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Overview of principal theories
London Theory (1935)

Based on Maxwell´s equations
Phenomenological theory that can describe zero resistance and the Meissner effect
Applicable even to Type-II superconductors after Pippard corrections 

Ginzburg Landau Theory (1950)
Phenomenological theory
Can describe non-local effects
Works well near Tc and for Type-II superconductors

BCS Theory (1957)
First microscopic theory of superconductivity
Published 46 years after the discovery of superconductivity
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Maxwell Equations

3

𝛻 ∙ 𝑬 =
𝜌

𝜀0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

Gauss’ Law for electricity

Gauss Law of Magnetism

Faraday’s Law of induction

Ampere’s Law

http://hyperphysics.phy-astr.gsu.edu/

This law states that the Electric Flux out of a closed 
surface is proportional to the total charge enclosed 
by that surface

http://hyperphysics.phy-astr.gsu.edu/
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Maxwell Equations

4

𝛻 ∙ 𝑬 =
𝜌

𝜀0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

Gauss Law of electricity

Gauss Law of Magnetism

Faraday’s Law of induction

Ampere’s Law

http://hyperphysics.phy-astr.gsu.edu/

Faraday’s law states that when there is a change in 
magnetic flux (changing with respect to time) linking a 
coil or any conductor, there will be an EMF induced in 
the coil. Lenz’s stated that the EMF induced will be in a 
direction such that it opposes the change in magnetic 
flux producing it. 

http://hyperphysics.phy-astr.gsu.edu/
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Maxwell Equations

5

𝛻 ∙ 𝑬 =
𝜌

𝜀0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

Gauss Law of electricity

Gauss Law of Magnetism

Faraday’s Law of induction

Ampere’s Law

http://hyperphysics.phy-astr.gsu.edu/

Neither the north pole nor south pole individually 
acts a source or sink like the electric charges:
magnetic monopoles do not exist

http://hyperphysics.phy-astr.gsu.edu/
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Maxwell Equations
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𝛻 ∙ 𝑬 =
𝜌

𝜀0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

Gauss Law of electricity

Gauss Law of Magnetism

Faraday’s Law of induction

Ampere’s Law

http://hyperphysics.phy-astr.gsu.edu/

Ampere’s law states that when an electric current flows 
through a wire, it produces a magnetic field around it

http://hyperphysics.phy-astr.gsu.edu/


Maxwell Laws
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Two fluid model – Gorter and Casimir, 1934

Gorter and Casimir at Leiden developed this simple model 
to explain zero resistivity and perfect diamagnetism

Charge carriers are divided in two subsystems, 
superconducting carriers of density ns and normal 
electrons of density nn 

8

𝒏 = 𝒏𝒏 + 𝒏𝒔 𝑱 = 𝑱𝒏 + 𝑱𝒔

G. Ciovati, Basic Principle of RF superconductivity, Tutorals SRF15 
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Two fluid model – Gorter and Casimir, 1934 (2)
Gorter and Casimir at Leiden developed this simple model to explain zero 
resistivity and perfect diamagnetism

Charge carriers are divided in two subsystems, superconducting carriers of 
density ns and normal electrons of density nn 

The number of SC electrons depends by T

9

𝒏 = 𝒏𝒏 + 𝒏𝒔 𝑱 = 𝑱𝒏 + 𝑱𝒔

V. Palmieri, The classical superconductivity, 1992

𝒏𝒔 = 𝒏𝟎 𝟏 +
𝑻𝟒

𝑻𝒄
𝟒
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Two fluid model – Gorter and Casimir, 1934 (2)

Two Fluid model is the fundament of each SC theory developed later

10

𝒏 = 𝒏𝒏 + 𝒏𝒔 𝑱 = 𝑱𝒏 + 𝑱𝒔

V. Palmieri, The classical superconductivity, 1992

𝒏𝒔 = 𝒏𝟎 𝟏 +
𝑻𝟒

𝑻𝒄
𝟒
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The London brothers

Fritz London is well known to material scientists…

1.  Valence Bond Theory or Heitler–London Theory
(chemical bonds in a molecule are overlapping of the atomic orbitals)

2.  London dispersion forces
(instantaneous dipole–induced dipole forces)

In his carrier has been worked with Sommerfield and 
Schoredinger among others…

11

Fritz London
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The London brothers
Heinz London (the younger brother) worked on Superconductivity 
with Franz Simon in Breslau (Germany)

Franz Simon was Jewish and in the thirties, since nazi-fascism was 
rising over Germany, moved to Oxford with his team, where 
Frederick Lindemann (head of the physics department) hired 
refugee scientists 

Lindemann at that time had a second motivation in addition to the 
humanitarian one: reduce the gap with Cambridge’s Cavendish 
Laboratory

Lindemann also wanted a theoretician to be added to the new SC 
group  and Fritz London was the right person for him

12

Heinz London



Cristian Pira   Superconductive Materials 3  London equations

The London brothers

Fritz London and his wife moved into a house in 
Hill Top Road, Oxford, and Heinz stayed with 
them, giving the brothers an opportunity to talk 
and work together about superconductivity

The London brother joint work was to provide 
the biggest breakthrough yet in understanding 
superconductivity

13

Heinz and Fritz  London
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Surface currents
Already years before the discovery of Meissner screening, 
speculations had been made by Onnes among others, that the 
current in a superconductor might involve surface currents

The discovery of Meissner and Ochsenfeld effect proved that 
this was correct

Logically the magnetic field could be expelled from 

the interior only by setting up a surface current

14
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Penetration depth λ
Current could not exist only in the surface. It would have to 

penetrate to a certain depth called (λ or λL)

The penetration depth must be finite,
and its length must be controlled by
the free electron number density ne.
The more electrons are present
per volume, the more effective
is the screening, and the shorter
must λ be

15
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Derivation of 1st London equation

London brothers started with the logic that E can accelerate 
superconducting electrons without friction/resistance

16

𝑚
𝑑𝒗𝑺
𝑑𝑡

= 𝑒𝑬

𝑱 = 𝑛𝑠𝑒𝒗𝒔since

𝑑𝑱𝒔
𝑑𝑡

=
𝑛𝑠𝑒

2

𝑚
𝑬

1.  E = 0 → Js goes on forever

2.  E is required to maintain an AC current
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Derivation of 2nd London equation

17

London expressed the electromagnetic field in terms of a 
vector potential A

𝑩 = 𝛻 × 𝑨

𝑬 = −
𝜕𝑨

𝜕𝑡

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
From Maxwell:
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Derivation of 2nd London equations (2)

18

Combining 

Analogous to Ohm’s law:

𝑬 = −
𝜕𝑨

𝜕𝑡
and 

𝑑𝑱𝒔
𝑑𝑡

=
𝑛𝑠𝑒

2

𝑚
𝑬

𝑑𝑱𝒔
𝑑𝑡

= −
𝑛𝑠𝑒

2

𝑚

𝜕𝑨

𝜕𝑡
𝑱𝒔 = −

𝑛𝑠𝑒
2

𝑚
𝑨 INTEGRATING

𝑱𝒔 =−∧ 𝑨 𝑱𝒏 = 𝜎𝑬

The factor ∧ is a response function, analogous to the conductivity σ in a normal metal
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Derivation of London penetration depth

19

From the Amperes law 𝛻 × 𝑩 = 𝜇0 𝑱𝒔

𝛻 × 𝛻 × 𝑩 = 𝜇0𝛻 × 𝑱𝒔

𝛻 × 𝛻 × 𝑩 = 𝛻 𝛻 ∙ 𝑩 − 𝛻2𝑩

𝜇0𝛻 × 𝑱𝒔 = −𝜇0
𝑛𝑠𝑒

2

𝑚
𝛻 × 𝑨

𝑩

𝑱𝒔 = −
𝑛𝑠𝑒

2

𝑚
𝑨

we can obtain the expression for B:
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Derivation of London penetration depth (2)

20

𝛻 × 𝛻 × 𝑩 = 𝜇0𝛻 × 𝑱𝒔 𝛻2𝑩 = 𝜇0
𝑛𝑠𝑒

2

𝑚
𝑩

The simplest situation is the 1-dimensional case with the field applied parallel to 
the y-axis along the surface of a superconductor of long length along z, and with 
the x-axis measuring the distance from the surface into the superconductor

𝜕2𝐵(𝑥)

𝜕𝑥2
=
𝜇0𝑛𝑠𝑒

2

𝑚
𝐵(𝑥)
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Derivation of London penetration depth (3)

21

The solution is:

𝜕2𝐵(𝑥)

𝜕𝑥2
=
𝜇0𝑛𝑠𝑒

2

𝑚
𝐵(𝑥)

𝑩 𝒙 = 𝑩𝟎𝒆
−

𝒙
𝝀𝑳

With London penetration depth:

𝝀𝑳
𝟐 =

𝟏

𝝁𝟎

𝒎

𝒏𝒔𝒆
𝟐

𝑩 𝒙 @𝝀𝑳 =
𝟏

𝒆
𝑩𝟎
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Derivation of London penetration depth (4)

22

𝑩 𝒙 = 𝑩𝟎𝒆
−

𝒙
𝝀𝑳 𝝀𝑳

𝟐 =
𝟏

𝝁𝟎

𝒎

𝒏𝒔𝒆
𝟐
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2nd London equation in terms of B

23

𝑱𝒔 = −
𝑛𝑠𝑒

2

𝑚
𝑨

𝝀𝑳
𝟐 =

𝟏

𝝁𝟎

𝒎

𝒏𝒔𝒆𝟐

𝛻 × 𝑱𝒔 = −
1

𝜇0𝜆𝐿
2 𝑩

𝑩 = 𝛻 × 𝑨 and

1. B is the source of Js

2. Spontaneus flux expulsion
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London equations meaning

24

𝛻 × 𝑱𝒔 = −
1

𝜇0𝜆𝐿
2 𝑩

Zero resistance

𝑑𝑱𝒔
𝑑𝑡

=
𝑛𝑠𝑒

2

𝑚
𝑬

Meissner effect
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Estimation of London penetration depth
From 

we can obtain a rough estimate of the London 
penetration depth with the simplifying 
assumption that one electron per atom with free-
electron mass me contributes to the supercurrent

For Sn, for example, such an estimate yields:

λL = 26 nm

This value deviates only little from the measured 
value, which at low T is  in the range 25–36 nm

25

𝝀𝑳
𝟐 =

𝟏

𝝁𝟎

𝒎

𝒏𝒔𝒆𝟐
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Measure of London penetration depth
How can one measure λL? 

We can measure the shielding effect 
due to the diamagnetic behavior
in function of the thickness

26

Spatial dependence of the magnetic field in 
a thin superconducting layer of thickness d.
For the assumed ratio d/λL = 3, the magnetic 
field only decreases to about half of its 
outside value

d >> λL

d ~ λL

perfect magnetic shielding

poor magnetic shielding
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London penetration depth T dependence

According with two-fluid 
model, ns depend on T

27

Early results on the temperature dependence of λ in a type I 
superconductor (Fosseim – Subdo)

𝝀

𝝀𝟎

𝟐

=
𝟏

𝟏 −
𝑻
𝑻𝒄

𝟒

𝝀𝑳
𝟐 =

𝟏

𝝁𝟎

𝒎

𝒏𝒔𝒆
𝟐
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Effect of impurities on λL

Pippard showed that λ depended very 
sensitively on impurity scattering

Addition of only 3% indium to tin λ changed 
by a factor of 2, while at the same time the 
changes in Tc and Hc were insignificant

In the London theory λ depended only on 
m/n, offering no hint at an explanation

28

Pippard non-local behaviour as evidenced by mean free 
path dependent penetration depth (Fossehim – Subdo)
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Pippard – Non local version of London equation

In 1953, Pippard realized that the key point was a 

breakdown of the underlying assumption of local 
response in the London theory

In complete analogy with Ohm’s law, J = σE, which we 

pointed out is formally equivalent to the 
London equation, Pippard adopted the corresponding 
non-local version of Ohm’s law from Reuther and 

Sondheimer for the so-called anomalous skin-effect

29

Brian Pippard
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Electrodynamics of normal conductors
We can derive the skin depth starting from the fundamental equation of electrodynamics:

30

𝛻 ∙ 𝑬 =
𝜌

𝜀0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

Maxwell’s equations

𝑫 = 𝜀0𝜀 𝑬

𝑩 = 𝜇0𝜇 𝑯

𝑱 = 𝜎 𝑬

Linear and isotropic

Material’s equation
Drude’s model+ +

𝑬 = 𝑬𝟎𝒆
𝒊𝝎𝒕
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Skin depth
For a good conductor at RF frequencies: ωε << σ

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

𝑩 = 𝜇0𝜇 𝑯

𝑱 = 𝜎 𝑬

𝜕𝑫

𝜕𝑡
~0

𝛻 × 𝑯 = 𝑱 𝛻 × 𝛻 × 𝑯 = σ 𝛻 × 𝑬

𝛻 ×

𝑯 = 𝑯𝟎𝒆
𝒊𝝎𝒕

𝜵𝟐𝑯 = 𝒊𝝈𝝁𝟎𝝁𝝎𝑯
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Skin depth (2)

Solution (semi-infinite slab):

𝜵𝟐𝑯 = 𝒊𝝈𝝁𝟎𝝁𝝎𝑯

Hy(x,t)

Ez(x,t)

x

z

y

𝑯𝒚 = 𝑯𝟎𝒆
ൗ−𝒙
𝜹𝒆 ൗ−𝒊𝒙

𝜹

𝑬𝒛 = −
𝟏 + 𝒊

𝝈𝜹
𝑯𝒚

𝜹 =
𝟐

𝝁𝟎𝝁𝝈𝝎
AC fields penetrate a thickness δ (the skin depth)
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Surface impedence

33

𝒁 =
𝑬∥
𝑯∥

= 𝑹𝒔 +𝒊𝑿𝒔

Surface resistance

Surface reactance

𝒁𝒏 =
𝑬𝒛
𝑯𝒚

For the semi-infinite plane conductor:

𝑬𝒛 = −
𝟏 + 𝒊

𝝈𝜹
𝑯𝒚

𝒁𝒏 =
𝟏 + 𝒊

𝝈𝜹

𝑹𝒔 = 𝑿𝒔 =
𝟏

𝝈𝜹
=

𝝁𝟎𝝁𝝎

𝟐𝝈
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Anomalous skin effect
What happen at low T (and high frequency)?

σ(T) increases  δ decreases

The skin depth (the distance over which fields vary) can 
become less than the mean free path of the 
electrons (the distance they travel before being scattered) 

34

ℓ

d

𝑹𝒔 =
𝟏

𝝈𝜹

𝜹 =
𝟐

𝝁𝟎𝝁𝝈𝝎

𝐽(𝑥) ≠ 𝜎 𝐸(𝑥)
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Anomalous skin effect (2)
Non local relationship introduced by Reuther and Sondheimer:

35

ℓ

d

𝑱 =
3𝜎

4𝜋ℓ
න
𝒓(𝒓 ∙ 𝑬)𝑒− ൗ𝑟 ℓ

𝑟4
𝑑3𝒓

Non-locality enters the problem when the response to a field can 
only be determined correctly by integrating over a volume of the 
size of ℓ3 (3D case), where ℓ is
comparable to or longer than the
distance δ, the depth over which
the E-field varies
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Surface resistance – some numbers

36

For Cu @ 300 K and 1.5 GHz:

𝑹𝒔 =
𝟏

𝝈𝜹
=𝜹 =

𝟐

𝝁𝟎𝝁𝝈𝝎
= 𝟏. 𝟕 𝛍𝐦

σ (300 K) = 5.8 x 107 1/Ωm

μ0=1.26x10-6 Vs/Am

μ=1

𝟏. 𝟕 𝛍𝐦 𝟏𝟎𝐦𝛀
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Surface resistance – some numbers (2)

37

Surface resistance of Cu at 1.5 GHz as a function of temperature

Rs=1/sd

Rs(4.2 K)  1.3 𝐦𝛀

Rs(300 K)  10 𝐦𝛀

RRR = s(4.2K)/s(300K) = 300

…in spite of the resistivity 
decreasing by a factor 300 from 

300 K to 4.2 K, Rs only decreases by 
a factor of ~8! 

)()( xx Ej s
Anomalous skin effect l>δ
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Pippard – Non local version of London equation
From experience in studies of the anomalous skin-effect in pure, normal 

metals Pippard saw the analogy for the superconductor, 

introducing the so called coherence length ξ

38

The response of the SC to the applied magnetic field is 

nonlocal, in the sense that the value of Js measured at a point r 

depends on the value of A throughout a volume of radius   ξ surrounding 
the point r
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Pippard – Non local version of London equation

In the simple case London equation     became:

39

𝑱𝒔 = −
𝜉 (ℓ)

𝜉0
∧ 𝑨

𝑱𝒔 =−∧ 𝑨

where ξ0 is the value of ξ(ℓ) in the limit of large ℓ

and ∧ = (μ0λL
2)−1

The equation predicts a reduced response when ξ(l) is reduced by impurities
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Pippard – Non local version of London equation (2)
Experimentally is found that:

ℓ  λ  ξ(ℓ) 

40

In complete analogy with the non-local response to an electric field in a normal metal:

𝑱 =
3𝜎

4𝜋ℓ
න
𝒓(𝒓 ∙ 𝑬)𝑒− ൗ𝑟 ℓ

𝑟4
𝑑3𝒓 𝑱 =

3 ∧

4𝜋𝜉0
න
𝒓(𝒓 ∙ 𝑨)𝑒

− ൗ𝑟 𝜉

𝑟4
𝑑3𝒓

1

𝜉(ℓ)
=

1

𝜉0
+
1

ℓ
and:

ℓ ≫ 𝜉

ℓ ≪ 𝜉

Clean limit

Dirty limit

𝜉0 = 𝑎
ℏ𝑣𝐹
𝑘𝐵𝑇𝑐

where:

𝑎 = 0,15

𝑘𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣𝐹 = 𝐹𝑒𝑟𝑚𝑖 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑇𝑐 = 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
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Type I and Type II superconductors

41

𝝀 =
𝝃𝟎
𝝃
𝝀𝑳

x

l

x

l

In the two opposite limits of 𝜉 ≫ 𝜆 and 𝜉 ≪ 𝜆 

for 𝝃 ≪ 𝝀 

for 𝝃 ≫ 𝝀 𝝀 =
𝟑

𝟐𝝅
𝝃𝟎𝝀𝑳

𝟏
𝟑

PIPPARD LIMIT, TYPE I SC   (DIRTY LIMIT)

LONDON LIMIT, TYPE II SC   (CLEAN LIMIT)
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Coherence length in BCS theory

42

BCS theory later confirmed the essential correctness of Pippard’s bold adaptation of 
non-local electrodynamics from normal metals to superconductors

In BCS coherence length is related to characteristic Cooper pair size
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London’s theory final remarks
London’ theory explain infinite conductivity and Meissner effect

Expression of λ are only approximate

Calculates values of λ differ from experimentally determined values

This may to due to uncertainty of the values of ns, e and m taken for free electron

A SC cannot be treated as a free electron metal:
superelectrons in a SC interact coherently

43
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Bibliography of this part

• K. Fossheim, A. Sudbø, "Superconductivity - Physics and applications", Wiley

6.1 The London equation and the penetration depth λL

7.3 Two tipes of superconductors

• W. Buckel, R. Kleiner, "Superconductivity - Fundamentals and Applications", Wiley
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