
Natural Language Processing

Lecture 5 : Language Models

Master Degree in Computer Engineering
University of Padua

Lecturer : Giorgio Satta

Lecture based on material originally developed by :
Marco Kuhlman, Linköping University

Cristopher Manning, Stanford University
Mark-Jan Nederhof, University of St. Andrews

Elena Voita, University of Edinburgh

Natural Language Processing Language Models

Language modeling

Natural Language Processing Language Models

Language modeling

Natural Language Processing Language Models

Language modeling

Language modeling is the task of predicting which word comes
next in a sequence of words. More formally, given a sequence of
words w1w2 ¨ ¨ ¨ wt we want to know the probability of the next
word wt`1:

Ppwt`1 | w1w2 ¨ ¨ ¨ wtq

This allows language modeling to be treated as a classification task.

Notation : When string w1w2 ¨ ¨ ¨ wt is understood from the
context, we write w1:t .

Natural Language Processing Language Models

Language modeling

Rather than as predictive models, language models can also be
viewed as generative models that assign probability to a piece of
text:

Ppw1 ¨ ¨ ¨ wtq

Not necessarily a complete sentence.

In this case, the model provides an answer to the question:

How likely is it that the given text belongs to the modeled
language?

Natural Language Processing Language Models

Language modeling

These two views are equivalent, as the probability of a sequence
can be expressed as a product of conditional probabilities:

Ppw1:nq “

n
ź

t“1
Ppwt | w1:t´1q

This is the chain rule. For t “ 1, we assume Ppwt | w1:t´1q “ Ppw1q.

Conversely, a conditional probability can be expressed as a ratio of
two sequence probabilities:

Ppwt`1 | w1:tq “
Ppw1:t`1q

Ppw1:tq

We have applied here the definition of conditional probaility.

Natural Language Processing Language Models

Applications

In a machine translation system, we are given the following
Chinese sentence

he to reporters introduced main content (lit.)

We get three candidate translations:
he introduced reporters to the main contents of the statement
he briefed to reporters the main contents of the statement
he briefed reporters on the main contents of the statement

We use a language model to select the most likely candidate.
Same idea for speech recognition and spelling correction.

Natural Language Processing Language Models

Probability estimation

©i
nd

ia
m

ar
t

Natural Language Processing Language Models

Probability estimation

Assume the text ‘its water is so transparent that’. We want to
know the probability that the next word is ‘the’.

Let Cpits water is so transparent thatq be the number of times the
string is seen in a large corpus.

One way to estimate the above probability is to set

Ppthe | its water is so transparent thatq “

Cpits water is so transparent that theq

Cpits water is so transparent thatq

To make these probabilities sum to one, we need to add to the vocabulary V a
sentence end marker. In this way, every token in the corpus is always followed
by some symbol.

Natural Language Processing Language Models

Probability estimation

In general, given a large corpus, we can set:

Ppwt | w1:t´1q “
Cpw1:tq

Cpw1:t´1q

Under previous assumptions, we have Cpw1:t´1q “
ř

uPV Cpw1:t´1uq.

Quantities Cpw1:tq are called frequencies.

The ratio Cpw1:tq{Cpw1:t´1q is called relative frequency.

The estimator above is therefore called the relative frequency
estimator.

Natural Language Processing Language Models

Probability estimation

The relative frequency estimator will be correct in the limit, that
is, with infinite data.

In practice, consider an aggressive upper bound of N “ 20 words in
our sequences, and an English vocabulary V of size |V | “ 105.
Then the number of possible sequences is |V |20 “ 10100.

This estimator is extremely data-hungry, and suffers from high
variance: depending on what data happens to be in the corpus,
we could get very different probability estimations.
We need to introduce some bias into the model.

Natural Language Processing Language Models

N-gram model

©S
un

ny
Sr

in
id

hi

Natural Language Processing Language Models

N-gram model

A string wt´N`1:t of N words is called N-gram.

The N-gram model approximates the probability of a word given
the entire sentence history by conditioning only on the past
N ´ 1 words.
The assumption that the probability of a word depends only on a few previous
words is called a Markov assumption.

The 2-gram model, for example, makes the approximation

Ppwt | w1:t´1q « Ppwt | wt´1q

1-gram model is just the single word probability Ppwtq, unconditioned.

Natural Language Processing Language Models

N-gram model

The general equation for the N-gram model is

Ppwt | w1:t´1q « Ppwt | wt´N`1:t´1q

The relative frequency estimator for the N-gram model is then

Ppwt | wt´N`1:t´1q “
Cpwt´N`1:tq

Cpwt´N`1:t´1q

Natural Language Processing Language Models

N-gram model

For N “ 2 we have

Ppwt | wt´1q “
Cpwt´1wtq

ř

u Cpwt´1uq

“
Cpwt´1wtq

Cpwt´1q

For N “ 1 we have Ppwtq “
Cpwt q

n where n is the length of the
training set.
Alternatively, we can view n “

ř

u Cpuq as the number of 1-gram observations,
where u ranges over all tokens excluding the sentence end marker.

The model requires estimating and storing the probability of
only |V |N events, which is exponential in N (a constant), not in
the length of the sentence.

Natural Language Processing Language Models

Example

Consider a mini-corpus of three sentences. We augment each
sentence with start and end markers <s> and </s>

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

We get the following 2-gram probabilities, among others:

PpI|<s>q “ 2
3 “ .67 PpSam|<s>q “ 1

3 “ .33
Ppam|Iq “ 2

3 “ .67 Pp</s>|Samq “ 1
2 “ .50

PpSam|amq “ 1
2 “ .50 Ppdo|Iq “ 1

3 “ .33

Natural Language Processing Language Models

Learning Eisenstein §6.1

N is a hyperparameter. When setting its value, we face the
bias-variance tradeoff.

When N is too small (high bias), it fails to recover long-distance
word relations, as for instance in:

The computer that is on the 3rd floor
of our office building crashed.

When N is too large, we get data sparsity (high variance).

Natural Language Processing Language Models

Learning

The relative frequency estimator can be mathematically derived by
maximizing the likelihood of the dataset.

This can be done by solving a constrained optimization
problem, using Lagrange multipliers.
More precisely, we maximize the log of the product of all sentence probabilities,
under the constrain that probabilities sum up to one.

Therefore the relative frequency estimator is also called the
maximum likelihood estimator (MLE).

Natural Language Processing Language Models

Practical issues

To compute 3-gram probabilities for words at the start of a
sentence, we use two markers, e.g. PpI|<s><s>q. Similarly for
higher order N-grams.

Multiplying many small probabilities results in underflow. It is
much safer and more efficient to use negative log probabilities,
´ logppq, and add them.
Note the minus sign: the smaller the probability, the higher the
´log probability.

For web-scale datasets (large vocabulary), the model has huge
space requirements, even for small values of N.

Natural Language Processing Language Models

Evaluation

Natural Language Processing Language Models

Evaluation

Extrinsic evaluation : Use the model in some application
(e.g. speech recognition) and measure performance of that
application.
Difficult to do reliably, time consuming.

Intrinsic evaluation : Look at performance of model in isolation,
with respect to a given evaluation measure.
Perplexity, see next slide.

Natural Language Processing Language Models

Perplexity

Intrinsic evaluation of language models is based on the inverse
probability of the test set, normalized by the number of words.

For a test set W “ w1w2 ¨ ¨ ¨ wn we define perplexity as:

PPpW q “ Ppw1:nq´ 1
n

“ n

g

f

f

e

n
ź

j“1

1
Ppwj | w1:j´1q

We need to discuss inverse probabilities and n-th root of product.

Natural Language Processing Language Models

Perplexity

The multiplicative inverse probability 1{Ppwj | w1:j´1q can be seen
as a measure of how surprising the next word is.
Equivalently, how much information is carried out by the next word.

The degree of the root averages over all words of the test set,
providing average surprise per word.
The perplexity of two language models is only comparable if they use identical
vocabularies.

For large enough test data obtained in a uniform way, perplexity is
more or less constant, i.e. independent of n.

The lower the perplexity, the better the model.

Natural Language Processing Language Models

Example

Evaluation of N-gram models on the Wall Street Journal.

Training set: 38 million tokens;
Vocabulary: 19,979 types;
Test set: 1.5 million words.

Natural Language Processing Language Models

Practical issues

Make sure to use a training corpus that has a similar genre to
whatever task you are trying to accomplish.

An (intrinsic) improvement in perplexity does not guarantee an
(extrinsic) improvement in the performance of a language
processing task like speech recognition or machine translation.

Natural Language Processing Language Models

Sampling sentences
Random sentences generated from 1-gram, 2-gram, 3-gram, and
4-gram models trained on Shakespeare’s works.
Corpus: 884,647 tokens, 29,066 types. Sentence generation samples the
probabilities of the model.

The 3-gram and 4-gram sentences look a lot like Shakespeare.
Indeed, for many 4-grams, there is only one continuation.

Natural Language Processing Language Models

Sparse data

Ppwt | w1:t´1q “
Cpw1:tq

Cpw1:t´1q

If there isn’t enough data in the training set, counts will be zero
for some grammatical sequences.

Then some of the N-gram probabilities will be zero or undefined.
Perplexity on the test set will also be undefined.

There are three scenarios we need to consider:
zero numerator: smoothing
zero denominator: backoff, interpolation
out-of-vocabulary words in test set: estimation of unknown
words

Natural Language Processing Language Models

Smoothing

Su
sa

n
W

ilk
in

so
n

on
Un

sp
la

sh

Natural Language Processing Language Models

Smoothing

Smoothing techniques (also called discounting) deal with words
that are in our vocabulary V but were never seen before in the
given context (zero numerator).

Smoothing prevents LM from assigning zero probability to these
events.

Idea :
shave off a bit of probability mass from more frequent events
give it to the events we have never seen in the training set

Natural Language Processing Language Models

Laplace smoothing

Laplace smoothing does not perform well enough, but provides a
useful baseline.

Idea : Pretend that everything occurs once more than the actual
count.

In this way, all the counts that used to be 0 will now have a count
of 1, the counts of 1 will be 2, and so on.
Also known as add-one smoothing.

Natural Language Processing Language Models

Laplace smoothing

In order to apply smoothing to our N-gram model, let us rewrite
the relative frequency estimator in a more convenient form:

Ppwt | w1:t´1q “
Cpw1:tq

Cpw1:t´1q

“
Cpw1:tq

ř

u Cpw1:t´1uq

In the summation u is a single word ranging over the entire
vocabulary V and the sentence end marker.
Recall that every word token is followed by some symbol, either a word or the
end marker.

Natural Language Processing Language Models

Laplace for 1-grams

Let n be the number of tokens, that is, the length of the training
set, and recall that |V | is the number of word types.
We assume the vocabulary V is fixed.

Recall that the 1-gram model relative frequency estimator is

Ppwtq “
Cpwtq

n

The adjusted estimate of the probability of word wt P V is then:

PLpwtq “
Cpwtq ` 1

n ` |V |

The extra |V | comes from pretending there are |V | more
observations, one for each word type.

Natural Language Processing Language Models

Laplace for 1-grams

Alternatively, we can think of PL as applying an adjusted count
C˚ to the n actual observations:

C˚pwtq “ pCpwtq ` 1q
n

n ` |V |

PLpwtq “
C˚pwtq

n

“
Cpwtq ` 1

n ` |V |

Under this view, the smoothing algorithm amounts to discounting
(lowering) counts for high frequency words and redistributing

ÿ

uPV
Cpuq “

ÿ

uPV
C˚puq “ n

Natural Language Processing Language Models

Laplace for 1-grams

We can consider the relative discount dpwtq, defined as the ratio
of the discounted counts to the original counts:

dpwtq “
C˚pwtq

Cpwtq

“

ˆ

1 `
1

Cpwtq

˙

n
n ` |V |

By solving dpwtq ă 1, we find that discounting happens for high
frequency types u such that Cpuq ą n

|V |
.

Natural Language Processing Language Models

Laplace for 2-grams

The 2-gram model relative frequency estimator is

Ppwt | wt´1q “
Cpwt´1wtq

ř

u Cpwt´1uq

“
Cpwt´1wtq

Cpwt´1q

The adjusted estimate of the probability of 2-gram wt´1wt is then:

PLpwt | wt´1q “
Cpwt´1wtq ` 1

ř

u rCpwt´1uq ` 1s

“
Cpwt´1wtq ` 1
Cpwt´1q ` |V |

Natural Language Processing Language Models

Laplace for 2-grams

The adjusted count is:

C˚pwt | wt´1q “
rCpwt´1wtq ` 1sCpwt´1q

Cpwt´1q ` |V |

PLpwt | wt´1q is larger than Ppwt | wt´1q for 2-gram sequences
that occur zero or few times in the training set.

However, PLpwt | wt´1q will be much lower (too low) for 2-gram
sequences that occur often. So Laplace smoothing is too crude in
practice.

Natural Language Processing Language Models

Add-k smoothing

Add-k smoothing is a generalization of add-one smoothing.
Also known as Lidstone smoothing

For some 0 ď k ă 1:

PAdd-kpwt | wt´1q “
Cpwt´1wtq ` k
Cpwt´1q ` k|V |

Jeffreys-Perks law corresponds to the case k “ 0.5, which works
well in practice and benefits from some theoretical justification.
See for instance (Manning and Schutze, 1999).

Natural Language Processing Language Models

Smoothing and perplexity

When smoothing a language model, we are redistributing
probability mass to outcomes we have never observed.

This leaves a smaller fraction of the probability mass to the
outcomes that we actually did observe during training.
The training data becomes less likely.

Thus, the more probability we are taking away from observed
outcomes, the higher the perplexity on the training data.

Natural Language Processing Language Models

Backoff and interpolation

N
ick

Fe
wi

ng
s

on
Un

sp
la

sh

Natural Language Processing Language Models

Backoff and interpolation

Backoff and interpolation techniques deal with words that are in
our vocabulary, but in the test set combine to form previously
unseen contexts.

These techniques prevent LM from creating undefined
probabilities for these events (zero-divide).

Natural Language Processing Language Models

Backoff

Backoff combines fine grained models (large N) with coarse
grained models (low N).

Idea :
if you have trigrams, use trigrams
if you don’t have trigrams, use bigrams
if you don’t even have bigrams, use unigrams

Katz backoff is a popular but rather complex algorithm for
backoff.
Katz backoff is often combined with a smoothing method called Good-Turing.

Natural Language Processing Language Models

Stupid backoff

With very large text collections (web-scale) a rough approximation
of Katz backoff is often sufficient, called stupid backoff.

For some small λ:

PSpwt | wt´N`1:t´1q “

$

’

’

’

’

&

’

’

’

’

%

Ppwt | wt´N`1:t´1q “
Cpwt´N`1:t q

Cpwt´N`1:t´1q
,

if Cpwt´N`1:tq ą 0

λ PSpwt | wt´N`2:t´1q,
otherwise

It is not difficult to show that PS is not a probability distribution. However, in
practical settings stupid backoff turns out to be effective.

Natural Language Processing Language Models

Linear interpolation

In simple linear interpolation, we combine different order
N-grams by linearly interpolating all the models.

Simple linear interpolation for N “ 3

PLpwt | wt´2wt´1q “ λ1Ppwt | wt´2wt´1q `

λ2Ppwt | wt´1q `

λ3Ppwtq

for some choices of positive λ1, λ2, λ3 such that
ř

j λj “ 1
Upper-order models set to zero when undefined. Note that we use lower-order
models even in cases we have non-zero counts for the upper-order ones.

Natural Language Processing Language Models

Linear interpolation

What are good choices for the λj ’s? Algorithms exist that attempt
to optimise likelihood of training data.

We might have different values for the λj ’s, depending on
sequences wt´2wt´1, subject to

ÿ

j
λjpwt´2wt´1q “ 1

The more frequent wt´2wt´1, the more reliable the trigram probabilities, the
higher we can choose λ1pwt´2wt´1q.

Natural Language Processing Language Models

Unknown Words

An
ni

e
Sp

ra
tt

on
Un

sp
la

sh

Natural Language Processing Language Models

Unknown Words

Unknown words, also called out of vocabulary (OOV) words, are
words we haven’t seen before.

Replace by new word token <UNK> all words that occur fewer than
d times in the training set, d some small number.

Proceed to train LM as before, treating <UNK> as a regular word.

At test time, replace all unknown words by <UNK> and run the
model.

Natural Language Processing Language Models

Limitations Goldberg §9.3.2

N-gram language models have several limitations.

Scaling to larger N-gram sizes is problematic, both for
computational reasons and because of increased sparsity.

Smoothing techniques are intricate and require careful engineering
to retain a well-defined probabilistic interpretation.

Without additional effort, N-gram models are unable to share
statistical strength across similar words.
Observations of ‘red apple’ do not affect estimates for ‘green apple’.

Natural Language Processing Language Models

Research papers

Ja
nk

o
Fe

rli
c

on
Un

sp
la

sh
Natural Language Processing Language Models

Research papers

Title: An Empirical Study of Smoothing Techniques for Language
Modeling
Authors: Stanley Chen, Joshua Goodman
Conference: ACL 1996
Content: Tutorial introduction to N-gram models and survey of
the most widely-used smoothing algorithms for such models.
Extensive empirical comparison of these techniques.
https://www.aclweb.org/anthology/P96-1041.pdf

Natural Language Processing Language Models

https://www.aclweb.org/anthology/P96-1041.pdf

Research papers

Title: Improved backing-off for M-gram language modeling
Authors: Reinhard Kneser, Hermann Ney
Conference: ICASSP 1995
Content: Simple back-off smoothing discards context and back off
from n-grams to k-grams with k ă n. But let’s take for example
the phrase San Francisco: it is common and Francisco will have a
high unigram probability. When backing off, we obtain a large
probability of Francisco after any token!
https://ieeexplore.ieee.org/document/479394?arnumber=479394

Natural Language Processing Language Models

https://ieeexplore.ieee.org/document/479394?arnumber=479394

Have fun!

ht
tp

s:/
/b

oo
ks

.g
oo

gl
e.

co
m

/n
gr

am
s

Natural Language Processing Language Models

Neural language models

O
m

id
Ar

m
in

on
Un

sp
la

sh

Natural Language Processing Language Models

Neural language models

N-gram language models have been largely supplanted by neural
language models (NLM).

Main advantages of NLM
can incorporate arbitrarily distant contextual information,
while remaining computationally and statistically tractable
can generalize better over contexts of similar words, and are
more accurate at word-prediction

On the other hand, as compared with N-gram language models,
NLM are much more complex, are slower, need more time to train,
and are less interpretable.
For many (especially smaller) tasks N-gram language models is still the right
tool.

Natural Language Processing Language Models

Neural language models

Idea :
get a vector representation for the previous context
generate a probability distribution for the next token

First bullet depends on NN architecture; second bullet is model-agnostic.

Most natural choice for NN architecture is recurrent neural
network (RNN) but feedforward neural network (FNN) and
convolutional neural network (CNN) have also been exploited.

Natural Language Processing Language Models

Neural language models Elena Voita, NLP Course For You

General architecture for NLM

El
en

a
Vo

ita
ht

tp
s:

//
le

na
-v

oi
ta

.g
it

hu
b.

io
/n

lp
_c

ou
rs

e.
ht

ml

Natural Language Processing Language Models

https://lena-voita.github.io/nlp_course.html

Feedforward NLM: inference

See Jurafsky & Martin §7.3 and §7.6 for definition and training of feedforward
neural networks.

Like the N-gram language model, the feedforward NLM uses the
following approximation

Ppwt | w1:t´1q « Ppwt | wt´N`1:t´1q

and a moving window that can see N ´ 1 words into the past.

For w P V , let indpwq P r1..|V |s be the index associated with w .

We represent each input word wt as a one-hot vector xt of
size |V |, defined as follows

element xtrindpwtqs is set to one
all the other elements of xt are set to zero

Natural Language Processing Language Models

Feedforward NLM: inference

At the first layer
we convert one-hot vectors for the words in the N ´ 1 window
into word embeddings of size d
we concatenate the N ´ 1 embeddings

The first hidden layer equation is (assuming N “ 4)

et “ rExt´3; Ext´2; Ext´1s

where
E : d ˆ |V | is a learnable matrix with the word embeddings
xt´i : |V | ˆ 1 are 1-hot representation of word wt´i

et : 3d ˆ 1 is the concatenation of the embeddings of the
N ´ 1 previous words

Natural Language Processing Language Models

Feedforward NLM: inference

Conversion from 1-hot word representation into word embedding.

Natural Language Processing Language Models

Feedforward NLM: inference

The model equations for the remaining layers

ht “ gpWet ` bq

zt “ Uht

ŷt “ softmaxpztq

where
W : dh ˆ 3d is a learnable matrix, dh the size of the second
hidden vector representation
b : dh ˆ 1 is a learnable vector
ht : dh ˆ 1 is obtained through some activation function g
U : |V | ˆ dh is a learnable matrix
zt , ŷt : |V | ˆ 1 scores and distribution (see next slide)

Minor changes to indices wrt the textbook.

Natural Language Processing Language Models

Feedforward NLM: inference

The vector zt can be thought of as a set of scores over V , also
called logits: raw (non-normalized) predictions that a classification
model generates.

Passing these scores through the softmax function normalizes into
a probability distribution.

The element of ŷt with index indpwtq is the probability that the
next word is wt :

ŷtrindpwtqs “ Ppwt | wt´3:t´1q

Recall we are assuming N “ 4.

Natural Language Processing Language Models

Feedforward NLM: inference

Feedforward NLM architecture

Natural Language Processing Language Models

Feedforward NLM: training
The parameters of the model are θ “ E, W, U, b.
The number of parameters is Op|V |q, since d is a constant.

Let wt be the word at position t in the training data. Then the
true distribution yt for the word at position t is a 1-hot vector of
size |V | with

ytrindpwtqs “ 1
ytrks “ 0 everywhere else

We use the cross-entropy loss for training the model:

LCE pŷt , ytq “ ´

|V |
ÿ

k“1
ytrks log ŷtrks

“ ´ log ŷtrindpwtqs

Expected information of ŷt computed w.r.t. yt .

Natural Language Processing Language Models

Feedforward NLM: training

Recall the equation for the estimated distribution (general N)

ŷtrindpwtqs “ Ppwt | wt´N`1:t´1q

Replacing in the cross-entropy loss equation, we obtain

LCE pŷt , ytq “ ´ log Ppwt | wt´N`1:t´1q

Observe that the cross-entropy loss equals the negative log
likelihood of the training data (see later slides).

Natural Language Processing Language Models

Feedforward NLM: training
Feedforward NLM training

Natural Language Processing Language Models

Recurrent NLM: inference

See Jurafsky & Martin §9.1 for definition and training of recurrent neural
networks.

RNN language models process the input one word at a time,
predicting the next word from

the current word
the previous hidden state

RNNs can model probability distribution Ppwt | w1:t´1q without
the N ´ 1 window approximation of feedforward NLM.
The hidden state of the RNN model can (in principle) represent information
about all of the preceding words.

Natural Language Processing Language Models

Recurrent NLM: inference

The model equations are (for some h0)

et “ Ext

ht “ gpUht´1 ` Wetq

ŷt “ softmaxpVhtq

where (dh is the size of the hidden vectors)
xt : |V | ˆ 1 is a 1-hot representation of word wt

E : dh ˆ |V | is a learnable matrix with the word embeddings
U, W : dh ˆ dh are learnable matrices
ht : dh ˆ 1 is the hidden vector at step t
V : |V | ˆ dh is a learnable matrix
ŷt : |V | ˆ 1 is a probability distribution

Minor changes to notation wrt the textbook.

Natural Language Processing Language Models

Recurrent NLM: inference

The vector resulting from Vht records the logits (unormalized
scores) over the vocabulary V , given the evidence provided by ht .

The softmax normalizes the logits, resulting in the estimated
distribution ŷt for the word at step t.

More precisely, for each word w P V , the element of ŷt with index
indpwq estimates the probability that the next word is w :

ŷtrindpwqs “ Ppwt`1 “ w | w1:tq

Natural Language Processing Language Models

Recurrent NLM: inference

The recurrent NLM unrolled in time

Natural Language Processing Language Models

Recurrent NLM: training

The number of parameters of the model is Op|V |q, since d is a
constant.

Let yt be the true distribution at step t. This is a 1-hot vector
over V , obtained from the training set.

We train the model to minimize the error in predicting the true
next word wt`1 in the training sequence, using cross-entropy as
the loss function:

LCE pŷt , ytq “ ´
ÿ

wPV
ytrindpwqs log ŷtrindpwqs

“ ´ log ŷtrindpwt`1qs

Again, the cross-entropy loss equals the negative log likelihood of training set.

Natural Language Processing Language Models

Recurrent NLM: training

At each step t during training
prediction is based on the correct sequence of tokens w1:t

we ignore what the model predicted at previous steps

The idea that we always give the model the correct history
sequence to predict the next word is called teacher forcing.

Teacher forcing has some disadvantages: the model is never
exposed to prediction mistakes; therefore at inference time the
model is not able to recover from errors.

Natural Language Processing Language Models

Character-level NLM

Character-level NLM
improves modeling of uncommon and unknown words
reduces training parameters due to the small softmax

Performance usually worse than the word-level NLMs, since longer
history is needed to predict the next word correctly.

A variety of solutions that combine character- and word- level
information have been proposed, called character-aware LM.

Natural Language Processing Language Models

Practical issues

Natural Language Processing Language Models

Practical issues

Both the feedforward NLM and the recurrent NLM learn word
embeddings E simultaneously with training the network.
This is useful when the task at hand places strong constraints on word
representation, e.g. in sentiment analysis.

Alternatively, one can resort to freezing:
use pretrained word embeddings, for instance word2vec
hold E constant while training, and modify the remaining
parameters in θ

Natural Language Processing Language Models

Practical issues

In the recurrent NLM model
the columns of E provide the learned word embeddings
the rows of V provide a second set of learned word
embeddings, that capture relevant aspects of word meaning
and function

Weight tying, also known as parameter sharing, means that we
impose EJ “ V.

Weight tying can significantly reduce model size, and has an effect
similar to regularization, preventing overfitting of the NLM.

Natural Language Processing Language Models

Practical issues

RNNs suffer from the vanishing gradient problem: past events
have weights that decrease exponentially with the distance from
actual word wt .

Gated recurrent units (GRU) and long-short term memory (LSTM)
neural networks are much better in capturing long distance
relations.

Natural Language Processing Language Models

Practical issues

The last step in NLMs, involving softmax over the entire
vocabulary, dominates the computation both at training and at
test time.
Vocabulary usually contains 10K to 100K words.

An effective alternative is hierarchical softmax, based on word
clustering.

Adaptive softmax is a simple variant of hierarchical softmax,
based on Zipf’s law, especially tailored for GPUs.
This provides giant speedup with only minimal costs in accuracy.

Natural Language Processing Language Models

Practical issues Elena Voita, NLP Course For You

The text generated by sampling our NLM should be
coherent: text has to make sense
diverse: the model has to be able to produce very different
samples

There is a trade-off between the two.

A very popular method for modifying language model behavior is
to change the softmax temperature τ

exppVi ht
τ q

ř

j expp
Vj ht

τ q

where Vi denotes the i-th row of V.
Low τ produces peaky distribution (high coherence); large τ produces flat
distribution (high diversity).

Natural Language Processing Language Models

Practical issues Elena Voita, NLP Course For You

Contrastive evaluation is used to test specific linguistic
constructions in NLM.

Example : Subj/Obj agreement, compare Ppis | w1:t´1q to
Ppare | w1:t´1q

The roses
The roses in the vase
The roses in the vase by the door

Natural Language Processing Language Models

Research papers

H
en

ry
Be

on
Un

sp
la

sh
Natural Language Processing Language Models

Research papers

Title: A Neural Probabilistic Language Model
Authors: Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
Christian Jauvin
Journal: Journal of Machine Learning Research 3 (2003)
1137-1155
Content: The authors attack the language modeling problem by
learning a distributed representation for words, which allows each
training sentence to inform the model about an exponential
number of semantically neighboring sentences.
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Natural Language Processing Language Models

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Research papers

Title: A Survey on Neural Network Language Models
Authors: Kun Jing, Jungang Xu
Repository: ArXiv
Content: Neural Network Language Models (NNLMs) overcome
the curse of dimensionality and improve the performance of
traditional LMs. A survey on NNLMs is performed in this paper.
https://arxiv.org/abs/1906.03591

Natural Language Processing Language Models

https://arxiv.org/abs/1906.03591

Review: Machine learning

Ch
ris

H
en

ry
on

Un
sp

la
sh

Natural Language Processing Language Models

Review: Machine learning

Let W “ w1w2 ¨ ¨ ¨ wn “ w1:n be the training set. We now focus on
step t.

NLMs use probability distribution PtpX q “ PpX | w1:t´1q.
Here X is a stochastic variable assuming values in V .

The target distribution we want to learn is P˚
t pX q “ one-hotpwtq.

This distribution assignings probability 1 to wt .

Our loss function is the cross-entropy of P˚
t and Pt :

LosspP˚
t , Ptq “ EP˚

t
r´ logpPtqs “ ´

ÿ

wPV
P˚

t pwq logpPtpwqq

Cross-entropy is minimal when the two distributions are equal. In the special
case of P˚

t (deterministic), cross-entropy equals the Kullback-Leibler
divergence.

Natural Language Processing Language Models

Review: Machine learning

Since P˚
t is non-zero only for the correct token wt , we have

LosspP˚
t , Ptq “ ´

ÿ

wPV
P˚

t pwq logpPtpwqq

“ ´ logpPtpwtqq

“ ´ logpPpwt | w1:t´1qq

For the whole training set W the loss will be

´

n
ÿ

t“1
logpPpwt | w1:t´1qq “ ´ logp

n
ź

t“1
Ppwt | w1:t´1qq

“ ´ logpPpw1:tqq

which is the inverse of the log-likelihood of the training set W .
This connects to the maximum likelihood estimator used for N-gram models.

Natural Language Processing Language Models

Review: Machine learning

We can also compare with the perplexity measure, used to
evaluate the N-gram LM

logpPPpW qq “ logpPpw1:nq´ 1
n q

“ ´
1
n log

˜

n
ź

t“1
Ppwt | w1:t´1q

¸

“ ´
1
n

n
ÿ

t“1
logpPpwt | w1:t´1qq

which is the (additive) inverse of the log-likelihood, averaged over
the size of W .
So in N-gram LM we are using same objective function for training and testing.

Natural Language Processing Language Models

