Lecture 2 Discrete-time Markov Chains

Alessandro Abate

Department of Computer Science University of Oxford

Probabilistic Model Checking

- Formal verification and analysis of systems that exhibit probabilistic behaviour
- e.g. randomised algorithms/protocols
- e.g. systems with failures/unreliability
- Based on the construction and analysis of precise mathematical models
- This lecture: discrete-time Markov chains

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
- definition, properties, examples
- Formalising path-based properties of DTMCs
- probability space over infinite paths
- Probabilistic reachability
- definition, computation
- Sources and further reading: Section 10.1 of [BK08]

Probability basics

- First, we need an experiment
- The sample space Ω is the set of possible outcomes
- An event is a subset of Ω, can form events $A \cap B, A \cup B, \Omega \backslash A$
- Examples:
- toss a coin:
$\Omega=\{\mathrm{H}, \mathrm{T}\}$, events: "H", "T"
- toss two coins:
$\Omega=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$,
event: "at least one H "
- toss a coin ∞-often:
Ω is set of infinite sequences of H / T event: "H in the first 3 throws"
- Probability is:
- $\operatorname{Pr}($ " $\mathrm{H} ")=\operatorname{Pr}(" \mathrm{~T} ")=1 / 2, \quad \operatorname{Pr}$ ("at least one H") $=3 / 4$
$-\operatorname{Pr}($ " H in the first 3 throws") $=1-1 / 8=7 / 8$

Probability example

- Modelling a 6-sided die using a fair coin
- algorithm due to Knuth/Yao:
- start at 0 , toss a coin
- upper branch when H
- lower branch when T
- repeat until value chosen
- Is this algorithm correct?
- e.g. probability of obtaining a 4?
- obtain as disjoint union of events
- THH, TTTHH, TTTTTHH, ...
- Pr ("eventually 4")

$$
=(1 / 2)^{3}+(1 / 2)^{5}+(1 / 2)^{7}+\ldots=1 / 6
$$

Example...

- Other properties?
- "what is the probability of termination?"
- e.g. efficiency?
- "what is the probability of needing more than 4 coin tosses?"
- "on average, how many coin tosses are needed?"

- Probabilistic model checking provides a framework for these kinds of properties: we need to discuss
- modelling languages
- property specification languages
- model checking algorithms, techniques and tools

Discrete-time Markov chains

- State-transition systems augmented with probabilities
- States
- set of states representing possible configurations of the system being modelled
- Transitions
- transitions between states model evolution of system's state; occur in discrete time-steps
- Probabilities
- probabilities of making transitions
 between states are given by discrete probability distributions
- Labels

Markov property

- If the current state is known (namely, "conditional on current state"), then future states of the system are independent of its past states
- i.e. the current state of the model contains all information that can influence the future evolution of the system
- also known as "memoryless-ness"

Simple DTMC example

- Modelling a very simple communication protocol
- after one step, process starts trying to send a message
- with probability 0.01 , channel not ready so wait a step
- with probability 0.98 , send message successfully and stop
- with probability 0.01 , message sending fails, thus restart

Discrete-time Markov chains

- Formally, a DTMC D is a tuple ($\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}$) where:
- S is a set of states (S is known as the "state space")
$-s_{\text {init }} \in S$ is the initial state
- $\mathbf{P}: S \times S \rightarrow[0,1]$ is the transition probability matrix where $\Sigma_{s^{\prime} \in S} P\left(s, s^{\prime}\right)=1$ for all $s \in S$
$-L: S \rightarrow 2^{\text {AP }}$ is function labelling states with atomic propositions (taken from a finite set AP)

Simple DTMC example

Some more terminology

- \mathbf{P} is a stochastic matrix, meaning it satisifes:
$-\mathbf{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in[0,1]$ for all $\mathrm{s}, \mathrm{s}^{\prime} \in \mathrm{S}$ and $\Sigma_{s^{\prime} \in S} \mathbf{P}\left(\mathrm{~s}, \mathrm{~s}^{\prime}\right)=1$ for all $\mathrm{s} \in \mathrm{S}$
- A sub-stochastic matrix satisfies:
$-\mathbf{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in[0,1]$ for all $\mathrm{s}, \mathrm{s}^{\prime} \in \mathrm{S}$ and $\Sigma_{s^{\prime} \in S} \mathbf{P}\left(\mathrm{~s}, \mathrm{~s}^{\prime}\right) \leq 1$ for all $\mathrm{s} \in \mathrm{S}$
- An absorbing state is a state s for which:
$-\mathbf{P}(\mathrm{s}, \mathrm{s})=1$ and $\mathrm{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)=0$ for all $\mathrm{s} \neq \mathrm{s}^{\prime}$
- the transition from s to itself is sometimes called a self-loop
- Note: Since we assume \mathbf{P} is stochastic...
- every state has at least one outgoing transition
- i.e. no deadlocks (in model checking terminology)

DTMCs: An alternative definition

- Alternative definition... a DTMC is:
- a family of random variables $\{\mathrm{X}(\mathrm{k}) \mid \mathrm{k}=0,1,2, \ldots\}$
- where $X(k)$ are r.v. values at discrete time steps
- i.e. $X(k)$ is the state of the system at time step k
- which satisfies:
- The Markov property ("memoryless-ness")

$$
\begin{aligned}
& -\operatorname{Pr}\left(X(k)=s_{k} \mid X(k-1)=s_{k-1}, \ldots, X(0)=s_{0}\right) \\
& \quad=\operatorname{Pr}\left(X(k)=s_{k} \mid X(k-1)=s_{k-1}\right)
\end{aligned}
$$

- for a given current state, future states are independent of past
- This allows us to adopt the "state-based" view presented so far (which is better suited to this context)

Other assumptions made here

- We consider time-homogenous DTMCs
- transition probabilities are independent of time step k :
$-\operatorname{Pr}\left(X(k)=s_{k} \mid X(k-1)=s_{k-1}\right)=P\left(s_{k-1}, s_{k}\right)$
- otherwise: time-inhomogenous (tricky instance)
- We will (mostly) assume that the state space S is finite
- in general, S can be a countable set
- Initial state $s_{\text {init }} \in S$ can be generalised...
- to an initial probability distribution $\mathrm{s}_{\text {init }}: S \rightarrow[0,1]$
- Transition probabilities are reals: $\mathbf{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in[0,1]$
- but for algorithmic purposes, are assumed to be rationals

DTMC example 2 - Coins and dice

- Recall Knuth/Yao's die algorithm from earlier:

DTMC example 3 - Zeroconf

- Zeroconf = "Zero configuration networking"
- self-configuration for local, ad-hoc networks
- automatic configuration of unique IP for new devices
- simple; no DHCP, DNS, ...
- Basic idea:
- 65,024 available IP addresses (IANA-specified range)
- new node picks address U at random
- broadcasts "probe" messages: "Who is using U?"
- a node already using U replies to the probe
- in this case, protocol is restarted
- messages may not get sent (transmission fails, host busy, ...)
- so: nodes send multiple (n) probes, waiting after each one

DTMC for Zeroconf

- $\mathrm{n}=4$ probes, m existing nodes in network
- probability of message loss: p
- probability that new address is in use: $q=m / 65024$

Properties of DTMCs

- Path-based properties
- what is the probability of observing a particular behaviour (or class of behaviours)?
- e.g. "what is the probability of throwing a 4?"
- Transient properties
- probability of being in state s after t steps?
- Steady state
- long-run probability of being in each state
- Expectations
- e.g. "what is the average number of coin tosses required?"

DTMCs and paths

- A path in a DTMC represents an execution (i.e. one possible behaviour) of the system being modelled
- Formally:
- infinite sequence of states $s_{0} s_{1} s_{2} \ldots$ such that $P\left(s_{i}, s_{i+1}\right)>0, \forall i \geq 0$
- infinite unfolding of DTMC (no blocking conditions)
- Examples:

- never succeeds: $\left(\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2}\right)^{\omega}$
- tries, waits, fails, retries, succeeds: $s_{0} s_{1} s_{1} s_{2} s_{0} s_{1}\left(s_{3}\right)^{\omega}$
- Notation:
- Path(s) = set of all infinite paths starting in state s
- can also define finite-length paths:
- Path ${ }_{\text {fin }}(\mathrm{s})=$ set of all finite paths starting in state s

Paths and probabilities

- To reason (quantitatively) about this system
- need to define a probability space over paths
- Intuitively:
- sample space: Path(s) = set of all infinite paths from a state s
- events: sets of infinite paths from s
- basic events: cylinder sets (or "cones")
- cylinder set Cyl(ω), for a finite path ω $=$ set of infinite paths with the common finite prefix ω
- for example: Cyl($\mathrm{ss}_{1} \mathrm{~s}_{2}$)

Probability spaces

- Let Ω be an arbitrary non-empty sample set
- A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
- if $A \in \Sigma$, the complement $\Omega \backslash A$ is in Σ
- if $A_{i} \in \Sigma$ for $i \in \mathbb{N}$, the union $\cup_{i} A_{i}$ is in Σ
- the empty set \varnothing is in Σ
- Elements of Σ are called measurable sets or events
- Theorem: For any family F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F

Probability spaces

- Probability space (Ω, Σ, Pr)
- Ω is the sample space
- Σ is the set of events: σ-algebra on Ω
$-\operatorname{Pr}: \Sigma \rightarrow[0,1]$ is the probability measure:
$\operatorname{Pr}(\Omega)=1$ and $\operatorname{Pr}\left(\cup_{i} A_{i}\right)=\Sigma_{i} \operatorname{Pr}\left(A_{i}\right)$ for countable disjoint A_{i}

Probability space - Simple example

- Sample space Ω

$$
-\Omega=\{1,2,3\}
$$

- Event set Σ
- e.g. powerset of Ω
$-\Sigma=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- (closed under complement/countable union, contains \varnothing)
- Probability measure Pr
- e.g. $\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=1 / 3$
$-\operatorname{Pr}(\{1,2\})=1 / 3+1 / 3=2 / 3$, etc.

Probability space - Simple example 2

- Sample space Ω

$$
-\Omega=\mathbb{N}=\{0,1,2,3,4, \ldots\}
$$

- Event set Σ
- e.g. $\Sigma=\{\varnothing$, "odd", "even", $\mathbb{N}\}$
- (closed under complement/countable union, contains \varnothing)
- Probability measure Pr
- e.g. $\operatorname{Pr}($ "odd") $=0.5, \operatorname{Pr}($ "even" $)=0.5$

Probability space over paths

- Sample space $\Omega=$ Path(s)
- set of infinite paths with initial state s
- Event set $\Sigma_{\text {Path(s) }}$
- the cylinder set Cyl $(\omega)=\left\{\omega^{\prime} \in \operatorname{Path}(\mathrm{s}) \mid \omega\right.$ is prefix of $\left.\omega^{\prime}\right\}$
$-\Sigma_{\text {Path }(s)}$ is the least σ-algebra on Path(s) containing Cyl(ω) for all finite paths ω starting in s
- Probability measure Pr_{s}
- define probability $P_{s}(\omega)$ for finite path $\omega=s s_{1} \ldots s_{n}$ as:
- $P_{s}(\omega)=1$ if ω has length one (i.e. $\omega=s$)
- $P_{s}(\omega)=P\left(s, s_{1}\right) \cdot \ldots \cdot P\left(s_{n-1}, s_{n}\right)$ otherwise
- define $\operatorname{Pr}_{s}(\operatorname{Cyl}(\omega))=P_{s}(\omega)$ for all finite paths ω
- Pr_{s} extends uniquely to a probability measure $\operatorname{Pr}_{s}: \Sigma_{\text {Path(s) }} \rightarrow[0,1]$
- See [KSK76] for further details

Paths and probabilities - Example

- Paths where sending fails immediately

$$
\begin{aligned}
& -\omega=\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \\
& -\mathrm{Cyl}(\omega)=\text { all paths starting with } \mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \\
& -\mathbf{P}_{\mathrm{s} 0}(\omega)=\mathrm{P}\left(\mathrm{~s}_{0}, \mathrm{~s}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right) \\
& \quad=1 \cdot 0.01=0.01 \\
& -\operatorname{Pr}_{\mathrm{s} 0}(\mathrm{Cyl}(\omega))=\mathrm{P}_{\mathrm{s} 0}(\omega)=0.01
\end{aligned}
$$

- Paths which are eventually successful and with no failures
$-\operatorname{Cyl}\left(s_{0} s_{1} s_{3}\right) \cup \operatorname{Cyl}\left(s_{0} s_{1} s_{1} s_{3}\right) \cup \operatorname{Cyl}\left(s_{0} s_{1} s_{1} s_{1} s_{3}\right) \cup \ldots$
$-\operatorname{Pr}_{50}\left(\operatorname{Cyl}\left(s_{0} s_{1} s_{3}\right) \cup \operatorname{Cyl}\left(s_{0} s_{1} s_{1} s_{3}\right) \cup \operatorname{Cyl}\left(s_{0} s_{1} s_{1} s_{1} s_{3}\right) \cup \ldots\right)$
$=P_{\mathrm{s} 0}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{3}\right)+\mathrm{P}_{\mathrm{s} 0}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{1} \mathrm{~s}_{3}\right)+\mathrm{P}_{\mathrm{s} 0}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{1} \mathrm{~s}_{1} \mathrm{~s}_{3}\right)+\ldots$
$=1 \cdot 0.98+1 \cdot 0.01 \cdot 0.98+1 \cdot 0.01 \cdot 0.01 \cdot 0.98+\ldots$
$=0.9898989898 \ldots$
$=98 / 99$

Reachability

- Key property: probabilistic reachability
- probability of a path reaching a state in some target set $\mathrm{T} \subseteq \mathrm{S}$
- e.g. "probability of the algorithm terminating successfully?"
- e.g. "probability that an error occurs during execution?"
- Dual of reachability: invariance
- probability of remaining within some class of states
$-\operatorname{Pr}($ "remain in set of states T ") $=1-\operatorname{Pr}$ ("reach set $S \backslash T$ ")
- e.g. "probability that an error never occurs"
- We will also consider other variants of reachability
- time-bounded, constrained ("until"), ...

Reachability probabilities

- Formally: $\operatorname{ProbReach}(s, T)=\operatorname{Pr}_{\mathrm{s}}(\operatorname{Reach}(\mathrm{s}, \mathrm{T}))$
- where Reach(s, T) $=\left\{s_{0} s_{1} s_{2} \ldots \in \operatorname{Path}(s) \mid s_{i}\right.$ in T for some $\left.i\right\}$
- Is Reach(s, T) measurable for any $T \subseteq S$? Yes...
- Reach(s, T) is the union of all basic cylinders Cyl $\left(s_{0} s_{1} \ldots s_{n}\right)$ where $s_{0} s_{1} \ldots s_{n}$ in $\operatorname{Reach}_{\text {fin }}\left(s_{,}, T\right)$
- Reach ${ }_{\text {fin }}\left(\mathrm{s}, \mathrm{T}\right.$) contains all finite paths $\mathrm{s}_{0} \mathrm{~S}_{1} \ldots \mathrm{~s}_{\mathrm{n}}$ such that: $\mathrm{s}_{0}=\mathrm{s}, \mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}-1} \notin \mathrm{~T}, \mathrm{~s}_{\mathrm{n}} \in \mathrm{T}$ (reaches T first time)
- set of such finite paths $\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}$ is countable
- Probability
- in fact, the above is a disjoint union
- so probability obtained by simply summing...

Computing reachability probabilities

- Compute as (infinite) sum...
- $\Sigma_{\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}} \in \operatorname{Reachfin(s,T)}} \operatorname{Pr}_{\mathrm{s} 0}\left(\mathrm{Cyl}^{\left.\left(\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)\right)}\right.$
$=\Sigma_{\left.\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}} \in \text { Reachfin(} \mathrm{s}, \mathrm{T}\right)} \mathrm{P}\left(\mathrm{s}_{0}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- Example:
- ProbReach($\mathrm{s}_{0},\{4\}$)

Computing reachability probabilities

- Compute as (infinite) sum...
- $\Sigma_{\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}} \in \operatorname{Reachfin(s,T)}} \operatorname{Pr}_{\mathrm{so}}\left(\mathrm{Cyl}^{\left.\left(\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)\right)}\right.$
$=\Sigma_{\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}} \in \operatorname{Reachfin}(\mathrm{s}, \mathrm{T})} \mathrm{P}\left(\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$
- Example:
- ProbReach(so, \{4\})
$=\operatorname{Pr}_{50}\left(\operatorname{Reach}^{\left.\left(\mathrm{s}_{0},\{4\}\right)\right)}\right.$
- Finite path fragments:
- $\mathrm{s}_{0}\left(\mathrm{~s}_{2} \mathrm{~s}_{6}\right)^{\mathrm{n}} \mathrm{s}_{2} \mathrm{~s}_{5} 4$ for $\mathrm{n} \geq 0$

$-P_{50}\left(s_{0} s_{2} s_{5} 4\right)+P_{50}\left(s_{0} s_{2} s_{6} s_{2} s_{5} 4\right)+P_{50}\left(s_{0} s_{2} s_{6} s_{2} s_{6} s_{2} s_{5} 4\right)+\ldots$
$=(1 / 2)^{3}+(1 / 2)^{5}+(1 / 2)^{7}+\ldots=1 / 6$

Computing reachability probabilities

- ProbReach $\left(\mathrm{s}_{0},\left\{\mathrm{~s}_{6}\right\}\right)$: let us compute as infinite sum ...
- However, this doesn't scale...

Computing reachability probabilities

- Alternative: derive a linear equation system
- solve for all states simultaneously
- i.e. compute vector ProbReach(T)
- Let x_{s} denote ProbReach(s, T)
- Solve:

$$
x_{s}=\left\{\begin{array}{cl}
1 & \text { if } s \in T \\
0 & \text { if } T \text { is not reachable from } s \\
\sum_{s^{\prime} \in S} P\left(s, s^{\prime}\right) \cdot x_{s^{\prime}} & \text { otherwise }
\end{array}\right.
$$

Exercise

- Compute ProbReach(s $\left.{ }_{0},\{4\}\right)$

Unique solutions

- Why the need to identify states that cannot reach T ?
- Consider this simple DTMC:
- compute probability of reaching $\left\{s_{0}\right\}$ from s_{1}

- linear equation system: $x_{s_{0}}=1, x_{s_{1}}=x_{s_{1}}$
- multiple solutions: $\left(x_{50}, x_{s 1}\right)=(1, p)$ for any $p \in[0,1]$

Computing reachability probabilities

- Another alternative: least fixed point characterisation
- Consider functions of the form:

$-\mathrm{y} \leq \mathrm{y}^{\prime}$ iff $\mathrm{y}(\mathrm{s}) \leq \mathrm{y}^{\prime}(\mathrm{s})$ for all s
- \underline{y} is a fixed point of F if $F(\underline{y})=\underline{y}$
- A fixed point \underline{x} of F is the least fixed point of F if $\underline{x} \leq \underline{y}$ for any other fixed point y

Least fixed point

- ProbReach (T) is the least fixed point of the function F :

$$
\mathrm{F}(\underline{\mathrm{y}})(\mathrm{s})=\left\{\begin{array}{cl}
1 & \text { if } \mathrm{s} \in \mathrm{~T} \\
\sum_{s^{\prime} \in S} \mathrm{P}\left(\mathrm{~s}, \mathrm{~s}^{\prime}\right) \cdot \underline{y}\left(\mathrm{~s}^{\prime}\right) & \text { otherwise. }
\end{array}\right.
$$

- This yields a simple iterative algorithm to approximate ProbReach (T):

$$
\begin{aligned}
& -\underline{x}^{(0)}=\underline{0} \quad\left(\text { i.e. } \underline{x}^{(0)}(s)=0\right. \text { for all s) } \\
& -\underline{x}^{(n+1)}=F\left(\underline{x}^{(n)}\right)
\end{aligned}
$$

$-\underline{x}^{(0)} \leq \underline{\mathbf{x}}^{(1)} \leq \underline{x}^{(2)} \leq \underline{\mathrm{x}}^{(3)} \leq \ldots$
$-\underline{\operatorname{ProbReach}}(T)=\lim _{n \rightarrow \infty} \underline{x}^{(n)}$
in practice, terminate when for example:
$\left.\max _{\mathrm{s}} \mid \underline{x}^{(\mathrm{n}+1)}(\mathrm{s})-\underline{\mathrm{x}}^{(\mathrm{n})}(\mathrm{s})\right) \mid<\varepsilon$
for some user-defined tolerance value ε

Least fixed point

- Expressing ProbReach as a least fixed point...
- corresponds to solving the linear equation system using the power method
- other iterative methods exist (see later)
- power method is guaranteed to converge
- generalises non-probabilistic reachability
- can be generalised to:
- constrained reachability (see PCTL "until")
- reachability for Markov decision processes
- also yields step-bounded reachability probabilities...

Bounded reachability probabilities

- Probability of reaching T from s within k steps
- Formally: ProbReach ${ }^{\leq k}(s, T)=\operatorname{Pr}_{s}(\operatorname{Reach} s k(s, T))$ where:
- Reach $\leq k(s, T)=\left\{s_{0} s_{1} s_{2} \ldots \in \operatorname{Path}(s) \mid s_{i}\right.$ in T for some $\left.i \leq k\right\}$
- ProbReach $^{\leq k}(T)=\underline{x}^{(k+1)}$ from the previous fixed point - which gives us...
$\operatorname{ProbReach}^{\leq k}(s, T)=\left\{\begin{array}{cl}1 & \text { if } s \in T \\ 0 & \text { if } k=0 \& s \notin T \\ \sum_{s^{\prime} \in S} P\left(s, s^{\prime}\right) \cdot \operatorname{ProbReach}^{\leq k-1}\left(s^{\prime}, T\right) & \text { if } k>0 \& s \notin T\end{array}\right.$

(Bounded) reachability

- $\operatorname{ProbReach}\left(\mathrm{s}_{0},\{1,2,3,4,5,6\}\right)=1$
- ProbReach ${ }^{\leq k}\left(\mathrm{~s}_{0},\{1,2,3,4,5,6\}\right)=\ldots$

Summing up...

- Discrete-time Markov chains (DTMCs)
- state-transition systems augmented with probabilities
- Formalising path-based properties of DTMCs
- probability space over infinite paths
- Probabilistic reachability
- infinite sum
- linear equation system
- least fixed point characterisation
- bounded reachability

