$\operatorname{LCD}(18 / 03 / 2024)$

* behavioural equivalence

$$
\begin{aligned}
& C S=\text { pub } \cdot \overline{\text { coin }} \cdot \text { coffee } \cdot C S \\
& C M=\text { coin. } \overline{\text { coffee }} \cdot C M
\end{aligned}
$$

$$
\text { Spec }=\overline{\text { pub }} \cdot \text { Spec }
$$

Office $=(c s \mid c M),\{$ comm, coffee $\}$

Office \sim Spec

Which properties are expected for \sim ?

- reflexive
- symmetric
- transitive
$P \sim P$
$P \sim Q \Rightarrow Q \sim P$
$P \sim Q$ amd $Q \sim R$ then $\left.P \sim R\right|_{\substack { \hat{N} \\ \begin{subarray}{c}{A{ \hat { N } \\ \begin{subarray} { c } { A } } \\{E}\end{subarray}} ^{\substack{A}}$

Spec \sim Syst \sim syst \sim
$\ldots \quad \sim$ sym
\sim

* congruence / compositiomality

If $P \sim Q$ them for every context $C[] \quad C[P] \sim C[Q]$

Spec $=\operatorname{Spec} 1 \mid \operatorname{Spec} 2$
Syst \sim Spec 1 \Longrightarrow
Syst \sim Spec 2

$$
\text { Spec }=\text { Spec } 1 \text { I Spec } 2
$$

\sim syst | syst 2

Spec $1 \mid$ Spec 2 $\sim \underbrace{\text { Syst } \mid}$ spec 2 \sim Syst 1 Sy 52 $\frac{2}{5 y}$
sysz

Referencial transparency

$$
P=\cdots--\underbrace{\exp }_{\uparrow} \cdots \cdots-\cdots
$$

replacing exp. by its value does mot alter the behaviour of P

$$
x+x-1=2 \quad x=\frac{3}{2}
$$

* the equivalence only depends on the observable behaviour.

$\uparrow \downarrow \uparrow$

OBSERVATIO NAL EquIVALENCE
what is observable? messages time cost
(Van Glabbeek
Lineor-time /branching time spectrum)
(o) same transitions

$$
\begin{aligned}
& A=a .0 \\
& B=(a .0), b
\end{aligned}
$$

$$
C[]=A+[\cdot]
$$

A
$\downarrow a$
0
$C[A]$
$A+A$
$\downarrow a$
x
\sim

B
\downarrow 。
$0, b$
$C[B]$
$A+B$
a

$A \sim B$
(1) Troce equivalence

$$
T_{2}(P)=\left\{\left.\begin{array}{ll}
\alpha_{1} \ldots & \alpha_{m}
\end{array} \right\rvert\, P \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \ldots . \stackrel{\alpha}{m}_{\Delta} P_{m}\right\}
$$

and defime

$$
P \sim_{T} Q \quad \text { iff } \quad T_{2}(P)=T_{2}(Q)
$$

* equivolemce? yes
* observoble behoviour omly? yes
* compositiomal? yes
\uparrow ExAM EXERCISE

Example

$$
\begin{aligned}
& C T M=\text { coim. }(\overline{\text { coffee }} \cdot \text { CTM }+ \text { teo. CTM }) \\
& \text { CTM' }=\text { coin. coffee. CTM' }+ \text { com. Fea. CTM } \\
& \text { Tr (CTM) } \\
& \operatorname{Tr}(\text { CTM' }) "(\text { corm }(\overline{\operatorname{cosffe}}+\overline{\text { tea }}))^{*} \text { coim } \\
& \operatorname{CTM} \sim_{T} \text { CTM } \\
& \text { CTM } \\
& \text { CTM }
\end{aligned}
$$

$C S=\overline{p u b} \cdot \overline{\text { colm }} \cdot$ coffee $\cdot C S$

Office $=(\operatorname{CS} \mid$ CTM $) \backslash\{$ coim, coffee, tos $)$
Office $=\left(\operatorname{CS} \mid C T M^{\prime}\right) \backslash\{$ coim, coftee, tom $)$

Office v_{T} Office'
i.e. T_{2} (Office) $=T_{2}$ (Office') $=(\overline{\text { pub }} \boldsymbol{\tau} \cdot \tau)^{*}(\varepsilon+\overline{\text { pub }}+\overline{\text { pub } \tau)}$

(2) Completed Traces

$$
C T_{2}(P)=\left\{\alpha_{2} \ldots \alpha_{m} \mid P \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \ldots \xrightarrow{\alpha_{m}} P_{m} f \rightarrow\right\}
$$

and define

$$
P \sim_{C T} Q \quad \text { if } \quad P \sim_{T} Q \quad \text { and } \quad \operatorname{CTr}(P)=C T r(Q)
$$

Note

$C T_{2}$ (Office)	\neq
॥	$C T_{\text {r }}$ (Office)
\varnothing	$\#$
\varnothing	

Office $\chi_{\text {ct }}$ Office

PROBLEM:

$$
\begin{aligned}
& \text { aTM } \sim_{C T} \text { aTM }{ }^{\prime} \text { since } \\
& \operatorname{CTR}(C T M)=\operatorname{CTz}(C T M) \\
& =\varnothing \\
& \text { Office }=(\text { CS } \mid \text { aTM }) \backslash\{\text { comm, coffee, awe }) \\
& \text { Office }=\left(\operatorname{CS} \mid C T M^{\prime}\right) \backslash\{\text { coin, coffee, to })^{x_{c T}}
\end{aligned}
$$

* Traces : compositional \& booed on interactions but they ignore traversed states...

CTM $\xrightarrow{\text { corm }} \cdot \xrightarrow{\text { coffee }}$ - Eta is possible
CTM' $\xrightarrow{\text { coin }} \ldots \xrightarrow{\text { coffee }}$.- ter mot possible

Idea: $\quad P \sim Q$ if

- when $P \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \ldots \xrightarrow[\alpha_{m}]{\alpha_{m}} P_{m}$
then $\quad Q \xrightarrow{\alpha_{1}} Q_{1} \xrightarrow{\alpha_{2}} Q_{2} \ldots \xrightarrow{\alpha_{m}} Q_{m}$
and $\quad P_{1} \sim Q_{1}, \ldots, P_{m} \sim Q_{m}$
- when $Q \xrightarrow{\alpha_{1}} Q_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{m}} Q_{m}$
then $P \xrightarrow{\alpha_{1}} \rho_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{m}} \rho_{m}$ and $P_{1} \sim Q_{1} \ldots P_{n} \sim Q_{m}$
not a definition, but a property of my relation
satisfied by many relations between programs...
$\rightarrow \phi \quad$ empty relation
\rightarrow identity $P \sim Q$ iff $P=Q$
* Bisimi borty

Def. A binory relation $R \subseteq P_{20 c} \times P_{r o c}$ is a bisimulation if for all $P Q \in$ Proc with $P R Q$ them
\rightarrow for all $P \stackrel{\alpha}{\Delta} P^{\prime}$ there is $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$
\rightarrow for all $Q^{\alpha} Q^{\prime}$ there is $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} R Q^{\prime}$

We say P, Q ore bisimiber $P \sim Q$ if there is a bisimulation R such that $P \mathbb{R}$
$\sim=U\{R \mid R$ is a bisimulotion $\}$

Example

* $s R t$
- all bromsitioms of s

- $s \xrightarrow{a} s_{1}$ ms $t \stackrel{a}{a} t_{1}$ and $s_{1} R t_{1}$
- $s \xrightarrow{a} s_{2} \sim m^{a} t_{1}$ and $s_{1} R t_{1}$
- all bramoitions of t
- $t \underset{\infty}{a} t_{1} m_{b} s_{\Delta} s_{1}$ ama $s_{1} R t_{1}$
* $s_{1} R t_{1}$
- all bromitions of s_{1}
$s_{1} \xrightarrow{b} s_{2} \sim t_{1} \xrightarrow{b} t_{1}$ and $s_{2} R t_{1}$
- all bromsitions of t_{1}
$t_{1} \xrightarrow[b]{b} b_{1} \quad m_{0} \quad s_{1} \xrightarrow{b} s_{2}$ and $s_{2} R t_{2}$
$\times s_{2} R t_{1}$
some os above
R is bisimulation $\Rightarrow s \sim t$ (but also $s_{1} \sim t_{1}, s_{2} \sim t_{2}$)

Example

$$
A=a \cdot A
$$

$$
B=(a \cdot B), b
$$

R

$$
\begin{aligned}
& \mathbb{R}=\left\{\left(A,\left(\left(B^{B, b), b) \ldots}\right), b \quad \mid k \in \mathbb{N}\right\}\right.\right. \\
& \text { bisimulation }
\end{aligned}
$$

* Nom - Bisimi bority?

$$
\begin{aligned}
& \text { CTM }=\text { coim }(\overline{\text { coffee. CTM }}+\text { Fea. CTM }) \\
& \text { CTM }=\text { coim. } \overline{\text { coffee. CTM }}+\text { coim. Fea. CTM }
\end{aligned}
$$

assume CTM \sim CTM'
hema thereis R bisimulotion sit. CTM R CTM' mote CTM $\xrightarrow[\text { com }]{\text { coffee. CTM }+ \text { Feos. CTM }} \underbrace{\text { cTM }}_{C T M_{1}}$

2 possibilities
(1) $C T M_{2}^{\prime}=\overline{\text { cofpee }} \cdot C T M^{\prime}$
since $C T M_{2} \xrightarrow{\text { Feo }} C T M$ there should be $C T M_{1}^{\prime} \xrightarrow{\text { tea }}$. No!
(2) $\quad C T M_{1}^{\prime}=$ teo $\cdot C T M_{2}^{\prime}$
since $C T M_{1} \stackrel{\overline{\text { coffee }}}{\rightarrow} C T M$ there shovgd be $C T M_{1}^{\prime} \stackrel{\overline{\text { arteen }} \rightarrow}{ }$ No!
comtradiction
\Rightarrow hence CTM \propto CTM

