$\underline{L C D}(25 / 03 / 2024)$

* Bisimilarity
* equivalence
* lorgest bisi mulation

OBSERVATION: Bisimulatioms meed mot to be equivalences

$$
\begin{aligned}
R=\{ & (s, t),(t, v) \\
& \left(s_{1}, t_{1}\right),\left(t_{1}, v_{1}\right), \\
& \left.\left(s_{2}, t_{2}\right),\left(t_{2}, v_{2}\right)\right\}
\end{aligned}
$$

bisimubation
not reflexive $\forall P \quad P \not P P$

$$
\begin{aligned}
& " \text { symmetzic } \quad \forall(P, Q) P R Q \\
& \Rightarrow \neg Q R P \\
&=\text { tromotive } \quad \forall P, Q, S P R Q \\
& Q R S \\
& \Rightarrow \neg P \not \subset S
\end{aligned}
$$

OBSERVATION: givem P, Q
$P \sim Q$ iff if $P^{\alpha} P^{\prime}$ then $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim Q^{\prime}$
if $Q^{\alpha} \xrightarrow[\rightarrow]{ } Q^{\prime}$ then $P^{\alpha} P^{\prime}$ and $P^{\prime} \sim Q^{\prime}$
$(\Rightarrow) \quad \sim$ is a bisimubation
(\Longleftarrow) we want to show that assuming (*) we com comclude $P \sim Q$ we construct \mathbb{R} bisimulation s.t. $P Q Q$
we define

$$
R=\{(P, Q)\} \cup \sim
$$

Q is a bisimulation, i.e. if ST procenes s.t. $S Q T$

- if $S^{\alpha} \xrightarrow{\Delta} S^{\prime}$ them $T^{\alpha} \xrightarrow{\alpha} T^{\prime}$ and $S^{\prime} R T^{\prime}$
- dual

2 possibilities
(1) $S=P, T=Q$ them by ($*$) we know that If $S \xrightarrow{\alpha} S^{\prime}$ them $T \stackrel{\alpha}{\rightarrow} T^{\prime}$ and $S^{\prime} \sim T^{\prime}$
\Downarrow

$$
S^{\prime} R T^{\prime}
$$

+ dual
(2) $\quad S \sim T$
if $S^{\alpha} \stackrel{\Delta}{\square} S^{\prime}$ since N is a bisimulation $T^{\alpha} \stackrel{T^{\prime}}{ }$ and $S^{\prime} \sim T^{\prime}$ $S^{\prime} R T^{\prime}$
+ dual

Hence $R=\{(P, Q)\} \cup \sim$ is a bisimulation $\Rightarrow P \sim Q$

We want $P \sim Q$

$$
\begin{aligned}
R=\{(P, Q)\} \cup N \text { bisimolotion } & \Rightarrow R \subseteq N \\
& \Rightarrow(P, Q \mid \in \sim
\end{aligned}
$$

coinductive logics

* string bisimilornty
- string bisimulotion: $\quad R \subseteq P r o c \times P r o c$ sit. when $P R Q$ if $P \xrightarrow{\alpha_{1}} P_{1} \xrightarrow[\rightarrow]{\alpha_{2}} \ldots \xrightarrow{\alpha_{m}} P_{m}$
them $Q \xrightarrow{\alpha_{1}} Q_{1} \xrightarrow[\rightarrow]{\alpha_{2}} \cdots \xrightarrow{\alpha_{m}} Q_{m}$ and $P_{m} R Q_{m}$
stump bisimilority $P \sim_{\text {string }} Q$ if $P R Q$ for some R stump bisim.

EXERCISE (exam): show $N=N_{\text {string }}$

ObSERVATION: Given P, Q if $P \sim Q$ then $\operatorname{Traces}(P)=\operatorname{Troces}(Q)$
proof
assume $P \sim Q$ ($n d P N_{\text {stung }} Q$)
and let $P \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{n}} P_{m} \in$ Traces (P)
them

$$
\begin{aligned}
& Q \xrightarrow{\alpha_{2}} \ldots \quad \xrightarrow{\alpha_{m}} Q_{m} \in \operatorname{Troses}(Q) \\
&\left(\& \quad P_{m} \underset{\text { sting }}{\sim} Q_{m}\right)
\end{aligned}
$$

$\Rightarrow \quad$ Traces $(P) \subseteq$ Traces (Q)
and then by symmetry sima $Q \sim P \quad \operatorname{Troces}(Q) \subseteq \operatorname{Traces}(P)$ whence equality.
 $P \sim Q$ them C Traces $(P)=C T r a c e s(Q)$

OBSERVATION : if $k \stackrel{\text { def }}{=} P$ them $k \sim P$
because there is a bisimubation

$$
\begin{array}{r}
R=\{(k, p)\} \cup I \\
\\
\frac{p \stackrel{\alpha}{\alpha} p^{\prime}}{k \xrightarrow{\alpha} p^{\prime}}
\end{array}
$$

OBSERVATION:
(i) $P|Q \sim Q| P$
(ii) $\quad P|(Q \mid R) \sim(P \mid Q)| R$
(iii) $p \mid 0 \sim p$
(i) define o. bisimulation

$$
\begin{aligned}
R= & \left\{\left(P^{\prime}\left|Q^{\prime}, Q^{\prime}\right| P^{\prime}\right) \mid P^{\prime}, Q^{\prime} \text { processes }\right\} \\
& \frac{P^{\prime \alpha} \leftrightarrow P^{\prime \prime}}{P^{\prime}\left|Q^{\prime} \rightarrow P^{\prime \prime}\right| Q^{\prime}} \quad \stackrel{P^{\prime \alpha} \rightarrow P^{\prime \prime}}{Q^{\prime}\left|P^{\prime} \xrightarrow{\alpha} Q^{\prime}\right| P^{\prime \prime}}
\end{aligned}
$$

(ii) $R=\left\{\left(P^{\prime}\left|\left(Q^{\prime} \mid R^{\prime}\right),\left(P^{\prime} \mid Q^{\prime}\right)\right| R^{\prime}\right), P^{\prime}, Q^{\prime}, R^{\prime}\right.$ processes $\}$
(iii) $R=\left\{\left(P^{\prime} 10, p^{\prime}\right) \mid P^{\prime}\right.$ process $\}$

EXERCISE:
(i) $\quad P \mid(Q+S) \stackrel{?}{\sim}(P \mid Q)+(P \mid S)$
 (pub. coffee. $0 \mid$ Fear. O)
(ii) $(P \mid Q) \backslash L \quad \infty \quad(P, L) \mid(Q, L)$
(coffee 0 , coffee. 0) \backslash coffee (coffee. 0) $\operatorname{coffee} 1(\overline{\text { coffee. } 0) \text { coffer }}$ $\downarrow \tau$

$$
\Varangle \tau
$$

(iii) $(P \mid Q)[f] \stackrel{?}{\sim} P[f] \mid Q[f]$
(coffee. 01 two. O) [$\frac{f}{b / \text { coffee, } b / t e o]}$
coftien.0[f] 1 Fee. O [f]
 b $\downarrow \tau>\bar{b}$

* Bisimilority is compositional (compruence)

We want that if $P \sim Q$ then for all $C[] \quad C[P] \sim C[Q]$

Let P, Q, R procenes, with $P \sim Q$
Then
(i) $\alpha \cdot P \sim \alpha \cdot Q$
(ii) $P+R \sim Q+R$
(iii) $P|R \sim Q| R$
(iv) $P L L \sim Q L$
(v) $P[f] \sim Q[f]$
proof
we want $\alpha . P \sim \alpha . Q$ and we prove it by building a bisimulation

$$
R=\{(\alpha, P, \alpha . Q)\} \cup \sim
$$

in fact for all S, T sit. $S \mathbb{R} T$
if $S \xrightarrow{\alpha} S^{\prime}$ then $T^{\alpha} T^{\prime}$ and $S^{\prime} R T^{\prime}$

+ dual
there ore two possibilities for S, T
(1) $S=\alpha \cdot P, T=\alpha \cdot Q$
$\alpha . P \xrightarrow{\alpha} P \quad$ mo $\alpha . Q \xrightarrow{\alpha} Q \quad$ and $P \sim Q$ \Downarrow $P R Q$
+ dual
(2) $S \sim T$
same as in observation above
(ii) $P+R \sim Q+R$
$B=\{(\underbrace{(P+R, Q+R)}\} \sim N$ is a bisimulation

2 possibilities
(1) $P \xrightarrow{\alpha} P^{\prime}$

$$
P+R \xrightarrow{\alpha} P^{\prime}
$$

\square
\downarrow
$Q \xrightarrow{\alpha} Q^{\prime} \quad \alpha$
$Q+R \xrightarrow{\alpha} Q^{\prime}$ \square
$P^{\prime} R Q^{\prime}$
(2) $\frac{R \xrightarrow{\alpha} R^{\prime}}{P+R \xrightarrow{\alpha} R^{\prime}}$
then

$$
\frac{R \xrightarrow{\alpha} R^{\prime}}{Q+R \xrightarrow{\alpha} R^{\prime}} \quad \& \quad R^{\prime} R R^{\prime}
$$

o_{k} since $R^{\prime} \sim R^{\prime}$ by refaxity \Downarrow $R^{\prime} R R^{\prime}$
(iii) $P|R \sim Q| R$
define

$$
\begin{aligned}
& R=\{(P \mid R, D R)\} \cup N \\
& \begin{array}{l}
\frac{P \stackrel{\alpha}{\rightarrow} P^{\prime}}{P \mid R \xrightarrow{\alpha} \underbrace{P^{\prime} \mid R}} \begin{array}{r}
\text { since } P \sim Q \\
?
\end{array} \begin{array}{l}
\frac{\alpha}{\square} Q^{\prime} \\
R \xrightarrow{\alpha} Q^{\prime} \mid R
\end{array}
\end{array} \\
& P^{\prime} \sim Q^{\prime}
\end{aligned}
$$

Idea:
$R=\left\{\left(P^{\prime}\left|R^{\prime}, Q^{\prime}\right| R^{\prime}\right) \mid P^{\prime} \sim Q^{\prime}\right.$ and R^{\prime} proms $\}$ bisimulo.trom
(iv) $P, L \sim Q, L$

$$
R=\left\{\left(P^{\prime} \backslash L, Q^{\prime} \backslash L\right) \mid \quad P^{\prime} \sim Q^{\prime}\right\}
$$

(v) $P[f] \sim Q[f]$

$$
R=\left\{\left(P^{\prime}[f], Q^{\prime}[f]\right) \quad 1 \quad P^{\prime} \sim Q^{\prime}\right\} \quad \text { bisimubatsom }
$$

EXERCISE
given P process

$L \subseteq A$

$$
\begin{aligned}
& \frac{p \xrightarrow{\alpha} P^{\prime}}{\tau_{L}(P) \xrightarrow{\alpha} \tau_{L}\left(p^{\prime}\right)}
\end{aligned} \quad \alpha, \bar{\alpha} \notin L
$$

This com be encoded in the lompuage, ie. there is a context $C_{L}[]$ st.

$$
C_{L}[P] \sim \tau_{L}(P)
$$

$$
\left[\begin{array}{c}
\text { forbidden } \\
\tau / \%
\end{array}\right]
$$

EXERCISE: (Bisimulation Up - to)
A bisimulotion up to (bisimibority) is a relation $R \subseteq P_{20 c} \times P_{2 x}$ such that if $P R Q$
\rightarrow if $P_{\rightarrow}^{\alpha} P^{\prime}$ then $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim P^{\prime \prime} R Q^{\prime \prime} \sim Q^{\prime}$ \rightarrow dual

If R is a_{0} bisimulation up to and $P R Q$ then $P \sim Q$ EXERCISE

IDEA: I show if R is bisimutiom up to then R bisimulotion nOT TRUE

