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March 25: List of paper on file

April 05-15: Paper presentation

May 07: upload your podcast on mediaspace
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PAST TOPICS
* Mitigation and Susiba2 rice

* Floodings
* Snorkel, Sub1 and RAP2.12 ERF VII

NEXT TOPICS:
* Epigenetics and flowering time

* Epigenetics and drougth resistance



Bridging evolution, ecology and molecular biology

Plastic molecular responses to environmental signals can occur in many ways.
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can lead to trans-generational effects? and adaptive?
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A transposon-induced epigenetic change leads to sex
determination in melon

Antoine Martin', Christelle Troadec', Adnane Boualem', Mazen Rajab’, Ronan Fernandez', Halima Morin?,
Michel Pitrat®, Catherine Dogimont® & Abdelhafid Bendahmane'
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Plant phenotypic plasticity is triggered by environmental constraints. Phenotypic changes
induced are not solely genetically controlled but are also based on either epigenetic marks
or plant microbiota by recruitment of mutualists. This plant ‘toolbox’ allows a rapid response

to environmental constraints.
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A plant’s phenotypic variations can be inherited even in the case of a phenotypic trait not
controlled by a gene/genome variation.
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Lamarck revisited

Darwin

"Une des intuitions de Lamarck

L] 1 - - [1]
Lamarck’s revenge: The epigenetics pourrait s'averer juste...
revolution may redeem one of Darwin’s
oldest rivals

Epigenetics: In Defense of Lamarck

NEWS AND VIEWS

Lamarck revisited: epigenetic inheritance of
ancestral odor fear conditioning




Climate change is inevitable within this century

Spotion Cel

FRESS

The impact of climate change on plant epigenomes

Qiong A. Liu

Bicchemistry and Call Biology Department, Stony Brook Univarsity, Stony Brook, NY 11794, USA

Predicted that atmospheric CO2 will reach to 550-700 ppm by 2050 and 650-1200
ppm by 2100, which means a global climatic warming of 2.5 °C or more by 2050
and of up to 6.4 °C by the end of this century. Severe and longer-lasting droughts.

The opposing effects of CO2 and temperature on plant growth and other traits

7\

elevated CO.concentrations increased photosynthetic carbon high seasonal temperatures significantly
gain and net primary production, improved the efficiency of lowered biomass and grain production in a
nitrogen usage, and increased tolerance to drought variety of crops and fruits

conditions 10



The rapid adaptation of plants to climate change through epigenomic plasticity

Climate changes are rapid, plants need to adapt rapidly

One avenue for rapid adaptation may be through modification of DNA and histone proteins,
as well as through expression of noncoding small RNAs (sRNA). Collectively, the arrangement
and distribution of these modifications are referred to as the ‘epigenome’
(http://www.roadmapepigenomics.org/).

Changes to the epigenome may or may not be heritable.

However, in cases of a true epigenetic phenomenon, the change, which is stably inherited,
cannot be correlated with a genetic change.

11
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Chromatin modification are both positive and negative regulators

Histone 3
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Histone H3K27

Can chromatin changes induced by environmental

Environmental
stimull stimuli be inherited when the stress is released?
DNA methylation % —
. @® | Stable and
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through somatic divisions?

Chromatin remodeling or

H3K27 is known for one thing: shutting through generation?

down transcription. When H3K27 is
trimethylated, it is tightly associated Ad aptative Potentiel

with inactive gene promoters.
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a Dietary supplementation during pregnancy
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Nature Reviews | Genetics

Offspring of group A (restricted diet):
*Yellow coats

*Obese

*More prone to cancer and diabetes

Offspring of group B (diet supplemented
with choline, folic acid, betaine and
Vitamin B12 ):

*Brown coats

*Healthy weight

*Less prone to disease
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Agouti mice and epigenetics
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Flowering time

* The study of cyclical biological events in the natural world is called
phenology. Flowering time is a seasonal phenological process.

 Altered flowering time and disruption of meet pollinators.
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pNAS RESEARCH ARTICLE PLANT BIOLOGY

af' OPEN ACCESS ]

Check for
updates

Winter warming post floral initiation delays flowering via bud
dormancy activation and affects yield in a winter annual crop

anl.2

Xiang Lu

, Carmel M. O'Neill*?, Samuel Warner?, Qing Xiong®', Xiaochao Chen®, Rachel Wells?, and Steven Penfield®

Edited by Richard Amasino, University of Wisconsin-Madison, Madison, WI; received March 14, 2022; accepted July 28, 2022
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Vernalization — a cold-induced epigenetic switch (cold memory)

ExXposUre
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"\ The floral repressor gene, FLC is repressed
% H'«\ when plants are exposed to the cold
2 5 (WINTER) in a quantitative manner.
O !
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Perennials - 1 =~ |\«

* Vernalization: the
acceleration of
flowering by the
prolonged cold of
winter.

* FLC (FLOWERING
LOCUS C): a MADS
box transcriptional
repressor involved in
silencing the genes
that are required for
the switch to
flowering.
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Epigenetic Regulation in Plant Responses A Autumn Winter

Spring
to the Environment

David C. Baulcombe! and Caroline Dean? S . *
: - . . e T Ambient
'Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, United Kingdom; 2Department of Cell 7]
and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom %
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Figure 5. Quantitative variation in the epigenetic silencing of FLC in Arabidopsis accessions from different climates.
(A) An Arabidopsis accession from Germany (Col, red line) requires only 4 wk of cold to epigenetically silence FLC.
Lov-1, from the northern limit of its range in Northern Sweden (latitude 62.5°N), sees reactivation of the FLC gene if
the cold period is so short, resulting in an inability to become vernalized and, hence, does not flower. ( B) Lov-1 needs
amuch longer period of cold (12 wk) for full epigenetic silencing. Molecular analysis has shown this difference is the
result of a small number of cis polymorphisms near the PHD-PRC2 nucleation region in intron 1.
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ABC models
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Vernalization — a cold-induced epigenetic switch (cold memory)

e \Vernalization: the acceleration of flowering by the prolonged cold of winter.
 FLC (FLOWERING LOCUS C): a MADS box transcriptional repressor involved in silencing the
genes that are required for the switch to flowering.

FLC

I
W —

Vernalization — a cold-induced epigenetic switch

Jie Song, Andrew Angel, Martin Howard and Caroline Dean*
John Innes Centre, Morwich Research Park, Morwich MH4 7UH, LUK

*Author for correspondence (cardine.dean @jic.ac.uk)

Joumal of Cell Sclence 125, 3723-3731
@ 2 2. Published by The Compary of Biologists Lid
dex: 11242 cs 08476
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Vernalization — a cold-induced epigenetic switch (cold memory)

* FLC: a MADS box transcriptional repressor involved in silencing the genes that are
required for the switch to flowering.

FLC

o —
The quantitative nature of vernalization is reflected in the progressive

accumulation of H3K27me3 at the nucleation region with increasing lengths of
cold exposure

PRC2 o polycomb repressive
complex 2: a conserved protein
complex that is involved in

chromatin silencing through R . - A . , - Silencing
methylation of the lysine e e e e e ‘ ﬁﬂﬁg
27residue on histone H3.
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FLC expression during different stages of vernalization.
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Perennials - 1 =~ |\«

* Vernalization: the
acceleration of
flowering by the
prolonged cold of
winter.

* FLC (FLOWERING
LOCUS C): a MADS
box transcriptional
repressor involved in
silencing the genes
that are required for
the switch to
flowering.
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TRENDS in Genetics

rrnalization silences FLC epigenetically. Vernalization is the process whereby flowering is accelerated in response to the prolonged cold of winter. Time runs

COLDAIR is required for stable repression of FLC after vernalization and a lack of COLDAIR
lead to late flowering after vernalization.

COLDAIR binds PRC2 complex protein CURLY LEAF (CLF), with maximal interaction after 20
days of vernalization / cold exposure.

COLDAIR is required to recruit PRC2 to the FLC locus allowing deposition of the repressive
H3K27me3 chromatin mark.

COLDAIR did not impact the expression of other genes that repress flowering.
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TECHNOLOGY

GMO clover trial pricks methane
bubble

. Richard Rennie 0 X in &

March 20, 2024

There is a corner of a foreign field that is pretty much New Zealand-developed gene-edited pasture.
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https://www.farmersweekly.co.nz/technology/gmo-clover-trial-pricks-methane-bubble/



Changes In epigenetic silencing underlie differences in life history.

A :

In some perennials,

_ 3 3 some parts of the

2 = 5 plant do not switch

7)) o o .

4 o o to reproductive

> § § development after

= o o one winter, and

L TS T ) .
remain vegetative,
thereby
maintaining the

» adult plant over

Autumn Winter Spring Summer Autumn Winter Spring Summer .
Time many years.

3 W NE VW W WL

In perennial Arabis alpina plants, FLC expression is transiently but not epigenetically silenced
by exposure to cold. Older meristems flower after one winter but newer meristems remain
vegetative until the subsequent winter.
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Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state

The resetting of FLC expression occurs in the early globular embryo.
Isolation and characterization of the resetting mutant.
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Crevillen et al., 2014 33



Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state

The resetting of FLC expression occurs in the early globular embryo. | e fee [ocan] [ ] [ ar [ 7o [ oo |
Isolation and characterization of the resetting mutant.
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LETTER

doi:10.1038/nature 13722

Epigenetic reprogramming that prevents
transgenerational inheritance of the vernalized state

Pedro Crevillén', Hongchun Yang!, Xia Cui?, Christiaan Greeff'$, Martin Trick!, Qi Qiu?, Xiaofeng Cao? & Caroline Dean!
Crevillen et al., 2014 34



FLC levels

How could you quickly look for mutants
vutant  With an altered FLC expression level?
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FLC:LUC

FLC levels

FLC::LUC reporter gene and mutant analysis
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FLC:LUC

WT

FLC levels

Mutant
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Crevillen et al., 2014
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NII::Luc mutants analysis

v NII1 promoter from tobacco foliar nitrite reductase fused to Luc.

T. Engelsted, T. Hoff, J. Mundy, N. Durand,
MT Leydecker and HN Truong

=

gln nitrate

EMS mutagenesis

1t screening in Denmark and 2" screening in Versailles

\/

v' 2 Exp_mutants: v’ 6 Sep_mutants:
overexpressing luciferase overexpressing luciferase
on GIn on NO3 -




Gene expression analysis
* Northern Blotting, 10 days old in vitro plantlets:
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Mapping 14.5Sep mutation

v Crossing Ler X NIILUC (F2)
Ler X 14.5Sep (F2)

14.5Sep backcross (F2)

Visualisation on NO,

@ Transfer in the greenhouse

DNA extraction+PCR




FLC levels

FLC:LUC

ELF6 demethylase activity

ELF6 has H3K27me3 demethylase activity, and its
mutation reduced this enzymatic activity in planta.
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Resetting FLC is a process activated by H3K27
demethylation (example, ELFG).
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Epigenetic reprogramming avoid trans-
generational transmission of certain phenotypes.
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43

Crevillen et al., 2014



Available online at www.sciencedirect.com

ScienceDirect

Flowerlng time regulation in crops — what did we learn
from Arabidopsis?
Martina Blimel', Nadine Dally' and Christian Jung1
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VERY COMPLEX PATHWAY

Flowering time gene network with known genetic and
epigenetic regulators in Arabidopsis thaliana. Arrows
indicate a promoting, T-ends indicate an inhibiting
genetic interaction. Round dots at both ends mark an
interaction without a known direction. Dashed lines
denote an indirect interaction. Genes attributed as
major regulators in the different flowering time
pathways are written in bold. Red writing indicates
the functional characterization of a gene as a
flowering time regulator in cultivated species —
although not necessarily with the same function as in
Arabidopsis — by mutant analysis, sequencing and
complementation analysis or heterologous
expression, RNA interference, or clear linkage with a
major QTL.
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FLC TO FOCUS ON EPIGENETIC CONTROL

(A) No VERNALIZATION AND SHORT-DAY
PHOTOPERIOD. A winter annual Arabidopsis line
without prolonged cold exposure. FRIGIDA
activates the expression of the floral repressor
FLC (for FLOWERING LOCUS C), which directly
represses the expression of the florigenic FT (for
FLOWERING LOCUS T) gene to inhibit flowering.

(B) After experiencing winter cold, Arabidopsis
winter annuals in temperate regions flower in
late spring in response to increasing day length.
Winter cold, through the vernalization pathway,
represses FLC expression and thus relieves FT
repression. This enables long-day induction of FT
expression by the photoperiod pathway to
promote flowering. FT feedback represses FLC
expression.
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The winter annual growth habit is conferred by
FRIGIDA (FRI) and FLC.

FRI encodes a plant-specific scaffold protein and
functions dominantly to upregulate FLC expression
to a high level that inhibits flowering.

Before winter cold exposure, the scaffold protein
FRI is located at FLC in a region around the
transcription initiation site, and physically
associates with a few transcriptional coactivators,
among which are the histone 3 lysine 4 (H3K4)
methyltransferase complex COMPASS-like, the
histone acetyltransferases HAM1 (for HISTONE
ACETYLTRANSFERASE OF THE MYST FAMILY 1).

Working models for FRIsc-mediated upregulation of
FLC and COOLAIR.
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ARABIDOPSIS
FLORAL TRANSITION

MERISTEM IDENTITY

‘ GENES

FLORAL PATHWAY
INTEGRATOR GENES

LONG DISTANCE TRANSPORT

,
ﬂ’ LEAF 5>SAM
[ coF ) sHorTDAYs |

FKFl CIRCADIAN
CLOCK AND
PHOTOPERIOD

Major flowering pathway genes

of Arabidopsis thaliana. Positive and
negative regulatory connections are
indicated by arrows and lines with T-ends,
respectively. White and black arrows or T-
ends indicate regulatory connections
occurring primarily under long days and
short days, respectively.
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VERNALIZATION

lAFTER coLD

BEFORE COLD

LIGHT SIGNALLING
Light

Red
Far-Red X\

WHEAT AND BARLEY
FLORAL TRANSITION

LUX

MERISTEM IDENTITY

AP1-like GENES

FLORAL PATHWAY
INTEGRATOR GENES

3

CIRCADIAN CLOCK AND
PHOTOPERIOD GENES

TOC1 tae
miR408

Major flowering pathway genes of
bread wheat (Triticum aestivum L.)
and barley (Hordeum

vulgare L.). Positive and negative
regulatory connections are indicated by
arrows and lines with T-ends, respectively.
White arrows or T-ends indicate regulatory
connections occurring primarily under long
days.

Traditional breeding and phenotypic
selection of natural genetic variants at
flowering loci was used to optimize
flowering time within a given production
environment to achieve greater yields

AGRICULTURAL IMPACT
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