Probabilistic Model Checking

Lecture 2 Discrete-time Markov Chains

Alessandro Abate

Department of Computer Science University of Oxford

Probabilistic Model Checking

- Formal verification and analysis of systems that exhibit probabilistic behaviour
 - e.g. randomised algorithms/protocols
 - e.g. systems with failures/unreliability
- Based on the construction and analysis of precise mathematical models
- This lecture: discrete-time Markov chains

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
 - definition, properties, examples
- Formalising path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - definition, computation
- Sources and further reading: Section 10.1 of [BK08]

Probability basics

- First, we need an experiment
 - The sample space Ω is the set of possible outcomes
 - An event is a subset of $\Omega,$ can form events $A \cap B, A \cup B, \Omega \setminus A$
- Examples:
 - toss a coin: $\Omega = \{H,T\}$, events: "H",
 - toss two coins: $\Omega = \{(H,H), (H,H)\}$
 - toss a coin ∞ -often:

 $\Omega = \{H,T\}, \text{ events: "H", "T"}$ $\Omega = \{(H,H),(H,T),(T,H),(T,T)\},$ event: "at least one H" $\Omega \text{ is set of infinite sequences of } H/T$ event: "H in the first 3 throws"

- Probability is:
 - Pr("H") = Pr("T") = 1/2, Pr("at least one H") = 3/4
 - Pr("H in the first 3 throws") = 1 1/8 = 7/8

Probability example

- Modelling a 6-sided die using a fair coin
 - algorithm due to Knuth/Yao:
 - start at 0, toss a coin
 - upper branch when H
 - lower branch when T
 - repeat until value chosen
- Is this algorithm correct?
 - e.g. probability of obtaining a 4?
 - obtain as disjoint union of events
 - ТНН, ТТТНН, ТТТТТНН, ...
 - Pr("eventually 4")

 $= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$

Example...

- Other properties?
 - "what is the probability of termination?"
- e.g. efficiency?
 - "what is the probability of needing more than 4 coin tosses?"
 - "on average, how many coin tosses are needed?"

- Probabilistic model checking provides a framework for these kinds of properties: we need to discuss
 - modelling languages
 - property specification languages
 - model checking algorithms, techniques and tools

Discrete-time Markov chains

- State-transition systems augmented with probabilities
- States
 - set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states model evolution of system's state; occur in discrete time-steps
- Probabilities
 - probabilities of making transitions between states are given by discrete probability distributions
- Labels

Markov property

- If the current state is known (namely, "conditional on current state"), then future states of the system are independent of its past states
- i.e. the current state of the model contains all information that can influence the future evolution of the system
- also known as "memoryless-ness"

Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel not ready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, thus restart

Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a set of states (S is known as the "state space")
 - $s_{\text{init}} \in S$ is the initial state
 - P : S × S → [0,1] is the transition probability matrix where Σ_{s'∈S} P(s,s') = 1 for all s ∈ S
 - L : S \rightarrow 2^{AP} is function labelling states with atomic propositions (taken from a finite set AP)

Simple DTMC example

$$\mathsf{D} = (\mathsf{S}, \mathsf{s}_{\mathsf{init}}, \mathsf{P}, \mathsf{L})$$

$$S = \{s_0, s_1, s_2, s_3\}$$

 $s_{init} = s_0$

$$AP = \{try, fail, succ\}$$
$$L(s_0) = \emptyset,$$
$$L(s_1) = \{try\},$$
$$L(s_2) = \{fail\},$$
$$L(s_3) = \{succ\}$$

{succ}

Some more terminology

• P is a stochastic matrix, meaning it satisifes:

- $P(s,s') \in [0,1]$ for all $s,s' \in S$ and $\Sigma_{s' \in S}$ P(s,s') = 1 for all $s \in S$

A sub-stochastic matrix satisfies:

- $P(s,s') \in [0,1]$ for all $s,s' \in S$ and $\Sigma_{s' \in S}$ $P(s,s') \leq 1$ for all $s \in S$

- An absorbing state is a state s for which:
 - P(s,s) = 1 and P(s,s') = 0 for all $s \neq s'$
 - the transition from s to itself is sometimes called a self-loop
- Note: Since we assume **P** is stochastic...
 - every state has at least one outgoing transition
 - i.e. no deadlocks (in model checking terminology)

DTMCs: An alternative definition

- Alternative definition... a DTMC is:
 - a family of random variables { X(k) | k=0,1,2,... }
 - where X(k) are r.v. values at discrete time steps
 - i.e. X(k) is the state of the system at time step k
 - which satisfies:
- The Markov property ("memoryless-ness")
 - Pr(X(k)=s_k | X(k-1)=s_{k-1}, ..., X(0)=s_0)
 - = Pr(X(k)=s_k | X(k-1)=s_{k-1})
 - for a given current state, future states are independent of past
- This allows us to adopt the "state-based" view presented so far (which is better suited to this context)

Other assumptions made here

- We consider time-homogenous DTMCs
 - transition probabilities are independent of time step k:
 - Pr(X(k)=s_k | X(k-1)=s_{k-1}) = P(s_{k-1},s_k)
 - otherwise: time-inhomogenous (tricky instance)
- We will (mostly) assume that the state space S is finite

 in general, S can be a countable set
- Initial state $s_{init} \in S$ can be generalised... – to an initial probability distribution s_{init} : S → [0,1]
- Transition probabilities are reals: $P(s,s') \in [0,1]$

- but for algorithmic purposes, are assumed to be rationals

DTMC example 2 – Coins and dice

• Recall Knuth/Yao's die algorithm from earlier:

DTMC example 3 – Zeroconf

- Zeroconf = "Zero configuration networking"
 - self-configuration for local, ad-hoc networks
 - automatic configuration of unique IP for new devices
 - simple; no DHCP, DNS, ...
- Basic idea:
 - 65,024 available IP addresses (IANA-specified range)
 - new node picks address U at random
 - broadcasts "probe" messages: "Who is using U?"
 - a node already using U replies to the probe
 - in this case, protocol is restarted
 - messages may not get sent (transmission fails, host busy, ...)
 - so: nodes send multiple (n) probes, waiting after each one

DTMC for Zeroconf

- n=4 probes, m existing nodes in network
- probability of message loss: p
- probability that new address is in use: q = m/65024

Properties of DTMCs

- Path-based properties
 - what is the probability of observing a particular behaviour (or class of behaviours)?
 - e.g. "what is the probability of throwing a 4?"
- Transient properties

- probability of being in state s after t steps?

- Steady state
 - long-run probability of being in each state

Expectations

- e.g. "what is the average number of coin tosses required?"

DTMCs and paths

- A path in a DTMC represents an execution (i.e. one possible behaviour) of the system being modelled
- Formally:
 - infinite sequence of states $s_0s_1s_2...$ such that $P(s_i,s_{i+1}) > 0$, $\forall i \ge 0$
 - infinite unfolding of DTMC (no blocking conditions)
- Examples:
 - never succeeds: $(s_0s_1s_2)^{\omega}$
 - tries, waits, fails, retries, succeeds: $s_0s_1s_1s_2s_0s_1(s_3)^{\omega}$
- Notation:
 - Path(s) = set of all infinite paths starting in state s
 - can also define finite-length paths:
 - Path_{fin}(s) = set of all finite paths starting in state s

Paths and probabilities

- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set Cyl(ω), for a finite path ω
 - = set of infinite paths with the common finite prefix $\boldsymbol{\omega}$
 - for example: Cyl(ss1s2)

Probability spaces

- Let Ω be an arbitrary non-empty sample set
- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A\in \Sigma,$ the complement $\Omega\setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N},$ the union $\cup_i A_i$ is in Σ
 - the empty set ${\varnothing}$ is in Σ
- Elements of $\boldsymbol{\Sigma}$ are called measurable sets or events
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F

Probability spaces

- Probability space (Ω , Σ , Pr)
 - Ω is the sample space
 - $\pmb{\Sigma}$ is the set of events: $\sigma\text{-algebra}$ on Ω
 - $Pr : \Sigma \rightarrow [0,1]$ is the probability measure: $Pr(\Omega) = 1$ and $Pr(\cup_i A_i) = \Sigma_i Pr(A_i)$ for countable disjoint A_i

Probability space – Simple example

- Sample space Ω
 - $\Omega = \{1, 2, 3\}$
- Event set Σ
 - e.g. powerset of $\boldsymbol{\Omega}$
 - $-\Sigma = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$
 - (closed under complement/countable union, contains \varnothing)
- Probability measure Pr
 - e.g. Pr(1) = Pr(2) = Pr(3) = 1/3
 - $Pr(\{1,2\}) = 1/3 + 1/3 = 2/3$, etc.

Probability space – Simple example 2

- Sample space Ω
 - $\ \Omega = \mathbb{N} = \{ \ 0, 1, 2, 3, 4, \dots \}$
- Event set Σ
 - e.g. Σ = { Ø, "odd", "even", ℕ }
 - (closed under complement/countable union, contains \varnothing)
- Probability measure Pr
 - e.g. Pr("odd") = 0.5, Pr("even") = 0.5

Probability space over paths

- Sample space $\Omega = Path(s)$
 - set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set Cyl(ω) = { $\omega' \in Path(s) \mid \omega \text{ is prefix of } \omega'$ }
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing Cyl(w) for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - · $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $\mathbf{P}_{s}(\omega) = \mathbf{P}(s,s_{1}) \cdot \ldots \cdot \mathbf{P}(s_{n-1},s_{n})$ otherwise
 - · define $Pr_s(Cyl(\omega)) = P_s(\omega)$ for all finite paths ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

Paths and probabilities - Example

Paths where sending fails immediately

$$-\omega = s_0 s_1 s_2$$

- $Cyl(\omega) = all paths starting with s_0s_1s_2...$
- $\mathbf{P}_{s0}(\boldsymbol{\omega}) = \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2)$

$$= 1 \cdot 0.01 = 0.01$$

$$- \operatorname{Pr}_{s0}(\operatorname{Cyl}(\omega)) = \mathbf{P}_{s0}(\omega) = 0.01$$

- Paths which are eventually successful and with no failures
 - $\operatorname{Cyl}(s_0s_1s_3) \cup \operatorname{Cyl}(s_0s_1s_1s_3) \cup \operatorname{Cyl}(s_0s_1s_1s_1s_3) \cup \dots$
 - $Pr_{s0}(Cyl(s_0s_1s_3) \cup Cyl(s_0s_1s_1s_3) \cup Cyl(s_0s_1s_1s_1s_3) \cup ...)$
 - $= \mathbf{P}_{s0}(s_0s_1s_3) + \mathbf{P}_{s0}(s_0s_1s_1s_3) + \mathbf{P}_{s0}(s_0s_1s_1s_1s_3) + \dots$
 - $= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \dots$
 - = 0.9898989898...
 - = 98/99

Reachability

- Key property: probabilistic reachability
 - probability of a path reaching a state in some target set $\mathsf{T} \subseteq \mathsf{S}$
 - e.g. "probability of the algorithm terminating successfully?"
 - e.g. "probability that an error occurs during execution?"
- Dual of reachability: invariance
 - probability of remaining within some class of states
 - Pr("remain in set of states T") = 1 Pr("reach set $S \setminus T$ ")
 - e.g. "probability that an error never occurs"
- We will also consider other variants of reachability
 - time-bounded, constrained ("until"), ...

Reachability probabilities

- Formally: ProbReach(s, T) = Pr_s(Reach(s, T))
 - where Reach(s, T) = { $s_0s_1s_2 \dots \in Path(s) \mid s_i \text{ in } T \text{ for some } i$ }
- Is Reach(s, T) measurable for any $T \subseteq S$? Yes...
 - Reach(s, T) is the union of all basic cylinders $Cyl(s_0s_1...s_n)$ where $s_0s_1...s_n$ in $Reach_{fin}(s, T)$
 - Reach_{fin}(s, T) contains all finite paths $s_0s_1...s_n$ such that: $s_0=s, s_0,...,s_{n-1} \notin T, s_n \in T$ (reaches T first time)
 - set of such finite paths $s_0s_1...s_n$ is countable
- Probability
 - in fact, the above is a disjoint union
 - so probability obtained by simply summing...

- Compute as (infinite) sum...
- 0.5 0.5 • $\Sigma_{s_0,...,s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(Cyl(s_0,...,s_n))$ **S**₁ 0.5 $= \sum_{s_0,\ldots,s_n \in \text{Reachfin}(s, T)} \mathbf{P}(s_0,\ldots,s_n)$ 0.5 S⊿ 0.5 0.5 (S₀) 0.5 • Example: 0.5 $0.5 (S_5)$ - ProbReach(s₀, {4}) **S**₂ 0.5 **S**6 0.5 ••• 0.5

0.5

- Compute as (infinite) sum...
- $\Sigma_{s_0,...,s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(Cyl(s_0,...,s_n))$

 $= \Sigma_{s_0,...,s_n \in \text{Reachfin}(s, T)} P(s_0,...,s_n)$

- Example:
 - ProbReach(s₀, {4})
 - $= Pr_{s0}(Reach(s_0, \{4\}))$
 - Finite path fragments:
 - $\ s_0(s_2s_6)^ns_2s_54 \ for \ n \ge 0$
 - $\ P_{s0}(s_0s_2s_54) + P_{s0}(s_0s_2s_6s_2s_54) + P_{s0}(s_0s_2s_6s_2s_6s_2s_54) + \dots$
 - $= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$

ProbReach(s₀, {s₆}) : let us compute as infinite sum ...

- However, this doesn't scale...

- Alternative: derive a linear equation system
 - solve for <u>all</u> states simultaneously
 - i.e. compute vector <u>ProbReach</u>(T)
- Let x_s denote ProbReach(s, T)

(

• Solve:

$$\begin{array}{ll} x_s &= \left\{ \begin{array}{cc} 1 & \text{if } s \in T \\ 0 & \text{if } T \text{ is not reachable from s} \\ \sum\limits_{s' \in S} P(s,s') \cdot x_{s'} & \text{otherwise} \end{array} \right. \end{array}$$

Exercise

Compute ProbReach(s₀, {4})

Unique solutions

- Why the need to identify states that cannot reach T?
- Consider this simple DTMC:
 - compute probability of reaching $\{s_0\}$ from s_1

- linear equation system: $x_{s_0} = 1$, $x_{s_1} = x_{s_1}$
- multiple solutions: $(x_{s_0}, x_{s_1}) = (1,p)$ for any $p \in [0,1]$

Another alternative: least fixed point characterisation

- y is a fixed point of F if F(y) = y
- A fixed point <u>x</u> of F is the least fixed point of F if <u>x</u> \leq <u>y</u> for any other fixed point <u>y</u>

Least fixed point

• <u>ProbReach</u>(T) is the least fixed point of the function F:

$$F(\underline{y})(s) = \begin{cases} 1 & \text{if } s \in T \\ \sum_{s' \in S} P(s,s') \cdot \underline{y}(s') & \text{otherwise.} \end{cases}$$

 This yields a simple iterative algorithm to approximate <u>ProbReach</u>(T):

$$\begin{array}{ll} - \underline{x}^{(0)} = \underline{0} & (\text{i.e. } \underline{x}^{(0)}(s) = 0 \text{ for all } s) \\ - \underline{x}^{(n+1)} = F(\underline{x}^{(n)}) & \text{ in practice, terminate when for example:} \\ - \underline{x}^{(0)} \leq \underline{x}^{(1)} \leq \underline{x}^{(2)} \leq \underline{x}^{(3)} \leq \dots \\ - \underline{ProbReach}(T) = \lim_{n \to \infty} \underline{x}^{(n)} & \text{ for some user-defined tolerance value } \epsilon \end{array}$$

Least fixed point

- Expressing <u>ProbReach</u> as a least fixed point...
 - corresponds to solving the linear equation system using the power method
 - other iterative methods exist (see later)
 - power method is guaranteed to converge
 - generalises non-probabilistic reachability
 - can be generalised to:
 - constrained reachability (see PCTL "until")
 - reachability for Markov decision processes
 - also yields step-bounded reachability probabilities...

Bounded reachability probabilities

Probability of reaching T from s within k steps

(

- Formally: ProbReach^{$\leq k$}(s, T) = Pr_s(Reach^{$\leq k$}(s, T)) where: - Reach^{$\leq k$}(s, T) = { s₀s₁s₂ ... \in Path(s) | s_i in T for some i $\leq k$ }
- <u>ProbReach</u>≤k(T) = <u>x</u>(k+1) from the previous fixed point
 which gives us...

$$ProbReach^{\leq k}(s, T) = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } k = 0 \& s \notin T \\ \sum_{s' \in S} P(s,s') \cdot ProbReach^{\leq k-1}(s', T) & \text{if } k > 0 \& s \notin T \end{cases}$$

(Bounded) reachability

- ProbReach(s_0 , {1,2,3,4,5,6}) = 1
- ProbReach^{$\leq k$} (s₀, {1,2,3,4,5,6}) = ...

Summing up...

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formalising path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - infinite sum
 - linear equation system
 - least fixed point characterisation
 - bounded reachability