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Ginzburg Landau Theory

Represents an important extension of the London theory

Incorporated two aspects:

1. Spatial variation of the Gibbs energy function of the SC state

2. Superconducting state can be described in terms of a 

macroscopic wave function with a well-defined phase
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Ginzburg Landau Theory
The theory was published in 1950 (7 years before BCS)

For a long time the Ginzburg-Landau theory did not receive the proper attention
(Abrikosov and Ginzburg received the Nobel Prize in physics in 2003)

Theory was generally recognized only after Gor’kov demonstrated that for T 
near Tc the theory can be derived from the BCS theory

One of the great successes of the theory was the prediction of the vortex state 
by Abrikosov

Often the theory is now referred to as GLAG theory after the four 

scientists Ginzburg, Landau, Abrikosov, and Gor’kov
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Ginzburg Landau Theory starting point

In the absence of a magnetic field NC-SC is a second-order phase transition

In the Landau theory the so-called order parameter ψ(r) was defined

In the SC  phase 𝜳 (r) should increase continuously from 0 at Tc up to the value 1 at T = 0

The quantity |𝜳 (r)|2 can be interpreted as the density of the SC charge carriers
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Ginzburg Landau Theory starting point

|𝜳 (r)|2 must approach zero continuously for T → Tc

near Tc we can expand the Gibbs function gs of the SC phase in a Taylor 
series of the density |𝜳 (r)|2 
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𝒈𝒔 = 𝒈𝒏 + 𝜶 𝜳 𝟐 +
𝟏

𝟐
𝜷 𝜳 𝟒+ …
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Ginzburg Landau Theory starting point
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𝒈𝒔 = 𝒈𝒏 + 𝜶 𝜳 𝟐 +
𝟏

𝟐
𝜷 𝜳 𝟒+ …

gs = gn when𝜳=0 

for T~Tc very general statements about the 
sign of the coefficients α and β are possible

β > 0 otherwise a very large value of |𝜳| would 
always lead to a value of gs that is smaller than gn

for T>Tc → α > 0 since for T>Tc → gs > gn

for T<Tc → α < 0 since for T<Tc → gs < gn
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Derivation of Ginzburg Landau equations
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𝒈𝒔 = 𝒈𝒏 + 𝜶 𝜳 𝟐 +
𝟏

𝟐
𝜷 𝜳 𝟒+ …

For temperatures close to Tc 

α and β can also be expanded in Taylor series of T

𝜶(𝑻) = 𝜶(𝟎)
𝑻

𝑻𝒄
− 𝟏

However β can be taken as constant:

𝜷 𝑻 = 𝜷 = 𝒄𝒐𝒏𝒔𝒕
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Thermodynamic critical field (Bcth )

𝜳∞ is the equilibrium value of 𝜳 sufficiently far away from any interface

ns = |𝜳∞|2 → equilibrium density in zero field
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𝒈𝒏 − 𝒈𝒔 =
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐 Look the derivation done in part2-properties of superconductors

𝒈𝒏 − 𝒈𝒔 = −𝜶 𝜳 𝟐 −
𝟏

𝟐
𝜷 𝜳 𝟒 =

𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐
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Thermodynamic critical field (Bcth )
at equilibrium gs |𝚿∞|2 reaches a minimum

For the equilibrium value | 𝜳∞|2 we must have also 
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𝜶 + 𝜷 𝜳∞
𝟐 = 𝟎

𝑑𝑔𝑠 𝛹∞
2

𝑑 𝛹 2 = 0

𝑔𝑠 = 𝑔𝑛 + 𝛼 𝜓 2 +
1

2
𝛽 𝜓 4

𝒏𝒔 = 𝜳∞
𝟐 = −

𝜶

𝜷
−𝛼 𝛹 2 −

1

2
𝛽 𝛹 4 =

1

2𝜇0
𝐵𝑐𝑡ℎ
2

𝑩𝒄𝒕𝒉
𝟐 = 𝝁𝟎

𝜶𝟐

𝜷



Cristian Pira   Superconductive Materials 4.  Ginzburg Landau Theory

Thermodynamic critical field (Bcth )

From the temperature dependences of α and β:

 

We see that (near Tc): ns and Bcth  are proportional to (1–T/Tc)
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𝜶(𝑻) = 𝜶(𝟎)
𝑻

𝑻𝒄
− 𝟏 𝜷 𝑻 = 𝜷 = 𝒄𝒐𝒏𝒔𝒕

ns → 0  Bcth → 0  for T → Tc  

𝒏𝒔 = 𝚿∞
𝟐 = −

𝜶

𝜷
𝑩𝒄𝒕𝒉
𝟐 = 𝝁𝟎

𝜶𝟐

𝜷

𝒏𝒔(𝑻) = 𝒏𝒔(𝟎) 𝟏 −
𝑻

𝑻𝒄
𝑩𝒄𝒕𝒉(𝑻) = 𝑩𝒄𝒕𝒉(𝟎) 𝟏 −

𝑻

𝑻𝒄
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Second order phase transition (1)
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By solving for α and β

𝒏𝒔 = 𝚿∞
𝟐 = −

𝜶

𝜷
𝑩𝒄𝒕𝒉
𝟐 = 𝝁𝟎

𝜶𝟐

𝜷

𝜶 = −
𝟏

𝝁𝟎

𝑩𝒄𝒕𝒉
𝟐

𝒏𝒔
𝜷 =

𝟏

𝝁𝟎

𝑩𝒄𝒕𝒉
𝟐

𝒏𝒔
𝟐

We can now demonstrate that  a second-order phase transition 
is described by:

𝒈𝒔 = 𝒈𝒏 + 𝜶 𝚿 𝟐 +
𝟏

𝟐
𝜷 𝚿 𝟒

REMEMBER: in a second-order phase transition, g and first derivate are 
continuous, but not the second derivate
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Second order phase transition (2)
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=0 @ T=Tc

for T = Tc  

𝜶 = −
𝟏

𝝁𝟎

𝑩𝒄𝒕𝒉
𝟐

𝒏𝒔
𝜷 =

𝟏

𝝁𝟎

𝑩𝒄𝒕𝒉
𝟐

𝒏𝒔
𝟐

1st derivate @Tc:

𝒈𝒏 − 𝒈𝒔 = −𝜶 𝜳 𝟐 −
𝟏

𝟐
𝜷 𝜳 𝟒

gs = gn|𝜳|=0

𝝏𝒈𝒔
𝝏𝑻

=
𝜕𝑔𝑛
𝜕𝑇

−
𝐵𝑐𝑡ℎ
𝜇0

𝜕𝐵𝑐𝑡ℎ
𝜕𝑇

=

𝝏𝒈𝒔
𝟐

𝝏𝑻𝟐
=

𝑩𝒄𝒕𝒉(𝑻) = 𝑩𝒄𝒕𝒉(𝟎) 𝟏 −
𝑻

𝑻𝒄

g passes through Tc continuously   g @Tc

2nd derivate @Tc:

𝝏𝒈/𝝏𝑻 passes through Tc continuously   

𝝏𝟐𝒈/𝝏𝑻𝟐 jump @ Tc 

𝝏𝒈𝒏
𝝏𝑻

+
𝑩𝒄𝒕𝒉
𝟐 (𝟎)

𝝁𝟎
𝟏 −

𝑻

𝑻𝒄

𝟏

𝑻𝒄

𝝏𝒈𝒏
𝟐

𝝏𝑻𝟐
−
𝑩𝒄𝒕𝒉
𝟐 (𝟎)

𝝁𝟎

𝟏

𝑻𝒄
𝟐
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Derivation of Ginzburg Landau equations
The crucial extension of the phenomenological description is achieved 

by the assumption (ansatz) of the Gibbs function of the SC in a 
magnetic field under the assumption of a possible spatial 
variation of 𝜳

13

𝑔𝑠 𝐵 = 𝑔𝑛 + 𝛼 𝜳 2 +
1

2
𝛽 𝜳 4 +

1

2𝜇0
𝑩𝒂 − 𝑩𝒊

2 +
1

2𝑚

ℏ

𝑖
𝛻 − 𝑞𝐀 𝜳

2
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Derivation of Ginzburg Landau equations
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𝑔𝑠 𝐵 = 𝑔𝑛 + 𝛼 𝜳 2 +
1

2
𝛽 𝜳 4 +

1

2𝜇0
𝑩𝒂 − 𝑩𝒊

2 +
1

2𝑚

ℏ

𝑖
𝛻 − 𝑞𝐀 𝜳

2
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Derivation of Ginzburg Landau equations
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𝑔𝑠 𝐵 = 𝑔𝑛 + 𝛼 𝜳 2 +
1

2
𝛽 𝜳 4 +

1

2𝜇0
𝑩𝒂 − 𝑩𝒊

2 +
1

2𝑚

ℏ

𝑖
𝛻 − 𝑞𝐀 𝜳

2

Energy needed to change the magnetic field from Ba 
(external applied field) to the value Bi (field in the SC)

In the Meissner phase → Bi = 0

the term yields the total energy to be supplied 
for the magnetic field expulsion
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Derivation of Ginzburg Landau equations
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𝑔𝑠 𝐵 = 𝑔𝑛 + 𝛼 𝜳 2 +
1

2
𝛽 𝜳 4 +

1

2𝜇0
𝑩𝒂 − 𝑩𝒊

2 +
1

2𝑚

ℏ

𝑖
𝛻 − 𝑞𝐀 𝜳

2

takes into account a possible spatial variation of Bi and 𝚿 within the SC

𝛻𝛹 = grad𝛹 =
𝜕𝛹

𝜕𝑥
𝒆𝑥+

𝜕𝛹

𝜕𝑦
𝒆𝑦+

𝜕𝛹

𝜕𝑧
𝒆𝑧

For Cooper pairs → m = 2me and q = |2e|

It includes the supercurrents leading to a variation of the magnetic field

it contains the energy needed to establish a spatial variation of the Cooper pair density
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Derivation of Ginzburg Landau equations
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𝐺𝑠 = න
𝑉

𝑔𝑛 + 𝛼 𝜳 2 +
1

2
𝛽 𝜳 4 +

1

2𝜇0
𝑩𝒂 −𝑩𝒊

2 +
1

2𝑚

ℏ

𝑖
𝛻 − 𝑞𝐀 𝜳

2

∙ d𝑉

The Gibbs function for the total SC sample can be obtained integrating 
over the volume V of the sample

𝐺𝑠 = න
𝑉

𝑔𝑠 ∙ d𝑉
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Derivation of Ginzburg Landau equations
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𝐺𝑠 = න
𝑉

𝑔𝑛 + 𝛼 𝜳 2 +
1

2
𝛽 𝜳 4 +

1

2𝜇0
𝑩𝒂 − 𝑩𝒊

2 +
1

2𝑚

ℏ

𝑖
𝛻 − 𝑞𝐀 𝜳

2

∙ d𝑉

This function Gs must be minimized by the variation of 𝜳 and A

The variation then yields the two equations of the Ginzburg-Landau theory:

𝜳 * is the complex conjugate function to 𝜳

𝟏

𝟐𝒎

ℏ

𝒊
𝜵 − 𝒒𝐀

𝟐

𝜳+𝜶𝜳+ 𝜷 𝜳 𝟐𝜳 = 𝟎

𝒋𝒔 =
𝒒ℏ

𝟐𝒎𝒊
𝜳∗𝜵𝜳−𝜳𝜵𝜳∗ −

𝒒𝟐

𝒎
𝜳 𝟐𝐀
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Coming back to London

19

𝒋𝒔 =
𝒒ℏ

𝟐𝒎𝒊
𝜳∗𝜵𝜳−𝜳𝜵𝜳∗ −

𝒒𝟐

𝒎
𝜳 𝟐𝐀

normalizing 𝜳 to the value 𝜳∞ (the equilibrium value of 𝜳 sufficiently far away from any interface)

with ψ = 𝜳/ 𝜳∞ :

𝒋𝒔 =
𝒒ℏ 𝜳∞

𝟐

𝟐𝒎𝒊
𝝍∗𝜵𝝍 −𝝍𝜵𝝍∗ −

𝒒𝟐 𝜳∞
𝟐

𝒎
𝝍 𝟐𝐀

Remember the definition of London penetration depth: 𝝀𝑳 =
𝒎

𝝁𝟎𝒏𝒔𝒒𝟐

𝒋𝒔 =
ℏ

𝟐𝒊𝒒

𝟏

𝝁𝟎𝝀𝑳
𝟐
𝝍∗𝜵𝝍 −𝝍𝜵𝝍∗ −

𝟏

𝝁𝟎𝝀𝑳
𝟐
𝝍 𝟐𝐀

and: ns = |𝜳∞|2 
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Coming back to London (2)

20

𝒋𝒔 =
ℏ

𝟐𝒊𝒒

𝟏

𝝁𝟎𝝀𝑳
𝟐 𝝍∗𝜵𝝍 −𝝍𝜵𝝍∗ −

𝟏

𝝁𝟎𝝀𝑳
𝟐 𝝍 𝟐𝐀

𝝍 = 𝝍𝟎𝒆
𝒊𝝋

𝒋𝒔 = 𝝍𝟎
𝟐 ℏ

𝒒

𝟏

𝝁𝟎𝝀𝑳
𝟐𝜵𝝋 −

𝟏

𝝁𝟎𝝀𝑳
𝟐 𝝍 𝟐𝐀

If the function 𝜳 is spatially constant, 
∇𝝋 vanishes, and | 𝝍 |2 is equal to 1

𝒋𝒔 = −
𝟏

𝝁𝟎𝝀𝑳
𝟐
𝐀

we recover the London theory in the case of a 

spatially constant Cooper pair density ns

However, the 2nd GL equation can take into account the 

supercurrents for a spatially varying wave function
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Coherence length in GL Theory

21

𝟏

𝟐𝒎

ℏ

𝒊
𝜵 − 𝒒𝐀

𝟐

𝜳+ 𝜶𝜳+ 𝜷 𝜳 𝟐𝜳 = 𝟎

We normalize 𝜳 to the value 𝜳∞

(with ψ = 𝜳/ 𝜳∞):

𝟏

𝟐𝒎

ℏ

𝒊
𝜵 − 𝒒𝐀

𝟐

𝝍+ 𝜶𝝍− 𝜶 𝝍 𝟐𝝍 = 𝟎

Starting from the 1st GL equation:

𝒏𝒔 = 𝚿∞
𝟐 = −

𝜶

𝜷

𝟏

𝟐𝒎

ℏ

𝒊
𝜵 − 𝒒𝐀

𝟐

𝜳+ 𝜶𝜳− 𝜶
𝜳 𝟐

𝚿∞
𝟐
𝜳 = 𝟎

𝟏

𝜶
=
𝟏

𝜶
ℏ𝟐

𝟐𝒎𝜶

𝟏

𝒊
𝜵 −

𝒒

ℏ
𝐀

𝟐

𝝍+𝝍− 𝝍 𝟐𝝍 = 𝟎
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Coherence length in GL Theory

22

ℏ𝟐

𝟐𝒎𝜶

𝟏

𝒊
𝜵 −

𝒒

ℏ
𝐀

𝟐

𝝍+𝝍− 𝝍 𝟐𝝍 = 𝟎

Dimension of [lenght]2

𝝃𝑮𝑳 = −
ℏ𝟐

𝟐𝒎𝜶
Ginzburg Landau Coherence lenght 𝝃𝑮𝑳

−𝝃𝑮𝑳
𝟐 𝜵

𝒊
−
𝒒

ℏ
𝐀

𝟐

𝝍+𝝍− 𝝍 𝟐𝝍 = 𝟎
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Meaning of  GL Coherence length

Imagine a simple situation in which the superconductor extends in the 
x direction (from x = 0 up to x → ∞)

No external magnetic field applied → A = 0

For x = 0 we assume | 𝝍 | = 0

Then we can find a real solution for 𝝍 from

23

−𝝃𝑮𝑳
𝟐 𝜵

𝒊
−
𝒒

ℏ
𝐀

𝟐

𝝍+𝝍− 𝝍 𝟐𝝍 = 𝟎
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Meaning of  GL Coherence length (2)

For x ≥ 0 this equation has the solution:

24

−𝝃𝑮𝑳
𝟐 𝜵

𝒊
−
𝒒

ℏ
𝐀

𝟐

𝝍+𝝍− 𝝍 𝟐𝝍 = 𝟎 𝝃𝑮𝑳
𝟐 𝒅𝟐𝝍

𝒅𝒙𝟐
+𝝍−𝝍𝟑 = 𝟎

𝝍 𝒙 = 𝒕𝒂𝒏𝒉
𝒙

𝟐𝝃𝑮𝑳

𝝃𝑮𝑳 can be interpreted as the 

characteristic length within 
which the order parameter 𝝍 
can change
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Characteristic Lengths of the GL Theory

25

𝝀𝑳 =
𝒎

𝝁𝟎𝒏𝒔𝒒
𝟐

𝒏𝒔 = 𝚿∞
𝟐 = −

𝜶

𝜷

London Penetration Depth λL

𝝃𝑮𝑳 = −
ℏ𝟐

𝟐𝒎𝜶

Ginzburg Landau Coherence lenght 𝝃𝑮𝑳
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Characteristic Lengths of the GL Theory (T)

26

𝝀𝑳 =
𝒎

𝝁𝟎𝒏𝒔𝒒
𝟐

𝒏𝒔 = 𝚿∞
𝟐 = −

𝜶

𝜷

London Penetration Depth λL

𝝃𝑮𝑳 = −
ℏ𝟐

𝟐𝒎𝜶

Ginzburg Landau Coherence lenght 𝝃𝑮𝑳

𝜶(𝑻) = 𝜶(𝟎)
𝑻

𝑻𝒄
− 𝟏
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Characteristic Lengths of the GL Theory (T)

27

𝝀𝑳(𝑻) =
𝝀𝑳(𝟎)

𝟏 − Τ𝑻 𝑻𝑪  
London Penetration Depth λL

Ginzburg Landau Coherence lenght 𝝃𝑮𝑳𝝃𝑮𝑳(𝑻) =
𝝃𝑮𝑳(𝟎)

𝟏 − Τ𝑻 𝑻𝑪  

For T → Tc both quantities approach infinity
Remember that Ginzburg-Landau theory is valid only in the limit of T close to Tc

𝜿 =
𝝀𝑳
𝝃𝑮𝑳 

Ginzburg Landau Parameter

𝜿 is independent of the temperature and of the magnetic field
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Experimental T dependence of λL

T dependence for conventional SC 
can be approximated by the following 
empirical expression:

28

𝝀𝑳 𝑻

𝝀𝑳 𝟎
∝ 𝟏 −

𝑻

𝑻𝒄

𝟒 − Τ𝟏 𝟐

Temperature dependence of the penetration depth of Hg. 
The solid line corresponds to the exponent a = 4 in the 
bracket of the equation in this slide.
For comparison, the cases a = 3 and a = 6 are also shown 
by the dashed curves. (from Buckel-Kleiner book)

For unconventional SC, for which the energy gap has 
locations with value zero along certain crystal 
directions, the difference ΔλL = λL(T) – λL(0) increases 
from zero following a power law
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Type I Superconductor – geometric effects

29

Rod-shaped sample
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Type I Superconductor – geometric effects

30

Sphere sample
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Intermediate state in Type I SC

31
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The Wall Energy

Type I SC

a positive wall energy is associated to generate a SC-NC interface

Type II SC

generation of a SC-NC interface does not require an expense of E

32
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The Wall Energy (2)
We assume:

• Homogeneous material

• SC thickness ≫ 𝜆𝐿

• T costant

33

NC (x<0)→ B > Bcth

SC (x>0)→ B vanishes after ~ 𝜆𝐿

Spatial variation of B and ns at an interface between a normal conducting and a superconducting 
domain within a homogeneous material at temperature T.
(Here xGm = “magnetic boundary”, and xGk = “condensate boundary”). (from Buckel-Kleiner book)       

• ns(T) cannot drop discontinuously 
from ns (T) to zero

• spatial variation of ns (T) possible only 
for x > 𝝃𝑮𝑳
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The Wall Energy (3)
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NC state is stabilized, since the 
expulsion of the magnetic field would 
require more free enthalpy than can 
be supplied by the transition into the 
SC state

EB = Energy associated with the expulsion of B

EC = Energy gained because of the condensation into Cooper pairs
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The Wall Energy (4)
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Spatial variation of B and ns at an interface between a normal conducting and a 
superconducting domain within a homogeneous material at temperature T.
(Here xGm = “magnetic boundary”, and xGk = “condensate boundary”). (from 
Buckel-Kleiner book)       

In the NC:

EB = EC = 0

At the boundary:

𝑬𝑩 = 𝑬𝑪 =
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐 𝑽

In the boundary layer:

Both EB and EC are reduced by the amount F (the area 
of the boundary layer) and the factors 𝜆𝐿 and 𝝃𝑮𝑳 
respectively

∆𝑬𝑪= 𝑭𝝃𝑮𝑳
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐

∆𝑬𝑩= 𝑭𝝀𝑳
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐
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The Wall Energy in TYPE I Superconductor
TYPE I Superconductor
𝝃𝑮𝑳 > 𝜆𝐿

36

Wall Energy αW

∆𝑬𝑪 − ∆𝑬𝑩 = 𝝃𝑮𝑳 − 𝝀𝑳 𝑭
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐 > 𝟎

𝜶𝑾 = 𝝃𝑮𝑳 − 𝝀𝑳 𝑭
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐

Energy per unit area to generate a NC-SC boundary
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The Wall Energy in TYPE II Superconductor
TYPE II Superconductor

37

∆𝑬𝑪 − ∆𝑬𝑩 = 𝝃𝑮𝑳𝑭
𝟏

𝟐𝝁𝟎
𝑩𝒄𝒕𝒉
𝟐 − 𝝀𝑳𝑭

𝟏

𝟐𝝁𝟎
𝑩𝟐 < 𝟎

2 Critical Magnetic Fields: Bc1 and Bc2

Magnetic field penetrate in the SC above Bc1
+𝝃𝑮𝑳 < 𝜆𝐿

𝝃𝑮𝑳𝑩𝒄𝒕𝒉
𝟐 < 𝝀𝑳𝑩

𝟐
𝑩𝒄𝒕𝒉
𝟐

𝑩𝟐 <
𝝀𝑳
𝝃𝑮𝑳

Magnetic field can penetrate 
in the SC at fields B < BCTH

𝝃𝑮𝑳 < 𝜆𝐿
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The Wall Energy in TYPE II Superconductor

38

Average magnetic field in the interior of a type-II 
superconductor plotted versus the external field

Magnetization curve of a type-II superconductor. Rod-shaped sample with 
NM = 0. Because of the definition of Bcth, the shaded areas must be equal

(from Buckel-Kleiner book) 
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The Wall Energy in TYPE II Superconductor

39

In a type II superconductor SC state remains at B > Bcth

The areas under both magnetization curves must be equal

The “corresponding” type-I SC has the same difference 
of the free enthalpies Gn–Gs as the type-II SC
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Turning TYPE I into TYPE II SC

40

From GL Theory we have that a Type-I SC can turn into a type-II SC if 

the electron mean free path is reduced sufficiently

Confirmed Experimentally

Magnetization curve of lead with 13.9 
at.% of indium (solid line). Rod shaped 
sample with a small demagnetization 
coefficient. The dashed line shows the 
ideal curve of pure lead (1 G = 10–4 T.)
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Bc1 and Bc2 expression in GL Theory
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Bc1 and Bc2 are temperature dependent 
since are related to Bcth

𝜿 =
𝝀𝑳
𝝃𝑮𝑳 

Ginzburg Landau Parameter

𝑩𝒄𝟐 = 𝟐𝜿𝑩𝒄𝒕𝒉

𝑩𝒄𝟏 =
𝟏

𝟐𝜿
(𝐥𝐧 𝜿 + 𝟎. 𝟎𝟖)𝑩𝒄𝒕𝒉

𝜿 𝑩𝒄𝟐𝑩𝒄𝟏
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Bc1 and Bc2 expression in GL Theory
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𝜿 =
𝝀𝑳
𝝃𝑮𝑳 

Ginzburg Landau Parameter

𝑩𝒄𝟐 = 𝟐𝜿𝑩𝒄𝒕𝒉 𝑩𝒄𝟐 =
𝜱𝟎

𝟐𝝅𝝃𝑮𝑳
𝟐

𝑩𝒄𝟏 =
𝟏

𝟐𝜿
(𝐥𝐧 𝜿 + 𝟎. 𝟎𝟖)𝑩𝒄𝒕𝒉 𝑩𝒄𝟏 =

𝜱𝟎

𝟒𝝅𝝀𝑳
𝟐
(𝐥𝐧 𝜿 + 𝟎. 𝟎𝟖)
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Type I and Type II SC in GL Theory

43

In alloys the mean free path ℓ decreases monotonically with increasing 
concentration of the impurities

The “critical” concentration at which type-I turns into a type-II SC is defined by:

𝑩𝒄𝟐 ≥ 𝑩𝒄𝒕𝒉

𝑩𝒄𝟐 = 𝟐𝜿𝑩𝒄𝒕𝒉

𝜿 ≥
𝟏

𝟐 

𝜿 ≥
𝟏

𝟐 

𝜿 <
𝟏

𝟐 
TYPE-I Superconductors

TYPE-II Superconductors
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Ginzburg Landau Parameter

44

𝜿 =
𝝀𝑳
𝝃𝑮𝑳 
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Ordinate vortex lattice 

45

With complex calculation Abrikosov demonstrate that the 
vortex arrange in ordinate pattern arrays 

(Thinkam, Introduction to Superconductivity, 2nd edition)

𝒂𝑭𝑳 = 𝒂𝟎
𝜱𝟎

𝑩

𝑎0 = 1 𝑎0 =
4

ൗ4 3

intervortex distance
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Triangular vortex lattice 

46

(from Buckel-Kleiner book) 

Methods for the imaging of flux lines. (a) Neutron diffraction pattern of the vortex 
lattice in niobium. (b) Magneto-optical image of vortices in NbSe2 . (c) Lorentz 
microscopy of niobium. (d) Electron holography of Pb. (e) Low-temperature scanning 
electron microscopy of YBa2Cu3O7 (f) Scanning tunneling microscopy of NbSe2 .

Image of the vortex lattice obtained with an electron microscope following the 
decoration with iron colloid. Frozen-in flux after the magnetic field has been reduced to 
zero. Material: Pb + 6.3 at.% In; temperature: 1.2 K;
sample shape: cylinder, 60 mm long, 4 mm diameter; magnetic field Ba parallel to the 
axis. Magnification: 8300V. (Reproduced by courtesy of Dr. Essmann).

The hexagonal (triangular) 
lattice has the lowest energy 
and gives a stable configuration

(as confirmed by experiments)
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Relations between λ, ξ and Hcth

By combining the equations containing Hcth, ξGL and λL

we obtain the interesting result that:

47

𝑯𝒄𝒕𝒉𝝀𝑳𝝃𝑮𝑳 =
𝜱𝟎

𝟐𝝅 𝟐𝝁𝟎

Since the right-hand side is a constant, we see that on varying 
the temperature, the three quantities Hcth, ξGL and λL are 
predicted to vary in such a way that their product remains fixed
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Final remarks on GL Theory (1)
The GL theory pictures a SC as a flexible physical system responding to 
the applied currents and magnetic fields by adjusting its spatial 
distribution of order

The equilibrium configuration of order, current and field is the one that 
minimizes the total energy of the system

The theory provides two coupled equations with boundary condition 
giving the spatial distribution of the order parameter ψ and the vector 
potential A in terms of the GL parameter 𝜿GL defined as the ratio 
between 𝝀𝑳 and 𝝃𝑮𝑳

For different values of 𝜿GL there exist different thermodynamical states

48
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Final remarks on GL Theory (2)
The importance of Ginzburg-Landau theory is incommensurable since it permits a deep 

understanding of the Type II superconductors and, by means of this, the development of all 

the technology using this kind of superconducting materials.

The great limit of the GL theory is that it is a local theory. That determines its failure at high 

frequencies and at temperatures far from the critical temperature.

Indeed, for T ~ Tc (that is the range of validity of GL theory) the penetration depth 𝝀 is larger 

than the coherence length ξ and the non-local aspect of the electronic interaction becomes of 

secondary importance. That is why GL theory describes Type II superconductors better than 

Type I.

49
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