passi sono un sottoinsieme di quelle della matrice di raggiungibilità in t+1 passi.

2. stazionarietà della catena

$$X_R(n) = \operatorname{im}(\mathcal{R}_n) = \operatorname{span}\{\mathbf{g}_1 \dots \mathbf{g}_m, \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m, \dots, \mathbf{F}^{n-1}\mathbf{g}_1 \dots \mathbf{F}^{n-1}\mathbf{g}_m\}$$
$$X_R(n+1) = \operatorname{im}(\mathcal{R}_{n+1}) = \operatorname{span}\{\mathbf{g}_1 \dots \mathbf{g}_m, \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m, \dots, \mathbf{F}^{n-1}\mathbf{g}_1 \dots \mathbf{F}^{n-1}\mathbf{g}_m, \mathbf{F}^n\mathbf{g}_1 \dots \mathbf{F}^n\mathbf{g}_m\}$$

per il teorema di Cayley-Hamilton

$$\Delta_{\mathbf{F}}(\mathbf{F}) = \mathbf{0} \Rightarrow \mathbf{F}^{n} = -\alpha_{n-1}\mathbf{F}^{n-1} - \dots - \alpha_{1}\mathbf{F} - \alpha_{0}\mathbf{I}$$

$$\Rightarrow \mathbf{F}^{n}\mathbf{g}_{k} = -\alpha_{n-1}\mathbf{F}^{n-1}\mathbf{g}_{k} - \dots - \alpha_{1}\mathbf{F}\mathbf{g}_{k} - \alpha_{0}\mathbf{g}_{k} \quad \forall k \in \{1\dots m\}$$

$$\Longrightarrow X_R(n+1) = span\{\mathbf{g}_1 \dots \mathbf{g}_m, \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m, \dots, \mathbf{F}^{n-1}\mathbf{g}_1 \dots \mathbf{F}^{n-1}\mathbf{g}_m\} = X_R(n)$$
 esiste sicuramente $t' \le n$ tale che $X_R(t') = X_R(t'+1)$.

Dimostrare poi che $X_R(t') = X_R(t'+1) \Rightarrow X_R(t'+1) = X_R(t'+2)$ equivale a dimostrare che im $(\mathbf{F}^{t'+1}\mathbf{G}) \subseteq \operatorname{im}(\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{t'}\mathbf{G} \end{bmatrix}) = X_R(t'+1)$ poichè $X_R(t'+2) = \operatorname{im}(\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{t'}\mathbf{G} & \mathbf{F}^{t'+1}\mathbf{G} \end{bmatrix})$

Per semplicità si consideri il caso m=1, ovvero $\mathbf{G}=\mathbf{g}\in\mathbb{R}^n$, allora

$$\mathbf{F}^{t'+1}\mathbf{g} = \mathbf{F} \left(\mathbf{F}^{t'}\mathbf{g} \right) = \left(X_R(t'+1) = X_R(t') \right) = \mathbf{F} \left(\sum_{k=0}^{t'-1} \beta_k \mathbf{F}^k \mathbf{g} \right)$$
$$= \mathbf{F} \left(\beta_{t'-1} \mathbf{F}^{t'-1} \mathbf{g} + \sum_{k=0}^{t'-2} \beta_k \mathbf{F}^k \mathbf{g} \right) = \beta_{t'-1} \mathbf{F}^{t'} \mathbf{g} + \sum_{k=0}^{t'-2} \beta_k \mathbf{F}^{k+1} \mathbf{g}$$

si ha che $\beta_{t'-1}\mathbf{F}^{t'}\mathbf{g} \in X_R(t'+1) = X_R(t')$ e $\sum_{k=0}^{t'-2} \beta^k \mathbf{F}^{k+1}\mathbf{g} \in X_R(t') = X_R(t'+1)$

di conseguenza im $(\mathbf{F}^{t'+1}\mathbf{G}) \subseteq X_R(t'+1) \Rightarrow X_R(t'+1) = X_R(t'+2)$

t': indice di raggiungibilità $X_R(t') riangleq X_R$: (massimo) spazio raggiungibile

3.1.1 Criterio di raggiungibilità del rango

quando è possibile raggiungere tutti i possibili stati $\mathbf{x}^* \in \mathbb{R}^n$?

(completa) raggiungibilità

- un sistema Σ a tempo discreto si dice (completamente) raggiungibile se $X_R=\mathbb{R}^n$
- un sistema Σ a tempo discreto si dice (completamente) raggiungibile in t passi se $X_R(t) = \mathbb{R}^n$, con t indice di raggiungibilità

$$igs > \mathcal{R} riangleq \mathcal{R}_n = igg[\mathbf{G} \quad \mathbf{F} \mathbf{G} \quad \dots \quad \mathbf{F}^{n-1} \mathbf{G} igg]$$
: matrice di raggiungibilità del sistema

$$\Sigma$$
 raggiungibile \iff im $(\mathcal{R}) = \mathbb{R}^n \iff$ rank $(\mathcal{R}) = n$

si noti che $\mathcal{R} \in \mathbb{R}^{n \times mn}$, per cui

- m=1: Σ raggiungibile $\iff \det(\mathcal{R}) \neq 0$
- m > 1: Σ raggiungibile $\iff \det(\mathcal{R}\mathcal{R}^{\top}) \neq 0$

esempio

1.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\mathbf{F} = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \Rightarrow \qquad \mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{F}\mathbf{g} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & \alpha_2 \end{bmatrix} : \mathsf{rank}(\mathcal{R}) = 1 < 2$$

 $\Longrightarrow \Sigma$ non raggiungibile $\forall \alpha_1, \alpha_2 \in \mathbb{R}$

2.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\mathbf{F} = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \Rightarrow \qquad \mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{F}\mathbf{g} \end{bmatrix} = \begin{bmatrix} 1 & \alpha_1 \\ 0 & 1 \end{bmatrix} : \mathsf{rank}(\mathcal{R}) = 2$$

 $\Longrightarrow \Sigma$ raggiungibile (in 2 passi) $\forall \alpha_1, \alpha_2 \in \mathbb{R}$

3.
$$\mathbf{x}(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}(t)$$

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{G} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \Rightarrow \qquad X_R(1) = \mathrm{im}(\mathbf{G}) = span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$X_R(2) = \mathrm{im}(\left[\mathbf{G} \quad \mathbf{FG} \right]) = span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

 $\Longrightarrow \Sigma$ raggiungibile (in 2 passi)

Si considerino due sistemi algebricamente equivalenti $\Sigma=(\mathbf{F},\mathbf{G})$ e $\Sigma'=(\mathbf{F}',\mathbf{G}')$ tali che

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \qquad \frac{\mathbf{z} = \mathbf{T}^{-1}\mathbf{x}}{\mathbf{z}(t+1)} = \mathbf{F}'\mathbf{z}(t) + \mathbf{G}'\mathbf{u}(t)$$
$$\mathbf{F}' = \mathbf{T}^{-1}\mathbf{F}\mathbf{T}, \mathbf{G}' = \mathbf{T}^{-1}\mathbf{G}$$

 \boxtimes

allora

$$\mathcal{R}' = \begin{bmatrix} \mathbf{G}' & \mathbf{F}'\mathbf{G}' & \cdots & (\mathbf{F}')^{n-1}\mathbf{G}' \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{T}^{-1}\mathbf{G} & \mathbf{T}^{-1}\mathbf{F}\mathbf{T}\mathbf{T}^{-1}\mathbf{G} & \cdots & \mathbf{T}^{-1}\mathbf{F}^{n-1}\mathbf{T}\mathbf{T}^{-1}\mathbf{G} \end{bmatrix}$$

$$= \mathbf{T}^{-1} \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \cdots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix}$$

$$= \mathbf{T}^{-1}\mathcal{R}$$

 \implies cambio di base non modifica la raggiungibilità poichè rank $(\mathcal{R}') = \operatorname{rank}(\mathcal{R})$

in particolare, se
$$\Sigma$$
 raggiungibile allora $\det(\mathcal{R}\mathcal{R}^\top) \neq 0$ perciò $\mathcal{R}' = \mathbf{T}^{-1}\mathcal{R} \implies \mathcal{R}'\mathcal{R}^\top = \mathbf{T}^{-1}\mathcal{R}\mathcal{R}^\top \implies \mathbf{T} = \mathcal{R}\mathcal{R}^\top(\mathcal{R}'\mathcal{R}^\top)^{-1}$

3.1.2 Controllo a energia minima

se Σ è raggiungibile in t passi, come determinare l'ingresso $\mathbf{u}_t \in \mathbb{R}^{mt}$ che permetta di raggiungere un qualsiasi stato $\mathbf{x}^* \in \mathbb{R}^n$ in t passi?

caso
$$\mathbf{x}_0 = \mathbf{0}$$
: si ha che $\mathbf{x}^* = \mathbf{x}(t) = \mathcal{R}_t \mathbf{u}_t$ si introduce l'ingresso ausiliario $\mathbf{v}_t \in \mathbb{R}^{mt}$ tale che $\mathbf{u}_t = \mathcal{R}_t^{\top} \mathbf{v}_t$, allora $\mathbf{v}_t = (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} \mathbf{x}^*$ di conseguenza, risulta $\mathbf{u}_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} \mathbf{x}^*$

caso
$$\mathbf{x}_0 \neq \mathbf{0}$$
: si ha che $\mathbf{x}^* = \mathbf{x}(t) = \mathbf{F}^t \mathbf{x}_0 + \mathcal{R}_t \mathbf{u}_t$ di conseguenza, risulta $\mathbf{u}_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} (\mathbf{x}^* - \mathbf{F}^t \mathbf{x}_0)$

si osserva che

- 1. l'ingresso \mathbf{u}_t generalmente non è unico \rightarrow insieme dei possibili ingressi: $\mathcal{U}_t = \left\{\mathbf{u}_t' = \mathbf{u}_t + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \ker(\mathcal{R}_t)\right\}$
- 2. esiste un ingresso a **minima "energia"**: $\mathbf{u}_t^* = \arg\min_{\mathbf{u}_t' \in \mathcal{U}_t} \|\mathbf{u}_t'\|^2 = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} (\mathbf{x}^* \mathbf{F}^t \mathbf{x}_0)$ \rightarrow l'energia minima per raggiungere \mathbf{x}^* in t passi è pari a $\|\mathbf{u}_t^*\|^2 = (\mathbf{x}^*)^{\top} \mathcal{W}_t^{-1} \mathbf{x}^*$,

 con $\mathcal{W}_t \triangleq \mathcal{R}_t \mathcal{R}_t^{\top} = \sum_{k=0}^{t-1} \mathbf{F}^k \mathbf{G} \mathbf{G}^{\top} (\mathbf{F}^{\top})^k$ Gramiano di raggiungibilità in t passi del sistema gli autovalori di \mathcal{W}_t quantificano l'energia minima richiesta per raggiungere diversi stati $\mathbf{x}(t) = \mathbf{x}^*$

esempio

$$\begin{split} \mathbf{x}(t+1) &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}(t) \quad \mathbf{x}_0 = \mathbf{0} \\ \mathbf{F} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{G} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \Sigma \text{ è raggiungibile in 2 passi} \end{split}$$

ho si vuole calcolare gli ingressi $\mathbf{u}'(t)$ che permettono di raggiungere $\mathbf{x}^* = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ da $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ in 2 passi

$$\begin{aligned} \mathbf{u}_2 &= \mathcal{R}_2^\top (\mathcal{R}_2 \mathcal{R}_2^\top)^{-1} \mathbf{x}^* = \begin{bmatrix} \mathbf{G} & \mathbf{F} \mathbf{G} \end{bmatrix}^\top \left(\begin{bmatrix} \mathbf{G} & \mathbf{F} \mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{G} & \mathbf{F} \mathbf{G} \end{bmatrix}^\top \right)^{-1} \mathbf{x}^* \\ &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^\top \left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^\top \right)^{-1} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{u}(1) \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{ingresso a energia minima} \end{aligned}$$

da cui

$$\mathcal{U}_{2} = \left\{ \mathbf{u}_{2}' = \mathbf{u}_{2} + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \ker(\mathcal{R}_{2}) \right\} = \left\{ \mathbf{u}_{2}' = \mathbf{u}_{2} + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \ker\left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \right) \right\}$$

$$= \left\{ \mathbf{u}_{2}' = \mathbf{u}_{2} + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \operatorname{span}\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \right\} = \left\{ \mathbf{u}_{2}' = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} = \left\{ \mathbf{u}_{2}' = \begin{bmatrix} \mathbf{u}'(1) \\ \mathbf{u}'(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\}$$

3.1.3 Forma canonica di raggiungibilità

se Σ non è raggiungibile ma è tale che rank $(\mathcal{R}) = k < n$, allora è possibile determinare un cambio di base \mathbf{T} in modo da "separare" la parte raggiungibile del sistema da quella non raggiungibile?

 \boxtimes

si definisce $\mathbf{T} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k & \tilde{\mathbf{v}}_1 & \cdots & \tilde{\mathbf{v}}_{n-k} \end{bmatrix} \in \mathbb{R}^{n \times n}$ dove

- $\{{f v}_1\dots{f v}_k\}$ è l'insieme di vettori linearmente indipendenti che definiscono la base di $X_R={\sf im}(\mathcal{R})$
- $\{{f v}_1\dots{f v}_k, ilde{{f v}}_1\dots ilde{{f v}}_{n-k}\}$ è un insieme di vettori che definisce una base di \mathbb{R}^n

allora

$$\mathbf{F} \rightarrow \mathbf{F}' = \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{bmatrix}, \ \mathbf{F}_{11} \in \mathbb{R}^{k \times k}, \mathbf{F}_{22} \in \mathbb{R}^{(n-k) \times (n-k)}$$

$$\mathbf{G} \rightarrow \mathbf{G}' = \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{G}_2 \end{bmatrix}, \ \mathbf{G}_1 \in \mathbb{R}^{k \times m}, \mathbf{G}_2 \in \mathbb{R}^{(n-k) \times m}$$

inoltre, premettendo che (conseguentemente al teorema di Cayley-Hamilton) lo spazio raggiungibile X_R contiene im (\mathbf{G}) ed è \mathbf{F} -invariante, ovvero è tale che $\forall \mathbf{v} \in X_R \implies \mathbf{w} = \mathbf{F}\mathbf{v} \in X_R$, si verifica che

•
$$\mathbf{v} \in X_R \rightarrow \mathbf{v}' = \mathbf{T}^{-1}\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_k & 0 & \dots & 0 \end{bmatrix}^\top = \begin{bmatrix} \mathbf{v}^{(1)} & \mathbf{0} \end{bmatrix}^\top$$

•
$$\mathbf{w} \in X_R \rightarrow \mathbf{w}' = \mathbf{T}^{-1}\mathbf{w} = \begin{bmatrix} w_1 & \dots & w_k & 0 & \dots & 0 \end{bmatrix}^\top = \begin{bmatrix} \mathbf{w}^{(1)} & \mathbf{0} \end{bmatrix}^\top$$

•
$$\mathbf{w}' = \mathbf{T}^{-1}\mathbf{w} = \mathbf{T}^{-1}\mathbf{F}\mathbf{v} = \mathbf{T}^{-1}\mathbf{F}\mathbf{T}\mathbf{T}^{-1}\mathbf{v} = \mathbf{F}'\mathbf{T}^{-1}\mathbf{v} = \mathbf{F}'\mathbf{v}'$$

da cui

$$\begin{bmatrix} \mathbf{w}^{(1)} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{(1)} \\ \mathbf{0} \end{bmatrix} \quad \Longrightarrow \quad \begin{cases} \mathbf{w}^{(1)} = \mathbf{F}_{11} \mathbf{v}^{(1)} \\ \mathbf{0} = \mathbf{F}_{21} \mathbf{v}^{(1)} \end{cases} \quad \forall \mathbf{v}^{(1)} \in \mathbb{R}^k \quad \Longrightarrow \quad \mathbf{F}_{21} = \mathbf{0}$$

inoltre

$$im(\mathbf{G}) \subseteq X_R \implies \mathbf{G}_2 = \mathbf{0}$$

$$\begin{split} \mathbf{z} &= \mathbf{T}^{-1}\mathbf{x} \triangleq \begin{bmatrix} \mathbf{x}_R \\ \mathbf{x}_{NR} \end{bmatrix} \\ \mathbf{z}(t+1) &= \mathbf{T}^{-1}\mathbf{F}\mathbf{T}\mathbf{z} + \mathbf{T}^{-1}\mathbf{G}\mathbf{u} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} \mathbf{z}(t) + \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u} \qquad \text{forma canonica di raggiungibilità} \\ \begin{cases} \mathbf{x}_R(t+1) &= \mathbf{F}_{11}\mathbf{x}_R(t) + \mathbf{F}_{12}\mathbf{x}_{NR}(t) + \mathbf{G}_1\mathbf{u}(t) & \text{sottosistema raggiungibile} \\ \mathbf{x}_{NR}(t+1) &= \mathbf{F}_{22}\mathbf{x}_{NR}(t) & \text{sottosistema non raggiungibile} \end{cases} \end{split}$$

si osserva che

$$\begin{aligned} \operatorname{rank}(\mathcal{R}') &= \operatorname{rank}(\mathbf{T}^{-1}\mathcal{R}) = \operatorname{rank}\left(\left[\mathbf{G}' \quad \mathbf{F}'\mathbf{G}' \quad \cdots \quad (\mathbf{F}')^{n-1}\mathbf{G}'\right]\right) \\ &= \operatorname{rank}\left(\begin{bmatrix}\mathbf{G}_1 \quad \mathbf{F}_{11}\mathbf{G}_1 \quad \cdots \quad \mathbf{F}_{11}^{n-1}\mathbf{G}_1 \\ \mathbf{0} \quad \mathbf{0} \quad \cdots \quad \mathbf{0}\end{bmatrix}\right) = \operatorname{rank}\left(\left[\mathbf{G}_1 \quad \mathbf{F}_{11}\mathbf{G}_1 \quad \cdots \quad \mathbf{F}_{11}^{k-1}\mathbf{G}_1\right]\right) = \operatorname{rank}(\mathcal{R}_R) = k \end{aligned}$$

con $\mathcal{R}_R \in \mathbb{R}^{k \times mk}$: matrice di raggiungibilità del sottosistema raggiungibile $\Sigma_R = (\mathbf{F}_{11}, \mathbf{G}_1)$

• poichè
$$\mathbf{F}' \triangleq \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ 0 & \mathbf{F}_{22} \end{bmatrix}$$
, $\mathbf{G}' \triangleq \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ 0 \end{bmatrix}$, $\mathbf{H}' \triangleq \mathbf{H}\mathbf{T} = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix}$, $\mathbf{J}' \triangleq \mathbf{J}$ allora

$$\mathbf{W}(z) = \mathbf{H}'(z\mathbf{I} - \mathbf{F}')^{-1}\mathbf{G}' + \mathbf{J}' = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix} \begin{bmatrix} z\mathbf{I} - \mathbf{F}_{11} & -\mathbf{F}_{12} \\ \mathbf{0} & z\mathbf{I} - \mathbf{F}_{22} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} + \mathbf{J}$$
$$= \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix} \begin{bmatrix} (z\mathbf{I} - \mathbf{F}_{11})^{-1} & \star \\ \mathbf{0} & (z\mathbf{I} - \mathbf{F}_{22})^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} + \mathbf{J} = \mathbf{H}_1(zI - \mathbf{F}_{11})^{-1}\mathbf{G}_1 + \mathbf{J} = \mathbf{W}_R(z)$$

con $\mathbf{W}_R(z) \in \mathbb{R}^{p \times m} =$ matrice di trasferimento del sottosistema raggiungibile $\Sigma_R = (\mathbf{F}_{11}, \mathbf{G}_1)$

esempio

1.
$$\mathbf{F} = \begin{bmatrix} 2 & 1 & \frac{1}{2} \\ 0 & 2 & 4 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
, $\mathbf{G} = \begin{bmatrix} 0 \\ \underline{1} \\ 0 \end{bmatrix}$ sistema in forma canonica con $\mathbf{F}_{11} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$, $\mathbf{G}_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

infatti

$$\operatorname{rank}(\mathcal{R}_R) = \operatorname{rank}\left(\begin{bmatrix}\mathbf{G}_1 & \mathbf{F}_{11}\mathbf{G}_1\end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix}0 & 1\\ 1 & 2\end{bmatrix}\right) = 2$$

2.
$$\mathbf{F} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
, $\mathbf{G} = \begin{bmatrix} 1 \\ 1 \\ \hline 0 \end{bmatrix}$ sistema **NON** in forma canonica con $\mathbf{F}_{11} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\mathbf{G}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

infatti

$$\operatorname{rank}(\mathcal{R}_R) = \operatorname{rank}\left(\begin{bmatrix}\mathbf{G}_1 & \mathbf{F}_{11}\mathbf{G}_1\end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix}1 & 2\\1 & 2\end{bmatrix}\right) = 1$$

si verifica che

$$X_R = \operatorname{im}(\mathcal{R}) = \operatorname{im}\left(\begin{bmatrix}\mathbf{G} & \mathbf{F}\mathbf{G} & \mathbf{F}^2\mathbf{G}\end{bmatrix}\right) = \operatorname{im}\left(\begin{bmatrix}1 & 2 & 4\\ 1 & 2 & 4\\ 0 & 0 & 0\end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix}1\\1\\0\end{bmatrix}\right\}$$

da cui

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \qquad \mathbf{F}' = \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix}$$

$$\Rightarrow \qquad \mathbf{G}' = \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{0} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix}$$

3.1.4 Test PBH di raggiungibilità

Teorema II sistema a tempo discreto $\Sigma = (\mathbf{F}, \mathbf{G})$ è raggiungibile se e solo se la matrice PBH di raggiungibilità

 \boxtimes

$$PBH(z) = \begin{bmatrix} z\mathbf{I} - \mathbf{F} & \mathbf{G} \end{bmatrix} \in \mathbb{R}^{n \times (n+m)}$$

ha rango pieno $(\operatorname{rank}(PBH(z)) = n)$ per ogni $z \in \mathbb{C}$.

Se Σ non è raggiungibile, la matrice PBH di raggiungibilità ha rango non pieno (rank(PBH(z)) < n) per tutti e soli gli $z \in \mathbb{C}$ che sono autovalori di \mathbf{F}_{22} (: matrice di stato del sottosistema non raggiungibile di Σ)

Dimostrazione. si dimostra che

■ Σ raggiungibile \implies rank $(PBH(z)) = n \ \forall z \in \mathbb{C}$ si suppone per assurdo che Σ sia raggiungibile $(\operatorname{rank}(\mathcal{R}) = n)$ ma $\exists \bar{z} \in \mathbb{C}$ tale che $\operatorname{rank}(PBH(\bar{z})) < n$ se $\operatorname{rank}(PBH(\bar{z})) < n$ allora $PBH(\bar{z})$ ha delle righe linearmente dipendenti:

$$\exists \mathbf{v} \neq \mathbf{0}, \mathbf{v} \in \mathbb{R}^n \quad : \quad \mathbf{v}^\top PBH(\bar{z}) = \mathbf{0} \implies \mathbf{v}^\top \begin{bmatrix} \bar{z}\mathbf{I} - \mathbf{F} & \mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \end{bmatrix} \implies \begin{cases} \mathbf{v}^\top \mathbf{F} = \bar{z}\mathbf{v}^\top \\ \mathbf{v}^\top \mathbf{G} = \mathbf{0} \end{cases}$$

ma allora

$$\mathbf{v}^{\top} \mathcal{R} = \mathbf{v}^{\top} \begin{bmatrix} \mathbf{G} & \mathbf{F} \mathbf{G} & \cdots \mathbf{F}^{n-1} \mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{v}^{\top} \mathbf{G} & \mathbf{v}^{\top} \mathbf{F} \mathbf{G} & \cdots \mathbf{v}^{\top} \mathbf{F}^{n-1} \mathbf{G} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{0} & \bar{z} \mathbf{v}^{\top} \mathbf{G} & \cdots \bar{z}^{n-1} \mathbf{v}^{\top} \mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \cdots \mathbf{0} \end{bmatrix} \qquad \Longrightarrow \quad \operatorname{rank}(\mathcal{R}) < n$$

di conseguenza, Σ risulta non raggiungibile: assurdo.

- $\qquad \text{rank}(PBH(z)) = n \; \forall z \in \mathbb{C} \;\; \Longrightarrow \;\; \Sigma \; \text{raggiungibile}$ TBD
- ightharpoonup essendo gli autovalori di \mathbf{F}_{22} un sottoinsieme degli autovalori di \mathbf{F} , il rango della matrice PBH può essere valutato solo per gli z che sono autovalori di \mathbf{F}

 \boxtimes

esempio

1.
$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 ${f F}$ triangolare: gli autovalori di ${f F}$ sono gli elementi sulla diagonale $o \lambda_1=0$, $m_1^a=3$

$$\operatorname{rank}(PBH(\lambda_1)) = \operatorname{rank}\left(\begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}\right) = 3 \quad \Longrightarrow \quad \Sigma \text{ raggiungibile}$$

2.
$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\rightarrow \lambda_1 = 1, \ m_1^a = 3$$

$$\operatorname{rank}(PBH(\lambda_1)) = \operatorname{rank}\left(\begin{bmatrix} 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\right) = 2 \quad \Longrightarrow \quad \Sigma \text{ NON raggiungibile}$$

3.2 Controllabilità di sistemi a tempo discreto

dato
$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$$
 con $\mathbf{x}(0) = \mathbf{x}_0$, allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \mathbf{F}^t\mathbf{x}_0 + \sum_{k=0}^{t-1}\mathbf{F}^{t-k-1}\mathbf{G}\mathbf{u}(k) = \mathbf{F}^t\mathbf{x}_0 + \mathcal{R}_t\mathbf{u}_t$

qual è l'insieme di stati \mathbf{x}_0 controllabili al tempo t (= in t passi) allo stato $\mathbf{x}^* = \mathbf{0}$? quando è possibile controllare a zero tutti i possibili stati $\mathbf{x}_0 \in \mathbb{R}^n$?

$$X_C(t) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{F}^t\mathbf{x} \in \mathsf{im}(\mathcal{R}_t) : \mathsf{spazio} \; \mathsf{controllabile} \; \mathsf{in} \; t \; \mathsf{passi} \}$$

Proposizione In un sistema di dimensione n, gli spazi controllabili in $1,2,\ldots$ passi soddisfano la catena di inclusioni $X_C(1)\subseteq X_C(2)\subseteq\ldots X_C(t)\subseteq X_C(t+1)\subseteq\ldots$

La catena è stazionaria (almeno) dal t'-esimo passo in poi, ovvero $X_C(t') = X_C(t''), \forall t'' \geq t'$, con $t' \leq n$.

t': indice di controllabilità

 $X_C(t') \triangleq X_C$: (massimo) spazio controllabile

3.2.1 Criterio di controllabilità

(completa) controllabilità

- ullet un sistema Σ a tempo discreto si dice (completamente) controllabile se $X_C=\mathbb{R}^n$
- un sistema Σ a tempo discreto si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità

$$\Sigma$$
 controllabile \iff im $(\mathbf{F}^n) \subseteq \operatorname{im}(\mathcal{R}) = X_R$

si noti che

- Σ raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile
- Σ non raggiungibile ma $\mathbf{F} = \mathbf{0} \Rightarrow \Sigma$ controllabile
- Σ controllabile $\not\Rightarrow \Sigma$ raggiungibile

esempio

$$\mathbf{1.} \ \mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\mathbf{F} = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$X_R = \operatorname{im}(\mathcal{R}) = \operatorname{im}\left(\begin{bmatrix} \mathbf{g} & \mathbf{F}\mathbf{g} \end{bmatrix}\right) = \operatorname{im}\left(\begin{bmatrix} 0 & 0 \\ 1 & \alpha_2 \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$$

$$\operatorname{im}(\mathbf{F}^2) = \operatorname{im}\left(\begin{bmatrix} \alpha_1^2 & 0 \\ \alpha_1 + \alpha_2 & \alpha_2^2 \end{bmatrix}\right) = \begin{cases} \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\} & \alpha_1 = \alpha_2 = 0 \\ \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\} & \alpha_1 = 0, \alpha_2 \neq 0 \\ \operatorname{span}\left\{\begin{bmatrix} \alpha_1^2 \\ \alpha_1 \end{bmatrix}\right\} & \alpha_1 \neq 0, \alpha_2 = 0 \\ \mathbb{R}^2 & \alpha_1 \neq 0, \alpha_2 \neq 0 \end{cases}$$

$$\Longrightarrow \Sigma$$
 non raggiungibile $\forall \alpha_1, \alpha_2 \in \mathbb{R}$
 Σ controllabile se $\alpha_1 = 0$ (im(\mathbf{F}^2) $\subseteq X_R$)

2.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\mathbf{F} = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{F}\mathbf{g} \end{bmatrix} = \begin{bmatrix} 1 & \alpha_1 \\ 0 & 1 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 2$$

$$\Longrightarrow \Sigma \text{ raggiungibile (in 2 passi) } \forall \alpha_1,\alpha_2 \in \mathbb{R}$$

$$\Sigma \text{ controllabile } \forall \alpha_1,\alpha_2 \in \mathbb{R}$$

3.
$$\mathbf{x}(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}(t)$$

$$\begin{split} \mathbf{F} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ \mathcal{R} &= \begin{bmatrix} \mathbf{g} & \mathbf{F} \mathbf{g} & \mathbf{F}^2 \mathbf{g} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 1 \\ X_C(1) &= \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{F} \mathbf{x} \in \operatorname{im}(\mathcal{R}_1) \right\} \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{F} \mathbf{x} \in \operatorname{im}(\mathbf{g}) \right\} \\ &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \right\} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} x_2 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} \\ &= \left\{ \begin{bmatrix} \beta \\ 0 \\ \alpha \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \\ X_C(2) &= \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{F} \mathbf{x} \in \operatorname{im}(\mathcal{R}_2) \right\} \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{F}^2 \mathbf{x} \in \operatorname{im} \left(\begin{bmatrix} \mathbf{g} & \mathbf{F} \mathbf{g} \end{bmatrix} \right) \right\} \\ &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \\ &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \\ &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} = \mathbb{R}^3 \end{split}$$

 $\Longrightarrow \Sigma$ non raggiungibile

 Σ controllabile (in 2 passi)

3.2.2 Controllabilità e forma canonica di raggiungibilità

sia Σ non raggiungibile (rank(\mathcal{R}) = k < n) allora esiste una matrice di cambio base \mathbf{T} che porta il sistema in foma canonica di raggiungibilità:

$$\begin{bmatrix} \mathbf{x}_R \\ \mathbf{x}_{NR} \end{bmatrix} = \mathbf{T}^{-1}\mathbf{x}$$

$$\begin{bmatrix} \mathbf{x}_R(t+1) \\ \mathbf{x}_{NR}(t+1) \end{bmatrix} = \mathbf{T}^{-1}\mathbf{F}\mathbf{T} \begin{bmatrix} \mathbf{x}_R(t) \\ \mathbf{x}_{NR}(t) \end{bmatrix} + \mathbf{T}^{-1}\mathbf{G}\mathbf{u} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_R(t) \\ \mathbf{x}_{NR}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

$$\begin{cases} \mathbf{x}_R(t+1) = \mathbf{F}_{11}\mathbf{x}_R(t) + \mathbf{F}_{12}\mathbf{x}_{NR}(t) + \mathbf{G}_1\mathbf{u}(t) & \Sigma_R \text{ sottosistema raggiungibile} \\ \mathbf{x}_{NR}(t+1) = \mathbf{F}_{22}\mathbf{x}_{NR}(t) & \Sigma_{NR} \text{ sottosistema non raggiungibile} \end{cases}$$

si osserva che

• Σ_R raggiungibile $\Rightarrow \Sigma_R$ controllabile

 Σ_{NR} non raggiungibile **ma** Σ_{NR} controllabile

$$\Leftrightarrow \quad \exists \bar{t} \text{ tale che } \mathbf{x}_{NR}(\bar{t}) = \mathbf{F}_{22}^{\bar{t}} \mathbf{x}_{NR}(0) = \mathbf{0} \ \, \forall \mathbf{x}_{NR}(0) \in \mathbb{R}^{n-k}$$

 \boxtimes

$$\Leftrightarrow \quad \exists ar{t} \; \mathsf{tale} \; \mathsf{che} \; \mathbf{F}_{22}^{ar{t}} \mathbf{v} = \mathbf{0} \; \; \forall \mathbf{v} \in \mathbb{R}^{n-k}$$

$$\Leftrightarrow \quad \exists \bar{t} \text{ tale che } \mathbf{F}_{22}^{\bar{t}} = \mathbf{0}$$

 \Leftrightarrow \mathbf{F}_{22} è nilpotente $(\mathbf{F}_{22}^{ar{t}})$

 \Leftrightarrow l'unico autovalore di ${f F}_{22}$ è zero

 $\Longrightarrow \Sigma$ controllabile $\Leftrightarrow \mathbf{F}_{22}$ è nilpotente

$$\qquad \text{in generale } X_R = \left\{ \begin{bmatrix} \mathbf{x}_R \\ \mathbf{0} \end{bmatrix}, \mathbf{x}_R \in \mathbb{R}^k \right\} \subseteq X_C$$

•
$$\mathbf{F}_{22}$$
 invertibile $\Rightarrow \mathbf{x}_{NR}(t) = \mathbf{F}_{22}^t \mathbf{x}_{NR}(0) = \mathbf{0} \Leftrightarrow \mathbf{x}_{NR}(0) = \mathbf{0}$
 $\Rightarrow X_R = X_C$ (raggiungibilità \equiv controllabilità)

$$\mathbf{F} \text{ invertibile} \Leftrightarrow \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} \text{ invertibile}$$

 $\Rightarrow \mathbf{F}_{22}$ invertibile

$$\Rightarrow X_R = X_C$$
 (raggiungibilità \equiv controllabilità)

un sistema a tempo discreto in cui la matrice di stato \mathbf{F} è invertibile se dice *reversibile* \Rightarrow è sempre possibile ricostruire lo stato iniziale $\mathbf{x}(0)$ a partire dalla conoscenza di $\mathbf{x}(t), \mathbf{u}(\cdot)$ $\mathbf{x}(t) = \mathbf{F}^t \mathbf{x}(0) + \mathcal{R}_t \mathbf{u}_t \rightarrow \mathbf{F}^t \mathbf{x}(0) = \mathbf{x}(t) - \mathcal{R}_t \mathbf{u}_t \rightarrow \mathbf{x}(0) = \mathbf{F}^{-t} \mathbf{x}(t) - \mathbf{F}^{-t} \mathcal{R}_t \mathbf{u}_t$

3.2.3 Test PBH di controllabilità

Teorema Il sistema a tempo discreto $\Sigma = (\mathbf{F}, \mathbf{G})$ è controllabile se e solo se la matrice PBH di raggiungibilità

$$PBH(z) = \begin{bmatrix} z\mathbf{I} - \mathbf{F} & \mathbf{G} \end{bmatrix} \in \mathbb{R}^{n \times (n+m)}$$

ha rango pieno $(\operatorname{rank}(PBH(z)) = n)$ per ogni $z \in \mathbb{C}$ con $z \neq 0$.

se $\operatorname{rank}(PBH(z)) < n$ solo per z=0 allora l'unico autovalore non raggiungibile (: autovalore di \mathbf{F}_{22}) è $\lambda=0$ perciò Σ risulta controllabile \blacktriangleright la matrice PBH può essere valutata solo per gli $z\neq 0$ che sono autovalori di \mathbf{F}

3.3 Raggiungibilità di sistemi lineari a tempo continuo

dato
$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \text{ con } \mathbf{x}(0) = \mathbf{x}_0,$$
 allora $\mathbf{x}^*(t) = \mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}_0 + \int_0^t \mathbf{F}^{t-\tau}\mathbf{G}\mathbf{u}(\tau)d\tau$

in particolare, se
$$\mathbf{x}(0) = \mathbf{0}$$
 allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \int_0^t \mathbf{F}^{t-\tau} \mathbf{G} \mathbf{u}(\tau) d\tau$

qual è l'insieme di stati \mathbf{x}^* raggiungibili al tempo t (= in t passi) a partire da $\mathbf{x}(0) = \mathbf{0}$? quando è possibile raggiungere tutti i possibili stati $\mathbf{x}^* \in \mathbb{R}^n$?

sia $\mathcal{U}_{[0,t]}$ l'inisame delle funzioni m-dimensionali integrabili nell'intervallo [0,t]

$$X_R(t) = \left\{ \mathbf{x}(t) \in \mathbb{R}^n : \exists \mathbf{u} \in \mathcal{U}_{[0,t]} \text{tale chex}(t) = \int_0^t \mathbf{F}^{t-\tau} \mathbf{G} \mathbf{u}(\tau) d\tau \right\} : \text{ spazio raggiungibile al tempo } t$$

$$X_R: \text{ (massimo) spazio raggiungibile}$$

(completa) raggiungibilità

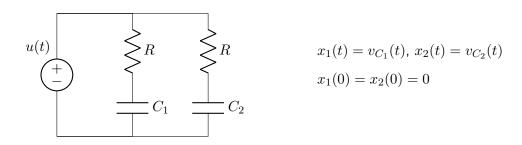
- ullet un sistema Σ a tempo continuo si dice (completamente) raggiungibile se $X_R=\mathbb{R}^n$
- $ightharpoonup \mathcal{R} riangleq \mathcal{R}_n = egin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix}$: matrice di raggiungibilità del sistema

$$\Sigma$$
 raggiungibile \iff im $(\mathcal{R}) = \mathbb{R}^n \iff$ rank $(\mathcal{R}) = n$

se un sistema Σ a t.c. è raggiungibile allora $X_R(t)=\mathbb{R}^n$ per ogni t>0 inoltre si nota che molti dei risultati sulla raggiungibilità a tempo discreto valgono anche a tempo continuo, in particolare

- X_R è ${f F}$ -invariante e contiene im $({f G})$
- $\qquad \text{Forma canonica di raggiungibilità: } \begin{bmatrix} \mathbf{x}_R \\ \mathbf{x}_{NR} \end{bmatrix} \triangleq \mathbf{T}^{-1}\mathbf{x}, \ \mathbf{F}' \triangleq \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix}, \ \mathbf{G}' \triangleq \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix}$
- $\qquad \qquad \textbf{Criterio PBH: } \Sigma \text{ raggiungibile } \iff \text{rank} \left[z\mathbf{I} \mathbf{F} \quad \mathbf{G} \right] = n, \quad \forall z \in \mathbb{C}$

esempio



modello di stato

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} v_{C_1}(t) \\ v_{C_2}(t) \end{bmatrix} \qquad \dot{\mathbf{x}}(t) = \begin{bmatrix} -\frac{1}{RC_1} & 0 \\ 0 & -\frac{1}{RC_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u$$

allora

$$\begin{split} \det(\mathcal{R}) &= \det(\left[\mathbf{g} \quad \mathbf{F}\mathbf{g}\right]) = \det\left(\left[\frac{1}{RC_1} \quad -\frac{1}{R^2C_1^2}\right]\right) \\ &= -\frac{1}{R^3C_1C_2^2} + \frac{1}{R^3C_1^2C_2} = \frac{1}{R^3C_1C_2}\left(-\frac{1}{C_2} + \frac{1}{C_1}\right) = \frac{1}{R^3C_1C_2}\left(\frac{C_2 - C_1}{C_1C_2}\right), \quad R, C_1, C_2 > 0 \end{split}$$

da cui si ha che

$$\det(\mathcal{R}) \begin{cases} = 0 & C_1 = C_2 & \rightarrow & \Sigma \text{ non raggiungibile} \\ \neq 0 & C_1 \neq C_2 & \rightarrow & \Sigma \text{ raggiungibile} \end{cases}$$

 \boxtimes

3.4 Controllabilità di sistemi lineari a tempo continuo

dato
$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \text{ con } \mathbf{x}(0) = \mathbf{x}_0,$$
 allora $\mathbf{x}^*(t) = \mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}_0 + \int_0^t \mathbf{F}^{t-\tau}\mathbf{G}\mathbf{u}(\tau)d\tau$

qual è l'insieme di stati \mathbf{x}_0 controllabili al tempo t (= in t passi) allo stato $\mathbf{x}^* = \mathbf{0}$? quando è possibile controllare a zero tutti i possibili stati $\mathbf{x}_0 \in \mathbb{R}^n$?

 $X_C(t)$: spazio controllabile at tempo t X_C : (massimo) spazio controllabile

(completa) controllabilità

- un sistema Σ a tempo continuo si dice (completamente) controllabile se $X_C=\mathbb{R}^n$

▶
$$\mathbf{x}_0 \in X_C(t) \Leftrightarrow \exists \mathbf{u} \in \mathcal{U}_{[0,t]}$$
 tale che $\mathbf{0} = e^{\mathbf{F}t}\mathbf{x}_0 + \int_0^t \mathbf{F}^{t-\tau}\mathbf{G}\mathbf{u}(\tau)d\tau$

$$\Leftrightarrow e^{\mathbf{F}t}\mathbf{x}_0 \in X_R(t) = X_R \ (t>0) \Leftrightarrow \mathbf{x}_0 \in e^{-\mathbf{F}t}X_R = \{\mathbf{v} \in \mathbb{R}^n \ : \ \exists \mathbf{w} \in X_R, \mathbf{v} = e^{-\mathbf{F}t}\mathbf{w}\}$$

$$\Leftrightarrow \mathbf{x}_0 \in X_R \text{ perchè } e^{-\mathbf{F}t}X_R = X_R \text{ essendo 1}) \ X_R \ \grave{\mathbf{e}} \ \mathbf{F}\text{-invariante} \ (e \text{ quindi } e^{-\mathbf{F}t} \text{ invariante})$$

$$2) \ e^{-\mathbf{F}t} \text{ invertibile} \rightarrow \dim(e^{-\mathbf{F}t}X_R) = \dim(X_R)$$

 Σ controllabile $\iff \Sigma$ raggiungibile