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On the expressiveness of LTL

◮ at the end of Lecture 4, we established that the property

∀π ∈ Paths(TS) : ∀m ≥ 0 : ∃π′ ∈ Paths(π[m]) : ∃n ≥ 0 : π′[n] |= a

◮ cannot be captured by LTL

◮ let us unravel this formula by looking into its structure



The need for a different temporal logic

∀π ∈ Paths(TS) : ∀m ≥ 0 : ∃π′ ∈ Paths(π[m]) : ∃n ≥ 0 : π′[n] |= a
︸ ︷︷ ︸

♦a
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The need for a different temporal logic

∃♦a
︷ ︸︸ ︷

∃π′ ∈ Paths(π[m]) : ∃n ≥ 0 : π′[n] |= a
︸ ︷︷ ︸

♦a

◮ premise: π |= ♦a means that path π satisfies formula ♦a

◮ question: what does |= ∃♦a mean?

◮ answer: there exists a path π′ starting in a state (say
s = π′[0] = π[m]), such that π′ |= ♦a; hence, s |= ∃♦a

◮ consequence: we should distinguish between path formulae

and state formulae (unlike LTL, which only deals with path
formulae); consider formulae over states



The need for a different temporal logic

∀�∃♦a
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∀π ∈ Paths(TS) : ∀m ≥ 0 :
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Computational tree logic (CTL)

◮ Computational tree logic has been introduced in

1 Edmund M. Clarke and Allen E. Emerson. Design and
synthesis of synchronization skeletons using branching time
temporal logic. In, D. Kozen, editor, Proceedings of Workshop

on Logic of Programs, volume 131 of Lecture Notes in

Computer Science, pages 52–71. Yorktown Heights, NY, USA,
May 1981. Springer-Verlag.

2 Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in CESAR. In, M.
Dezani-Ciancaglini and U. Montanari, editors, Proceedings of
the 5th International Symposium on Programming, volume
137 of Lecture Notes in Computer Science, pages 337–351.
Torino, Italy, April 1982. Springer-Verlag.



Syntax of CTL

◮ state formulae are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃ϕ | ∀ϕ

◮ path formulae are defined by

ϕ ::= ©Φ | Φ U Φ



Syntax of CTL

◮ state formulae are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃ϕ | ∀ϕ

◮ path formulae are defined by

ϕ ::= ©Φ | Φ U Φ

◮ two temporal modalities are introduced as

∃♦Φ = ∃(true U Φ)
∀♦Φ = ∀(true U Φ)
∃�Φ = ¬∀(true U ¬Φ)
∀�Φ = ¬∃(true U ¬Φ)



CTL properties for the traffic light model

◮ question: how to express
“the light is infinitely often green”

in CTL?
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CTL properties for the traffic light model

◮ question: how to express
“each red light is preceded by an amber light”

in CTL?

◮ answer: ¬red ∧ ∀�(∃©¬red ∨ amber)

this can be derived via implication rule, from LTL case:
¬red ∧ ∀�((∀©red) ⇒ amber)



Semantics of CTL

TS |= Φ iff ∀s ∈ I : s |= Φ

where (cf. CTL syntax)

s |= true
s |= a iff a ∈ L(s)

s |= Φ ∧Ψ iff s |= Φ ∧ s |= Ψ
s |= ¬Φ iff s 6|= Φ
s |= ∃ϕ iff ∃π ∈ Paths(s) : π |= ϕ

s |= ∀ϕ iff ∀π ∈ Paths(s) : π |= ϕ

and where

π |= ©Φ iff π[1] |= Φ
π |= Φ U Ψ iff ∃i ≥ 0 : π[i ] |= Ψ ∧ ∀0 ≤ j < i : π[j] |= Φ



Semantics of CTL

TS |= Φ iff ∀s ∈ I : s |= Φ

where (cf. CTL syntax)

s |= true
s |= a iff a ∈ L(s)

s |= Φ ∧Ψ iff s |= Φ ∧ s |= Ψ
s |= ¬Φ iff s 6|= Φ
s |= ∃ϕ iff ∃π ∈ Paths(s) : π |= ϕ

s |= ∀ϕ iff ∀π ∈ Paths(s) : π |= ϕ

and where

π |= ©Φ iff π[1] |= Φ
π |= Φ U Ψ iff ∃i ≥ 0 : π[i ] |= Ψ ∧ ∀0 ≤ j < i : π[j] |= Φ

The satisfaction set Sat(Φ) is defined by

Sat(Φ) = { s ∈ S | s |= Φ }



On the semantics of CTL temporal modalities

◮ recall that
∃♦Φ = ∃(true U Φ)

◮ question: how is
s |= ∃♦Φ

defined?



On the semantics of CTL temporal modalities

◮ recall that
∃♦Φ = ∃(true U Φ)

◮ question: how is
s |= ∃♦Φ

defined?

◮ answer:
∃π ∈ Paths(s) : ∃i ≥ 0 : π[i ] |= Φ



On the semantics of CTL temporal modalities

◮ recall that
∀♦Φ = ∀(true U Φ)

◮ question: how is
s |= ∀♦Φ

defined?
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◮ recall that
∀♦Φ = ∀(true U Φ)

◮ question: how is
s |= ∀♦Φ

defined?

◮ answer:
∀π ∈ Paths(s) : ∃i ≥ 0 : π[i ] |= Φ

(here index i can depend on specific path π)
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Side note: CTL syntax and semantics of negation

◮ recall that in LTL �Φ = ¬♦¬Φ
however in CTL ∃�Φ 6= ∃¬♦¬Φ (why?),
instead ∃�Φ = ¬∀♦¬Φ

◮ we have that s 6|= Ψ ⇔ s |= ¬Ψ

◮ however, for a given TS, we can have both TS 6|= Ψ and
TS 6|= ¬Ψ , e.g.: Ψ = ∃�r

1 2 3

here 1 |= Ψ, whereas 3 6|= Ψ, so TS 6|= Ψ;
at the same time, TS 6|= ¬Ψ, since 1 6|= ¬Ψ ≡ ∀♦¬r



CTL – unfolding of a transition system

◮ the following transition system

1

2 4 5

3

◮ can be unfolded via its paths as follows . . .



CTL – unfolding of a transition system

1

5 2

5 5 3

5 5 5 4



LTL is a linear temporal logic

1 5 5 5

1 2 5 5

1 2 3 5

1 2 3 4



CTL is a branching temporal logic

1

5 2

5 5 3

5 5 5 4
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Example of CTL semantics via TS unfolding

1

5 2

5 5 3

5 5 5 4

◮ question: ¬∀((¬black) U black)?

◮ answer: yes



More on CTL

Definition
CTL formulae Φ and Ψ are equivalent, denoted Φ ≡ Ψ, if
SatTS(Φ) = SatTS (Ψ) for all transition systems TS.

◮ as for LTL, CTL admits syntactic expression via normal forms
◮ PNF
◮ Existential normal form (ENF)

◮ analogous distributive and expansion laws



∀�∃♦a cannot be expressed in LTL

◮ consider formula ∀�∃♦a; for visual simplicity we pick a = red
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∀�∃♦a cannot be expressed in LTL

◮ consider formula ∀�∃♦a; for visual simplicity we pick a = red

◮ assume there exists LTL formula φ equivalent to ∀�∃♦a

◮ build TS: TS |= ∀�∃♦a; since φ ≡ ∀�∃♦a, TS |= φ,
namely Traces(TS) ⊆ Words(φ)

1 2

◮ build TS ′ : Traces(TS ′) ⊆ Traces(TS);
since 1ω ∈ Paths(TS), TS ′ :

1

◮ Traces(TS ′) ⊆ Traces(TS) ∧ TS |= φ⇒ TS ′ |= φ,
which contradicts the fact that TS ′ 6|= ∀�∃♦red (since
1 6|= ∀�∃♦red)



Expressiveness of LTL and CTL

◮ we have just established the following result

Theorem
The property

∀π ∈ Paths(TS) : ∀m ≥ 0 : ∃π′ ∈ Paths(π[m]) : ∃n ≥ 0 : π′[n] |= a

cannot be captured by LTL, but is captured by the CTL formula

∀�∃♦a.

◮ so CTL might seem to be more expressive than LTL?
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Expressiveness of LTL and CTL

◮ at the same time, it can be shown that the CTL formula
∀�∀♦a is equivalently expressed by the LTL formula �♦a

◮ so perhaps: can universally quantified CTL formulae directly
lead to LTL ones by dropping the (path) quantifications?

◮ answer: yes, whenever such an LTL formula exists (i.e., either
the two formulae are equivalent, or there exists no equivalent
LTL formula)



♦�red is not equivalent to ∀♦∀�red

◮ on the flip side, consider now the following

◮ build TS, such that TS |= ♦�red :

1 2 3

◮ notice that Paths(TS) = {1ω , 1+23ω}



♦�red is not equivalent to ∀♦∀�red

◮ on the flip side, consider now the following

◮ build TS, such that TS |= ♦�red :

1 2 3

◮ notice that Paths(TS) = {1ω , 1+23ω}

◮ consider now CTL formula ∀♦∀�red , where Ψ = ∀�red

◮ notice that 1 6|= Ψ, because of the potential path 1+23ω

◮ this means that 1ω 6|= ♦Ψ, hence 1 6|= ∀♦Ψ

◮ so the two formulae are not equivalent



Expressiveness of LTL and CTL

◮ we can further establish the following result

Theorem
The property

∀π ∈ Paths(TS) : ∃i ≥ 0 : ∀j ≥ i : π[j] |= a

which is captured by the LTL formula ♦�a, cannot be captured by

any CTL formula.

◮ in conclusion, it looks like LTL and CTL are incomparable

→ topology of the relationship btw LTL and CTL



Expressiveness of LTL, CTL and CTL∗



Extended computation tree logic

◮ this has led to a generalised logic, known as
extended computation tree logic (CTL∗)

◮ introduced by:
◮ E.A. Emerson, J,Y. Halpern,

“Sometimes” and “not never” revisited:
on branching versus linear time temporal logic.
J. ACM 33, 1, pp. 151–178, Jan. 1986.



Syntax of CTL∗

◮ state formulae are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃ϕ

◮ path formulae are defined by

ϕ ::= Φ | ϕ ∧ ϕ | ¬ϕ | ©ϕ | ϕ U ϕ



Syntax of CTL∗

◮ state formulae are defined by

Φ ::= true | a | Φ ∧ Φ | ¬Φ | ∃ϕ

◮ path formulae are defined by

ϕ ::= Φ | ϕ ∧ ϕ | ¬ϕ | ©ϕ | ϕ U ϕ

◮ ∀ϕ = ¬∃¬ϕ

◮ ♦ϕ = true ∪ ϕ

◮ �ϕ = ¬♦¬ϕ



Semantics of CTL∗

s |= true
s |= a iff a ∈ L(s)

s |= Φ ∧Ψ iff s |= Φ ∧ s |= Ψ
s |= ¬Φ iff s 6|= Φ
s |= ∃ϕ iff ∃π ∈ Paths(s) : π |= ϕ

and

π |= Φ iff π[0] |= Φ
π |= ϕ ∧ ψ iff π |= ϕ ∧ π |= ψ

π |= ¬ϕ iff π 6|= ϕ

π |= ©ϕ iff π[1..] |= ϕ

π |= ϕ U ψ iff ∃i ≥ 0 : π[i ..] |= ψ ∧ ∀0 ≤ j < i : π[j ..] |= ϕ

The satisfaction set is defined as in CTL



Formulae equivalence in CTL∗

Definition
CTL∗ formulae Φ and Ψ are equivalent, denoted Φ ≡ Ψ, if
SatTS(Φ) = SatTS (Ψ) for all transition systems TS.
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Formulae equivalence in CTL∗

Definition
CTL∗ formulae Φ and Ψ are equivalent, denoted Φ ≡ Ψ, if
SatTS(Φ) = SatTS (Ψ) for all transition systems TS.

◮ question: ∀(©p ∨©©p) ≡ ∀©(p ∨ ∀©p)?

◮ answer: yes

◮ question: how do you prove your answer?



Expressiveness of LTL and CTL∗

Theorem
For each LTL formula ϕ and state s,

s |= ϕ
︸ ︷︷ ︸

LTL semantics

iff s |= ∀ϕ
︸ ︷︷ ︸

CTL∗ semantics

◮ LTL can be thought of as a fragment of CTL∗



Expressiveness of LTL, CTL and CTL∗

Theorem
The CTL∗ property

(♦�a)
︸ ︷︷ ︸

cannot be expressed in CTL

∨ (∀�∃♦b)
︸ ︷︷ ︸

cannot be expressed in LTL

cannot be captured in either LTL or CTL.



Today’s reading material

◮ Section 6.1–6.2.3, Theorem 6.21, Section 6.8.1 of

◮ Christel Baier and Joost-Pieter Katoen. Principles of Model

Checking. The MIT Press. Cambridge, MA, USA. 2008.

◮ M.Y. Vardi, Branching vs. Linear Time: Final Showdown.
Tools and Algorithms for the Construction and Analysis of
Systems, LNCS vol. 2031, pp 1-22, 2001.


