$\operatorname{LCD}(19 / 03 / 2024)$

* Bisimibarity as a game

Bisimulation: relation $R \subseteq$ Proc \times Proc such that if $P R Q$
(i) If $P \xrightarrow{\alpha} P^{\prime}$ then $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
(ii) if $Q \xrightarrow{\alpha} Q^{\prime}$ them $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} R Q^{\prime}$
$\rightarrow P, Q$ bisimilor $(P \sim Q)$ if there exists R bisimulation st $P R Q$ ie.

$$
\sim=U\{R \mid R \text { is } 0 \text { bisimulation }\}
$$

* how to show $P \propto Q$
\rightarrow take all possible relations $R \subseteq P_{20 c} \times P_{\text {roc }}$ st. $P R Q$
\rightarrow check if \mathbb{R} is a bisimulation
suppose P, Q ore finite - state, say $m \in \mathbb{N}$ states $\quad\left(\left|P_{\text {roc }}\right|=n\right.$)

$$
\begin{aligned}
R \subseteq & P_{r o c} \times P_{r o c} \\
& \left|P_{r o c} \times P_{r o c}\right|=m^{2} \\
& \text { \# rebotioms }=2^{m^{2}}
\end{aligned}
$$

if $m=10$

$$
\text { \# relations }=2^{10^{2}}=2^{100} \sim 10^{30}
$$

* Bisimulation Games
om P, Q
2 players

$\frac{\text { defender: arms at proving } P N Q \text { by answering to challenges }}{D}$

$$
Q \stackrel{\alpha}{\rightarrow} Q^{\prime}
$$

details
\rightarrow rounds: at each round the fame is in a configurations (P^{\prime}, Q^{\prime})
\rightarrow moves : Attacker - chases a side $\begin{gathered}\text { left } \\ P^{\prime}\end{gathered}$ /right
and a move of the chosen proven

$$
P^{\prime} \xrightarrow{\alpha} P^{\prime \prime}
$$

Defender answers with a move of the other process

$$
Q^{\prime} \xrightarrow{\alpha} Q^{\prime \prime}
$$

and we continue from ($P^{\prime \prime}, Q^{\prime \prime}$)

PLAY: sequence of rounds storting from (P, Q) which is maximal
(1) finite with a player who got out of moves
(2) infinite

WINNER of a play
(1) player who did the lost move
(2) defender

Theorem: Given P, Q process

- PNQ iff the Defender hos a cumming strategy
- Pw Q iff the Attacker hos a. cumming strategy function Attacker $\left(P^{\prime}, Q^{\prime}\right)$ mos side \& tromortion Defender $\left(P^{\prime}, Q^{\prime}\right)$ \& move of $\begin{aligned} & \text { Attacker }\end{aligned} \rightarrow \begin{gathered}\text { move of } \\ \text { the other }\end{gathered}$

Example

Example
CTM $=\operatorname{com}$. ($\overline{\text { coffee }}$. CTM $+\overline{\text { tew. }}$. CTM $)$

A: CTM' $\xrightarrow{\text { Com }} \overline{\text { coffee. CTM }}$
D: $\quad C T M \xrightarrow{\operatorname{com}} \overline{\operatorname{coffee}}$.CTM + Eeer. CTM
$A: \overline{\text { coffee }}$ CTM + Fex. ©TM $\xrightarrow{\overline{\text { tea }} C T M} D: \overline{\text { coffer. CTM }}$ CTg

Example

$A: \quad S \xrightarrow{a} S_{1}$
A: $t_{1} \xrightarrow{b} t_{1}$
A: $\quad t_{1} \xrightarrow{b} t_{1}$
(Defender com win
A: $S \xrightarrow{\circ} S_{1}$
$D: t \stackrel{\circ}{\square} t_{1}$
A: $s_{1} \xrightarrow{b} s_{2}$

$$
\searrow_{t_{1}}^{a} P^{b}
$$

$D: t \xrightarrow{a} t_{1}$
$D: S_{1} \xrightarrow{b} s_{2}$

* Properties of \sim

Bisimulation : relation $R \subseteq$ Proc $\times P_{r o c}$ such that if $P R Q$
(i) If $P \xrightarrow{\alpha} P^{\prime}$ then $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
(ii) if $Q \xrightarrow{\alpha} Q^{\prime}$ them $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} R Q^{\prime}$
$\rightarrow P, Q$ bisimilor $(P \sim Q)$ if there exists R bisimulation st $P Q Q$ ie.

$$
\sim=\bigcup\{R \mid R \text { is } 0 \text { bisimulatiom }\}
$$

Is it really on equivalence?

OBSERVATION:
(i) $I=\left\{(P, P) \mid P \in P_{\text {roc }}\right\}$ is a bisimula,tion
(ii) if \mathbb{R} is a bisimulotion then $\mathbb{R}^{-1}=\{(Q, P) \mid(P, Q) \in \mathbb{R}\}$ is a bisimubation
(iii) if R, R^{\prime} ore bisimulation then $R ; R^{\prime}$ is a bisimulotion

$$
"\left\{(P, S) \mid \exists Q \text { st. } P R Q \text { and } Q R^{\prime} S\right\}
$$

(Iv) If $R_{i} i \in I$ ore bismulations then $\bigcup_{i \in T} R_{i}$ is a bisimulation
proof
(i) let P IQ then if $P \xrightarrow{\alpha} P^{\prime}$ then $Q \xrightarrow{\underset{\alpha}{\alpha}} P^{\prime} Q^{\prime}$ and $P^{\prime} I Q^{\prime}$ \& dual
(ii) devious
(iii) R, R^{\prime} bisimulotioms

$\leadsto R_{i} R^{\prime}$ is o. bisimubation
(iv) $R_{i} \quad i \in I$ bisimulo,tions
let $P\left(\bigcup_{i \in I} R_{i}\right) Q$ ie. $\exists i \in I$ sit. $P R_{i} Q$ and $P \xrightarrow{\alpha} P^{\prime}$
$Q \stackrel{\alpha}{\underset{\sim}{a}} Q^{\prime}$ and $P^{\prime} R_{i} Q^{\prime} \quad n_{0} \quad P^{\prime}\left(\bigcup_{i \in I} R_{i}\right) Q^{\prime}$

OBSERVATION: Bisimilarity \sim is the largest bisimubotion ie.

(2) for all R if R is a bisimubation then $R \subseteq N$

OBSERVATION: N is om equivalence
proof

- reflexive: for all P PIP thus by (i) $P \sim P$
- symmetric: if $P \sim Q$ then there is R bisimulation st. $P R Q$ Thus $Q R^{-1} P$ \& by (ii) R^{-1} bisimulatom $\Rightarrow Q \sim P$
transitivity:
if $P \sim Q$ and $Q \sim S$ then $P R Q \quad \& \quad Q R^{\prime} S$ with R, RI $^{\prime}$ bisimulotioms then $P\left(R ; R^{\prime}\right) S$ and by (iii) $R ; R^{\prime}$ is a bisimulation $\Rightarrow \quad P \sim S$

EXERCISE: find a bisimulation which is mot

- reflexive
- symmetric
- tromsitive

EXERCISE: Show
$P \sim Q \quad$ iffy (1) if $P \xrightarrow{\alpha} P^{\prime}$ then $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim Q^{\prime}$
(iv) if $Q^{\alpha} \xrightarrow{\infty} Q^{\prime}$ then $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \sim Q^{\prime}$
\sim is a bisimulation
\Leftarrow

EXERCISE (E) : FINITE CCS (exam)
cos with mo comstoints

$$
P, Q: \therefore=\alpha . P|\underbrace{\sum_{i \in I} P_{i}}_{I \text { finite }}| P|Q| P, L \mid P[f]
$$

two properties
(1) programs always terminate
(2) " ore fimite-state
(1) every computation

$$
P \xrightarrow{\alpha_{2}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \ldots \quad \rightarrow \quad \text { is finite }
$$

proof ride:
show that if $P_{1} \xrightarrow{\alpha_{2}} P_{2} \xrightarrow[\rightarrow]{\alpha_{2}} \cdots \xrightarrow{\alpha_{m-1}} P_{m}$
them $m \leqslant\left|P_{1}\right|_{\text {a for a reosomable motion of size IP I }}$
which in term follows from

$$
P \xrightarrow{\alpha} P^{\prime} \quad \text { then } \quad\left|P^{\prime}\right|<|P|
$$

\uparrow
proof by induction on h

(2) every P hos a finite number of states

$$
\text { states }(P)=\left\{p^{\prime} \mid \quad P \xrightarrow{\alpha_{1}} P_{1} \xrightarrow[\rightarrow]{\alpha_{2}}--\quad \alpha_{m} p^{\prime}\right\} \text { is finite }
$$

define $\#(P)=$ bound to the number of states of P

$$
\begin{aligned}
& \# 0=1 \\
& \#(\alpha, P)=1+\# P \\
& \#\left(\sum_{i \in I} P_{i}\right)=\sum_{i \in I} \# P_{i} \\
& \#(P \mid Q)=(\# P) *(\# Q) \\
& \#(P, L)=\# P \\
& \#(P[f))=\# P
\end{aligned}
$$

prove $\quad \mid$ states $(P) \mid \leqslant \# P$

* What if sums are mot finite?

$$
P, Q:=\alpha \cdot P\left|\sum_{i \in I} P_{i}\right| P|Q| P|L| P[f]
$$

乞 possibly infinite
(2) fails
\rightarrow states com be infinite

$$
A=\{a\} \cup\left\{a_{i} \mid i \in \mathbb{N}\right\}
$$

(1)? Is termination ensured? YES

