
Lecture 2
Discrete-time Markov Chains

Alessandro Abate

Department of Computer Science
University of Oxford

Probabilistic Model Checking



Probabilistic Model Checking

• Formal verification and analysis of systems that exhibit 
probabilistic behaviour
− e.g. randomised algorithms/protocols
− e.g. systems with failures/unreliability

• Based on the construction and analysis of precise 
mathematical models

• This lecture: discrete-time Markov chains
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Overview

• Probability basics

• Discrete-time Markov chains (DTMCs)
− definition, properties, examples

• Formalising path-based properties of DTMCs
− probability space over infinite paths

• Probabilistic reachability
− definition, computation

• Sources and further reading: Section 10.1 of [BK08]
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Probability basics

• First, we need an experiment
− The sample space Ω is the set of possible outcomes
− An event is a subset of Ω, can form events A ∩ B, A ∪ B, Ω ∖ A

• Examples:
− toss a coin: Ω = {H,T},  events: “H”, “T”
− toss two coins: Ω = {(H,H),(H,T),(T,H),(T,T)},

event: “at least one H”
− toss a coin ∞–often: Ω is set of infinite sequences of H/T

event: “H in the first 3 throws”
• Probability is:

− Pr(“H”) = Pr(“T”) = 1/2,   Pr(“at least one H”) = 3/4
− Pr(“H in the first 3 throws”) =

4

1 - 1/8 = 7/8



Probability example

• Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao:
− start at 0, toss a coin
− upper branch when H
− lower branch when T
− repeat until value chosen

• Is this algorithm correct?
− e.g. probability of obtaining a 4?
− obtain as disjoint union of events
− THH, TTTHH, TTTTTHH, …
− Pr(“eventually 4”)

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6
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Example…

• Other properties?
− “what is the probability of termination?”

• e.g. efficiency?
− “what is the probability of needing

more than 4 coin tosses?”
− “on average, how many

coin tosses are needed?”

• Probabilistic model checking provides a framework for 
these kinds of properties: we need to discuss  
− modelling languages
− property specification languages
− model checking algorithms, techniques and tools
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Discrete-time Markov chains

• State-transition systems augmented with probabilities

• States
− set of states representing possible configurations of the 

system being modelled
• Transitions

− transitions between states model
evolution of system’s state;
occur in discrete time-steps

• Probabilities
− probabilities of making transitions

between states are given by
discrete probability distributions

• Labels
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Markov property

• If the current state is known (namely, “conditional on 
current state”), then future states of the system are 
independent of its past states

• i.e. the current state of the model contains all information 
that can influence the future evolution of the system

• also known as “memoryless-ness”

8



Simple DTMC example

• Modelling a very simple communication protocol
− after one step, process starts trying to send a message
− with probability 0.01, channel not ready so wait a step
− with probability 0.98, send message successfully and stop
− with probability 0.01, message sending fails, thus restart
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Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,P,L) where: 
− S is a set of states (S is known as the “state space”)
− sinit ∈ S is the initial state
− P : S × S → [0,1] is the transition probability matrix

where Σs’∈S P(s,s’) = 1 for all s ∈ S 
− L : S → 2AP is function labelling states with atomic 

propositions (taken from a finite set AP)
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Simple DTMC example
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D = (S,sinit,P,L)
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Some more terminology

• P is a stochastic matrix, meaning it satisifes:
− P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) = 1 for all s ∈ S

• A sub-stochastic matrix satisfies:
− P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) ≤ 1 for all s ∈ S

• An absorbing state is a state s for which:
− P(s,s) = 1 and P(s,s’) = 0 for all s≠s’
− the transition from s to itself is sometimes called a self-loop

• Note: Since we assume P is stochastic…
− every state has at least one outgoing transition
− i.e. no deadlocks (in model checking terminology)
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DTMCs: An alternative definition

• Alternative definition… a DTMC is:
− a family of random variables { X(k) | k=0,1,2,… }
− where X(k) are r.v. values at discrete time steps
− i.e. X(k) is the state of the system at time step k
− which satisfies: 

• The Markov property (“memoryless-ness”)
− Pr( X(k)=sk | X(k-1)=sk-1, … , X(0)=s0 )

= Pr( X(k)=sk | X(k-1)=sk-1 )
− for a given current state, future states are independent of past

• This allows us to adopt the “state-based” view presented so 
far (which is better suited to this context)
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Other assumptions made here

• We consider time-homogenous DTMCs
− transition probabilities are independent of time step k: 
− Pr( X(k)=sk | X(k-1)=sk-1 ) = P(sk-1,sk) 
− otherwise: time-inhomogenous (tricky instance) 

• We will (mostly) assume that the state space S is finite
− in general, S can be a countable set 

• Initial state sinit ∈ S can be generalised…
− to an initial probability distribution sinit : S → [0,1]

• Transition probabilities are reals: P(s,s’) ∈ [0,1]
− but for algorithmic purposes, are assumed to be rationals
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DTMC example 2 - Coins and dice

• Recall Knuth/Yao’s die algorithm from earlier:

S = { s0, s1, …, s6, 1, 2, …, 6 }

sinit = s0

P(s0,s1)=0.5
P(s0,s2)=0.5
etc.

L(s0) = {init}
etc.
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DTMC example 3 - Zeroconf

• Zeroconf = “Zero configuration networking”
− self-configuration for local, ad-hoc networks
− automatic configuration of unique IP for new devices
− simple; no DHCP, DNS, …

• Basic idea:
− 65,024 available IP addresses (IANA-specified range)
− new node picks address U at random
− broadcasts “probe” messages: “Who is using U?”
− a node already using U replies to the probe
− in this case, protocol is restarted
− messages may not get sent (transmission fails, host busy, …)
− so: nodes send multiple (n) probes, waiting after each one
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DTMC for Zeroconf
− n=4 probes, m existing nodes in network
− probability of message loss: p
− probability that new address is in use: q = m/65024
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Properties of DTMCs

• Path-based properties
− what is the probability of observing a particular behaviour (or 

class of behaviours)?
− e.g. “what is the probability of throwing a 4?”

• Transient properties
− probability of being in state s after t steps?

• Steady state
− long-run probability of being in each state

• Expectations
− e.g. “what is the average number of coin tosses required?”
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DTMCs and paths

• A path in a DTMC represents an execution (i.e. one 
possible behaviour) of the system being modelled

• Formally:
− infinite sequence of states s0s1s2…

such that P(si,si+1) > 0, ∀i≥0
− infinite unfolding of DTMC   

(no blocking conditions)
• Examples:

− never succeeds: (s0s1s2)ω
− tries, waits, fails, retries, succeeds: s0s1s1s2s0s1(s3)ω

• Notation:
− Path(s) = set of all infinite paths starting in state s
− can also define finite-length paths:
− Pathfin(s) = set of all finite paths starting in state s
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Paths and probabilities

• To reason (quantitatively) about this system
− need to define a probability space over paths

• Intuitively:
− sample space: Path(s) = set of all

infinite paths from a state s
− events: sets of infinite paths from s
− basic events: cylinder sets (or “cones”)
− cylinder set Cyl(ω), for a finite path ω

= set of infinite paths with the common finite prefix ω
− for example: Cyl(ss1s2)

s1 s2s
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Probability spaces

• Let Ω be an arbitrary non-empty sample set

• A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω
closed under complementation and countable union, i.e.:
− if A ∈ Σ, the complement Ω ∖ A is in Σ
− if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ
− the empty set ∅ is in Σ

• Elements of Σ are called measurable sets or events

• Theorem: For any family F of subsets of Ω, there exists a 
unique smallest σ-algebra on Ω containing F
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Probability spaces

• Probability space (Ω, Σ, Pr)

− Ω is the sample space

− Σ is the set of events: σ-algebra on Ω

− Pr : Σ → [0,1] is the probability measure:
Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai
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Probability space - Simple example

• Sample space Ω
− Ω = {1,2,3}

• Event set Σ
− e.g. powerset of Ω
− Σ = { ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }
− (closed under complement/countable union, contains ∅)

• Probability measure Pr
− e.g. Pr(1) = Pr(2) = Pr(3) = 1/3
− Pr({1,2}) = 1/3+1/3 = 2/3, etc.
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Probability space - Simple example 2

• Sample space Ω
− Ω = ℕ = { 0,1,2,3,4,… }

• Event set Σ
− e.g. Σ = { ∅, “odd”, “even”, ℕ }
− (closed under complement/countable union, contains ∅)

• Probability measure Pr
− e.g. Pr(“odd”) = 0.5, Pr(“even”) = 0.5
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Probability space over paths
• Sample space Ω = Path(s)

− set of infinite paths with initial state s
• Event set ΣPath(s)

− the cylinder set Cyl(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }
− ΣPath(s) is the least σ-algebra on Path(s) containing Cyl(ω) for 

all finite paths ω starting in s
• Probability measure Prs

− define probability Ps(ω) for finite path ω = ss1…sn as:
• Ps(ω) = 1 if ω has length one (i.e. ω = s)
• Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise
• define Prs(Cyl(ω)) = Ps(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details
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Paths and probabilities - Example
• Paths where sending fails immediately

− ω = s0s1s2
− Cyl(ω) = all paths starting with s0s1s2…
− Ps0(ω) = P(s0,s1) · P(s1,s2)

= 1 · 0.01 = 0.01
− Prs0(Cyl(ω)) = Ps0(ω) = 0.01

• Paths which are eventually successful and with no failures
− Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …
− Prs0( Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … )

= Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …
= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …
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Reachability

• Key property: probabilistic reachability
− probability of a path reaching a state in some target set T ⊆ S
− e.g. “probability of the algorithm terminating successfully?”
− e.g. “probability that an error occurs during execution?”

• Dual of reachability: invariance
− probability of remaining within some class of states
− Pr(“remain in set of states T”) = 1 - Pr(“reach set S\T”)
− e.g. “probability that an error never occurs”

• We will also consider other variants of reachability
− time-bounded, constrained (“until”), …

27



Reachability probabilities

• Formally: ProbReach(s, T) = Prs(Reach(s, T))
− where Reach(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i }

• Is Reach(s, T) measurable for any T ⊆ S ? Yes…
− Reach(s, T) is the union of all basic cylinders

Cyl(s0s1…sn) where s0s1…sn in Reachfin(s, T) 
− Reachfin(s, T) contains all finite paths s0s1…sn such that:

s0=s, s0,…,sn-1 ∉ T, sn ∈ T (reaches T first time)
− set of such finite paths s0s1…sn is countable

• Probability
− in fact, the above is a disjoint union
− so probability obtained by simply summing…
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Computing reachability probabilities

• Compute as (infinite) sum…

• Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

• Example:
− ProbReach(s0, {4}) 
= Prs0(Reach(s0, {4}))
− Finite path fragments:
− s0(s2s6)ns2s54 for n ≥ 0
− Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …
= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6
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Computing reachability probabilities

• Compute as (infinite) sum…

• Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

• Example:
− ProbReach(s0, {4}) 
= Prs0(Reach(s0, {4}))
− Finite path fragments:
− s0(s2s6)ns2s54 for n ≥ 0
− Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …
= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6
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Computing reachability probabilities

• ProbReach(s0, {s6}) : let us compute as infinite sum …
− However, this doesn’t scale…
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Computing reachability probabilities

• Alternative: derive a linear equation system
− solve for all states simultaneously
− i.e. compute vector ProbReach(T)

• Let xs denote ProbReach(s, T) 

• Solve:

    

 

xs =  
1
0

P(s,s' ) × xs'
s'ÎS
å

if s Î T
if T is not reachable from s
otherwise

ì 

í 
ï 
ï 

î 
ï 
ï 

32



Exercise

• Compute ProbReach(s0, {4})
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Unique solutions

• Why the need to identify states that cannot reach T?

• Consider this simple DTMC:
− compute probability of reaching {s0} from s1

− linear equation system: xs0 = 1, xs1 = xs1
− multiple solutions: (xs0, xs1) = (1,p) for any p ∈ [0,1]

s1s0
1

1
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Computing reachability probabilities

• Another alternative: least fixed point characterisation

• Consider functions of the form:
− F : [0,1]|S| → [0,1]|S|

• And define:
− y ≤ y’ iff y(s) ≤ y’(s) for all s

• y is a fixed point of F if F(y) = y

• A fixed point x of F is the least fixed point of F if x ≤ y for 
any other fixed point y

vectors of
probabilities
for each state
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Least fixed point

• ProbReach(T) is the least fixed point of the function F:

• This yields a simple iterative algorithm to approximate 
ProbReach(T):

− x(0) = 0 (i.e. x(0)(s) = 0 for all s)
− x(n+1) = F(x(n))

− x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ …
− ProbReach(T) = limn→∞ x(n)

  

 

F(y)(s)   =   
1

P(s,s' )× y(s' )
s'ÎS
å

ì 
í 
ï 

î ï 

if s Î T
otherwise.

in practice, terminate
when for example:

maxs | x(n+1)(s) - x(n)(s)) | < ɛ

for some user-defined
tolerance value ɛ
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Least fixed point

• Expressing ProbReach as a least fixed point…

− corresponds to solving the linear equation system
using the power method
• other iterative methods exist (see later)
• power method is guaranteed to converge

− generalises non-probabilistic reachability

− can be generalised to:
• constrained reachability (see PCTL “until”)
• reachability for Markov decision processes

− also yields step-bounded reachability probabilities…
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Bounded reachability probabilities

• Probability of reaching T from s within k steps

• Formally: ProbReach≤k(s, T) = Prs(Reach≤k(s, T)) where:
− Reach≤k(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i≤k }

• ProbReach≤k(T) = x(k+1) from the previous fixed point
− which gives us…

    

 

ProbReach£k(s, T) =  
1
0

P(s,s' )× ProbReach£k-1(s',  T)
s'ÎS
å

if s Î T
if k = 0 & s Ï T
if k > 0 & s Ï T

ì 

í 
ï 
ï 

î 
ï 
ï 
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(Bounded) reachability

• ProbReach(s0, {1,2,3,4,5,6}) = 1

• ProbReach≤k (s0, {1,2,3,4,5,6}) = …
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Summing up…

• Discrete-time Markov chains (DTMCs)
− state-transition systems augmented with probabilities

• Formalising path-based properties of DTMCs
− probability space over infinite paths

• Probabilistic reachability
− infinite sum
− linear equation system
− least fixed point characterisation
− bounded reachability
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