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Alessandro Abate

Lecture 4, p2: Linear Temporal Logic



Modal logics

P based on propositional logic

> used to reason about objects with modalities (expressed via
modal operators)

» in particular, modal operators qualify temporal expressions

» in this course we shall focus on two classes: LTL and CTL

1. LTL: linear temporal logic
2. CTL: computational tree logic

» extension to CTL*



Syntax of LTL

> pu=true|aloNp|-p|OpleUp, a€cAP

> alternative expression of more formulae

e1Vp2 = (201 A o)
Y1r=92 = "1V

and of two temporal modalities

Qp = trueUep



Alternative syntax in the literature

» you may encounter the following notations:

Xe = Qe
Fo : Op
Gy : Oy

(notation on left-hand side from [CGP99],
on right-hand side from [BK08])

> past operators are possible (though not strictly necessary)
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Semantics of LTL

TSkEeiffVsel sk

(recall that / is the set of initial states), where
s = @ iff Vo € Paths(s) : m = ¢
and where (cf. LTL syntax)

T = true
mEa iff ae L(x][0])
TEeANY ff TEpATEY
TE-p iff TEp
mE Qe iff w[l.]Ee
TEeUY iff Ji>0:7n[i.]EvAVO<j<i:w[j.]Ey



Alternative semantics of LTL

» let ¢ be an LTL formula over AP, inducing the LT property
Words(p) = {0 € (2*7)* | 0 = ¢}
where (0 = ApA;1...)

o true
0'):3<:>36A0

» TS = ¢ iff Traces(TS) C Words(y)



Alternative semantics of LTL

» let ¢ be an LTL formula over AP, inducing the LT property
Words(p) = {0 € (2*7)* | 0 = ¢}
where (0 = ApA;1...)

o true
0'):3<:>36A0

» TS = ¢ iff Traces(TS) C Words(y)

> 1 = o if Words(yp1) = Words(y2)



LTL properties for the traffic light model

> how to express
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LTL properties for the traffic light model

> how to express
“the light is infinitely often red”
by an LTL formula?

» OOred

> how to express
“once green, the light cannot become immediately red”
by an LTL formula?

> O( = =Ored)
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Verification of LTL specs is over linear-time paths

P> back to the traffic light model, consider the following path:

—  —0—0—0—0—0

» question: 7 |=red U green?

> answer: yes, because L(2) = {red, }
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P> back to the traffic light model, consider the following path:

—  —0—0—0—0—0

» question: 7 = (Oblack) U (Ored)?

P answer: yes
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Expansion laws

» describe temporal modalities recursively

1. formula ¢ U 1) is a solution of k =¥ V (¢ A Ok)

2. similarly,

O =true Uy = ¢ V (true A O(true U ¥)) = ¢ v OOy

3. also Ly = =0—y = o A OOy



Weak-Until and PNF

» weak-until is dual of until:

e W= (pUxy)VvDOp

» it holds that
“(pUv) = (p A=) W (=p A —¢)

Definition
Weak-Until Positive Normal Form for LTL: for a € AP

pu=true|false |a|-alpAp|oVe|OQpleUp|eWep

» each LTL formula admits an equivalent in w-u PNF form
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Classes of LTL specifications

P question: what class of LTL formulas capture invariants?
» answer: Oy, where o i=true | a|p Ay | @

P> example: [—red
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Classes of LTL specifications

P question: how is the class of safety properties characterized?
> answer: “nothing bad ever happens”

P> example: “every red light is immediately preceded by amber”
» question: how can we express this property in LTL?

» answer: —red A O(QOred = )
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Classes of LTL specifications

P question: how is the class of liveness properties characterized?
P answer: “something good eventually happens”

> example: “the light is infinitely often red”

P question: how can we express this property in LTL?

» answer: [OOred
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Liveness: an example

> consider traffic lights model

» question: is ¢ := O(black = {red) a liveness property?
P> answer: yes

» and in fact TS = ¢



Fairness properties in LTL

» unconditional fairness: ‘“every transition is infinitely often
taken”
aow

» strong fairness: “if a transition is infinitely often enabled, then
it is infinitely often taken”

00¢ = 00w

> weak fairness: “if a transition is continuously enabled from a
certain point in time, then it is infinitely often taken”

o0¢ = OOV
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Fairness properties as LTL constraints

» consider LTL constraint fair;
FairPaths(s) = {m € Paths(s) | = = fair}
— FairPaths(TS)

» consider LTL specification ;
s [=fir ¢ © V7 € FairPaths(s), |= ¢

— TS ’:fair ®

> fairness constraints are easily embedded with LTL verification:
TS ':fair p <= TS ): (fair = 90)



Fairness: an example
» consider the traffic lights model

» question: “is the traffic light infinitely often orange (amber
and red)” under the strong fairness condition (if a transition is
infinitely often enabled then it is infinitely often taken)?



Fairness: an example
» consider the traffic lights model

» question: “is the traffic light infinitely often orange (amber
and red)” under the strong fairness condition (if a transition is
infinitely often enabled then it is infinitely often taken)?

» answer: no



Fairness: an example
» consider the traffic lights model

» question: “is the traffic light infinitely often orange (amber
and red)” under the strong fairness condition (if a transition is
infinitely often enabled then it is infinitely often taken)?

» answer: no

> this fairness condition can be expressed in LTL as:
(O0red) = OO (red A Oorange)
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Fairness: a second example
» consider the traffic lights model

P> question: “is the traffic light infinitely often orange” under the
weak fairness condition (if a transition is continuously enabled
from a certain point in time then it is infinitely often taken)?

P> answer: yes

> this fairness condition can be expressed in LTL as:
(00red) = OO (red A Oorange)



Expressiveness of LTL

P question: are there temporal properties that we cannot
express in LTL?

P> answer: yes
> example: “always a state satisfying a can be reached”

P consider expression
Vm € Paths(TS) :Vm > 0: 3’ € Paths(x[m]) : 3n > 0: 7'[n] | a

» there does not exists an LTL formula ¢ so that TS = ¢



LTL Quiz

» (semantics of negation)
> argue why (TS5 7 ¢) # (TS5 |= )



LTL Quiz

» (semantics of negation)
> argue why (TS5 7 ¢) # (TS5 |= )

» and why instead TS |=—p = TS £ @



Today's reading material

» Section 5.1 of

» Christel Baier and Joost-Pieter Katoen, Principles of Model
Checking. The MIT Press. Cambridge, MA, USA. 2008.



