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Discrete-time Markov chains

• State-transition systems augmented with probabilities

• States
− set of states representing possible configurations of the 

system being modelled
• Transitions

− transitions between states model
evolution of system’s state;
occur in discrete time-steps

• Probabilities
− probabilities of making transitions

between states are given by
discrete probability distributions
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Overview

•Previous lecture: path-based properties,
probabilistic reachability

•Transient state probabilities

•Long-run / steady-state probabilities

•Qualitative properties
− repeated reachability
− persistence
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Transient state probabilities

• What is the probability, having started in state s, of being 
in state s’ at time k?
− i.e. after exactly k steps/transitions have occurred
− this is the transient state probability: πs,k(s’)

• Transient state distribution: πs,k

− (row) vector πs,k i.e. πs,k(s’) for all states s’

• Note: this is a discrete probability distribution
− so we have πs,k : S → [0,1]
− recall instead Prs : ΣPath(s) → [0,1], where  ΣPath(s) ⊆ 2Path(s)
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Transient distributions
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Computing transient probabilities

• Transient state probabilities:
− πs,k(s’) = Σs’’∈S πs,k-1(s’’) · P(s’’,s’)
− (i.e. look at incoming transitions, into s’)

• Computation of transient state distribution:
− πs,0 is the initial probability distribution
− e.g. in our case πs,0(s’) = 1 if s’=s and πs,0(s’) = 0 otherwise
− πs,k = πs,k-1· P

• i.e. successive vector-matrix multiplications
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Computing transient probabilities
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Computing transient probabilities

• πs,k =  πs,k-1 · P =  πs,0 · Pk

• kth matrix power: Pk

− P gives one-step transition probabilities
− Pk gives probabilities of k-step transition probabilities
− i.e. Pk(s,s’) = πs,k(s’)

• A possible optimisation: iterative squaring
− e.g. P8 = ((P2)2)2
− only requires log k multiplications
− but potentially inefficient, e.g. if P is large and sparse

− in practice, successive vector-matrix multiplications preferred
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Notion of time in DTMCs

• Two possible views on the timing aspects of a system 
modelled as a DTMC:

1. Discrete time steps model time accurately
− e.g. clock ticks in a model of an embedded device
− or like dice example: interested in number of steps (tosses)

2. Time-abstract model 
− no information assumed about the time transitions take
− e.g. simple Zeroconf model

• In both cases, often beneficial to study long-run behaviour
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Long-run behaviour

• Consider the limit: πs = limk→∞ πs,k
− where πs,k is the transient state distribution at time k,

having started in state s
− this limit, where it exists, is called the limiting distribution
− steady-state of the model

• Intuitive idea
− the percentage of time, in the long run, spent in each state
− e.g. reliability: “in the long-run, what portion of time is the 

system in an operational state”
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Limiting distribution

• Example:
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Long-run behaviour

• Questions:
− when does this limit exist?
− does it depend on the initial state/distribution?

• Need to consider underlying graph
− (V,E) where V are vertices and E ⊆ VxV are edges
− V = S and E = { (s,s’) s.t. P(s,s’) > 0 }
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Graph terminology

• A state s’ is reachable from s if there is a finite path 
starting in s and ending in s’

• A subset T of S is strongly connected if, for each pair of 
states s and s’ in T, s’ is reachable from s passing only 
through states in T

• A strongly connected component (SCC) is a maximally
strongly connected set of states (i.e. no superset of it is 
also strongly connected)

• A bottom strongly connected component (BSCC) is an SCC 
T from which no state outside T is reachable from T

• Alternative terminology: “s communicates with s’ ”, 
“communicating class”, “recurrent class” 
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Example - (B)SCCs
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Graph terminology

• Markov chain is irreducible if all its states belong to a 
single BSCC; otherwise reducible

• A state s is periodic, with period d, if
− the greatest common divisor of the set { n | fs(n)>0} equals d
− where fs(n) is the probability of, when starting in state s, 

returning to state s in exactly n steps

• A Markov chain is aperiodic if all its states have period 1
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Steady-state probabilities

• For a finite, irreducible, aperiodic DTMC (a.k.a., ergodic)
− limiting distribution always exists
− and is independent of initial state/distribution

• These are known as steady-state probabilities
− (or equilibrium probabilities)
− effect of initial distribution has disappeared, denoted π

• These probabilities can be computed as the unique solution 
of the linear equation system:

1)s(π   and   ππ Ss ==× å Î
P
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Steady-state - Balance equations

• Known as balance equations

• That is:

− π(s’) = Σs∈S  π(s) · P(s,s’)

− Σs∈S π(s) = 1

1)s(π   and   ππ Ss ==× å Î
P

normalisation

balance the 
probability of 
leaving and 

entering a state s’
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Steady-state - Example

• Let x = π
• Solve: x·P = x,  Σsx(s) = 1
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Steady-state - Example

• Let x = π
• Solve: x·P = x,  Σsx(s) = 1
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spent in the state “try”
≈ 33.6%
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Periodic DTMCs

• For (finite, irreducible) periodic DTMCs, this limit:

• in general does not exist, but this limit does:

• Steady-state probabilities for periodic DTMCs can still be 
computed, again by solving the same set of linear 
equations:
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Steady-state - General case

• General case: reducible DTMC
• there are multiple solutions of steady-state equation 

• number of (lin. Independent) solutions = number of BSCCs

• limiting distribution obtained by iterations exists
• limiting distribution depends on initial one
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Steady-state - General case

• General case: reducible DTMC
− compute vector πs

• Compute BSCCs for DTMC; then two cases to consider:
• (1) s is in a BSCC T

− compute steady-state probabilities x in sub-DTMC for T
− πs(s’) = x(s’)  if s’ in T
− πs(s’) = 0  if s’ not in T

• (2) s is not in any BSCC
− compute steady-state probabilities xT for sub-DTMC of each 

BSCC T and combine with reachability probabilities to BSCCs
− πs(s’) = ProbReach(s, T) · xT(s’)  if s’ is in BSCC T
− πs(s’) = 0  if s’ is not in a BSCC
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Steady-state - Example 2
• πs depends on initial state s
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Qualitative properties

• Quantitative properties:
− “what is the probability of event A?”

• Qualititative properties:
− “the probability of event A is 1”   (“almost surely A”)
− or: “the probability of event A is > 0”    (“possibly A”)

• For finite DTMCs, qualititative properties do not depend on 
the transition probabilities - only need underlying graph
− e.g. to determine “is target set T reached with probability 1?”

(more in the DTMC model checking lecture later)
− computing BSCCs of a DTMCs yields information about

long-run qualitative properties…
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Fundamental property

• Fundamental property of finite DTMCs…

• With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

• Formally:
− Prs0 ( s0s1s2… | ∃ i≥0, ∃ BSCC T such that

∀ j≥i sj ∈ T and
∀ s∈T sk = s for infinitely many k )  =  1

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25
0.5

0.5

0.5



26

Zeroconf example

• 2 BSCCs: {s6}, {s8}
• Thus, probability of trying to acquire a new address 

infinitely often (i.e., visiting {start} i.o.) is 0
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Repeated reachability

• Repeated reachability: GF B
− “always eventually…”, “infinitely often…”

• Prs0 ( s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B )
− where B ⊆ S is a set of states

• e.g. “what is the probability that the protocol successfully 
sends a message infinitely often?”

• Is this measurable? Yes…
− set of satisfying paths is:

− where Cm is the union of all cylinder sets Cyl(s0s1…sm) for 
finite paths s0s1…sm such that sm ∈ B
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Qualitative repeated reachability

• Prs0 ( s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B ) = 1
Prs0 ( “always eventually B” ) = 1

if and only if

• T ∩ B ≠ ∅ for each BSCC T that is reachable from s0

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5
Example:

B = { s3, s4, s5 }



29

Persistence

• Persistence properties:
− “eventually forever…”

• Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B )
− where B ⊆ S is a set of states

• e.g. “what is the probability of the leader election algorithm 
reaching, and staying in, a stable state?”

• e.g. “what is the probability that an irrecoverable error 
occurs?”

• Is this measurable? Yes… FG B = ¬ GF (S\B)
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Persistence

• Persistence properties:
− “eventually forever…”

• Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B )
− where B ⊆ S is a set of states

• e.g. “what is the probability of the leader election algorithm 
reaching, and staying in, a stable state?”

• e.g. “what is the probability that an irrecoverable error 
occurs?”

• Is this measurable? Yes… FG B = ¬ GF (S\B)
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Qualitative persistence

• Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B ) = 1
Prs0 ( “eventually forever B” ) = 1 

if and only if

• T ⊆ B for each BSCC T that is reachable from s0
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Aside: Infinite-state Markov chains

• Infinite-state random walk

• Value of probability p does affect qualitative properties

− ProbReach(s, {s0}) = 1 if p ≤ 0.5

− ProbReach(s, {s0}) < 1 if p > 0.5

• (not comprehensively studied in this course)
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Summing up…

• Transient state probabilities
− successive vector-matrix multiplications

• Long-run/steady-state probabilities
− requires graph analysis
− irreducible case: solve linear equation system
− reducible case: steady-state for sub-DTMCs + reachability

• Qualitative properties
− repeated reachability
− persistence


