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Discrete-time Markov chains

- Transitions

State-transition systems augmented with probabilities

States

— set of states representing possible configurations of the
system being modelled

— transitions between states model
evolution of system’s state;
occur in discrete time-steps

Probabilities

— probabilities of making transitions 0.01 {succ]
between states are given by
discrete probability distributions




Overview

- Previous lecture: path-based properties,
probabilistic reachability

- Transient state probabilities
-Long-run / steady-state probabilities

- Qualitative properties
— repeated reachability
— persistence



Transient state probabilities

- What is the probability, having started in state s, of being
in state s’ at time k?

— i.e. after exactly k steps/transitions have occurred
— this is the transient state probability: 1T (s’)

- Transient state distribution: 11 |
— (row) vector T i.e. 115 (s’) for all states s’

Note: this is a discrete probability distribution
— sowe have 115 : S — [0,1]
— recall instead Prs: Zpanis) — [0,1], where Zpaini) & 2Path®)



Transient distributions

k=1:




Computing transient probabilities

- Transient state probabilities:

— T k(S7) = Zgves Ts1(s™) - P(s™,s’)
— (i.e. look at incoming transitions, into s’)

- Computation of transient state distribution:

— T is the initial probability distribution

— e.g. inour case T, o(s’) = 1 if s’=s and 115,0(s’) = 0 otherwise
— M = M1+ P

i.e. successive vector-matrix multiplications



Computing transient probabilities
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Computing transient probabilities

* MM = Ty - P = T o Pk
kth matrix power: Pk
— P gives one-step transition probabilities
— Pk gives probabilities of k-step transition probabilities
— i.e. PX(s,s’) = 115 ,(s”)

- A possible optimisation: iterative squaring

— e_g_ P8 — ((PZ)Z)Z

— only requires log k multiplications

— but potentially inefficient, e.qg. if P is large and sparse

— in practice, successive vector-matrix multiplications preferred



Notion of time in DTMCs

- Two possible views on the timing aspects of a system
modelled as a DTMC:

1. Discrete time steps model time accurately
— e.g. clock ticks in a model of an embedded device
— or like dice example: interested in number of steps (tosses)

2. Time-abstract model

— no information assumed about the time transitions take
— e.g. simple Zeroconf model

In both cases, often beneficial to study long-run behaviour



Long-run behaviour

Consider the limit: gy = lim, ., 115

— where 11, | is the transient state distribution at time k,
having started in state s

— this limit, where it exists, is called the limiting distribution
— steady-state of the model

Intuitive idea

— the percentage of time, in the long run, spent in each state

— e.g. reliability: “in the long-run, what portion of time is the
system in an operational state”
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Limiting distribution

- Example:

Ts0,0 =

ESO,1

TTs0,2
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Long-run behaviour

- Questions:

— when does this limit exist?
— does it depend on the initial state/distribution?

g ¥os)

1
TGED):

- Need to consider underlying graph

— (V,E) where V are vertices and E < VxV are edges
—V=Sand E ={(s,s’) s.t. P(s,s’) > 0}



Graph terminology

- A state s’ is reachable from s if there is a finite path
starting in s and ending in s’

- A subset T of S is strongly connected if, for each pair of
states s and s’ in T, s’ is reachable from s passing only
through states in T

- A strongly connected component (SCC) is a maximally
strongly connected set of states (i.e. no superset of it is
also strongly connected)

- A bottom strongly connected component (BSCC) is an SCC
T from which no state outside T is reachable from T

- Alternative terminology: “s communicates with s’ 7,
“‘communicating class”, “recurrent class”
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Example - (B)SCCs

..........................................................
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Graph terminology

Markov chain is irreducible if all its states belong to a
single BSCC; otherwise reducible

1

- A state s is periodic, with period d, if
— the greatest common divisor of the set { n | f{M>0} equals d

— where ;™ is the probability of, when starting in state s,
returning to state s in exactly n steps

- A Markov chain is aperiodic if all its states have period 1
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Steady-state probabilities

- For a finite, irreducible, aperiodic DTMC (a.k.a., ergodic)
— limiting distribution always exists
— and is independent of initial state/distribution

- These are known as steady-state probabilities
— (or equilibrium probabilities)

— effect of initial distribution has disappeared, denoted 1

- These probabilities can be computed as the unique solution
of the linear equation system:

m-P=m and )  m(s)=1
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Steady-state - Balance equations

- Known as balance equations

PTrandZ

. That is: e
. probability of

P(s,s’) 4/// leaving and

enterlng a state s’

— TI(S") = Z5es T(S) -

- ZseS E(S) =1
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Steady-state - Example
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x =~ [0.332215, 0.335570,
0.003356, 0.328859 ]
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Steady-state - Example

x =~ [0.332215, 0.335570,
0.003356, 0.328859 ]

Long-run percentage of time
spent in the state “try”
~ 33.6%

Long-run percentage of time
spent in “fail”’/’succ”

~ 0.003356 + 0.328859

~ 33.2%
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Periodic DTMCs

- For (finite, irreducible) periodic DTMCs, this limit:

' lim '
TLED = 5 o T, ) ol
1
- in general does not exist, but this limit does:

(and where both limits exist,

im 1 < \ e.g. for aperiodic DTMCs,
n—on ' ;HS,,( (s) these 2 limits coincide)

- Steady-state probabilities for periodic DTMCs can still be
computed, again by solving the same set of linear
equations:

m-P=1 and ZSESE(S) =1
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Steady-state — General case

- General case: reducible DTMC

- there are multiple solutions of steady-state equation

m-P=m and )  m(s)=1

- number of (lin. Independent) solutions = number of BSCCs

- limiting distribution obtained by iterations exists
- limiting distribution depends on initial one
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Steady-state — General case

- General case: reducible DTMC

— compute vector 1T,

- Compute BSCCs for DTMC; then two cases to consider:
-« (1)sisinaBSCCT

— compute steady-state probabilities x in sub-DTMC for T
— m(s’) = x(s’) ifs’inT
— 1(s’) =0 ifs’notinT

« (2) sis not in any BSCC

— compute steady-state probabilities xt for sub—-DTMC of each
BSCC T and combine with reachability probabilities to BSCCs

— 11(s’) = ProbReach(s, T) - x1(s’) if s’ isin BSCCT
— 11(s’) = 0 if s’ is not in a BSCC
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Steady-state - Example 2

- I, depends on initial state s

0.5

sesssnsnsnnnfosnnnnnnnnnnnnnr genensnnnanfunnnnnannnnnnnnnr

..........................................................

Ts3=[000100]
T, =[000010]
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Qualitative properties

Quantitative properties:
— “what is the probability of event A?”

- Qualititative properties:

— “the probability of event Ais 17 (“almost surely A”)
— or: “the probability of event Ais > 0" (“possibly A”)

For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph

— e.g. to determine “is target set T reached with probability 17"
(more in the DTMC model checking lecture later)

— computing BSCCs of a DTMCs yields information about
long-run qualitative properties...
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Fundamental property

- Fundamental property of finite DTMCs...

. With probability 1. — e
a BSCC will be reached > V.
and all of its states e
visited infinitely often ;o5 25 |

- Formally:

— Pryo (50S1S7... | 3i=0, 3 BSCC T such that
V j=is;eTand
V s€T s, = s for infinitely many k) = 1
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Zeroconf example

- 2 BSCCs: {sg}, {ss}

- Thus, probability of trying to acquire a new address
infinitely often (i.e., visiting {start} i.o.) is O

P
]
{error}
1
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Repeated reachability

- Repeated reachability: GF B

— “always eventually...”, “infinitely often...”
» Pro(s0$1S;,... | Vi=0 3 j=is; € B)
— where B € S is a set of states

- e.dg. “what is the probability that the protocol successfully

sends a message infinitely often?”

- Is this measurable? Yes...

— set of satisfying paths is: ﬂ UCm

n>0 m>n

— where C,, is the union of all cylinder sets Cyl(sgs;...s) for
finite paths s¢s;...sm such that s, € B
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Qualitative repeated reachability

« Preo(5081S5... | Vi=0 3 j>is;€B) =1
Py, ( “always eventually B”) = 1

if and only if

- Tn B+ @ for each BSCC T that is reachable from s,

Example:

B =153, 54, S5}
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Persistence

Persistence properties:
— “eventually forever...”

Proo (5051S;... | 3i=0 V j=is; € B)
— where B € S is a set of states

e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

e.g. “what is the probability that an irrecoverable error
occurs?”

Is this measurable? Yes...
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Persistence

- Persistence properties:

— “eventually forever...”
+ Pro(s0$1S,... | 3i=0 V j=is; € B)
— where B € S is a set of states

- e.g. “what is the probability of the leader election algorithm
reaching, and staying in, a stable state?”

- e.g. “what is the probability that an irrecoverable error
occurs?”

- Is this measurable? Yes... FG B = — GF (S\B)
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Qualitative persistence

« Pryo(sps152... | 3i=0V j=is;€B) =1
Pr., ( “eventually forever B” ) = 1

if and only if

- T < B for each BSCC T that is reachable from s,

Example:

B :{521 S3, Sa, 55}
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Aside: Infinite-state Markov chains

- Infinite-state random walk

P P P

R "
Nec@oS oG o
1- 1- 1-

P P Y

- Value of probability p does affect qualitative properties

- (not comprehensively studied in this course)

— ProbReach(s, {so}) = 1 if p < 0.5

— ProbReach(s, {so}) < 1 if p > 0.5
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Summing up...

- Transient state probabilities

— successive vector-matrix multiplications

Long-run/steady-state probabilities
— requires graph analysis
— irreducible case: solve linear equation system
— reducible case: steady-state for sub-DTMCs + reachability

Qualitative properties
— repeated reachability
— persistence
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