

Additional Reading on Metabolism

NAVIGATING METABOLISM

Cell Metabolism Perspective

The Emerging Hallmarks of Cancer Metabolism

Natalya N. Pavlova¹ and Craig B. Thompson^{1,*} ¹Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA *Correspondence: thompsonc@mskcc.org http://dx.doi.org/10.1016/j.cmet.2015.12.006

nature reviews molecular cell biology

https://doi.org/10.1038/s41580-022-00572-w

Review article

Check for updates

Metabolites as signalling molecules

Steven Andrew Baker¹ & Jared Rutter ^{2,3,4}

Nutrient-sensing mechanisms and pathways

Alejo Efeyan^{1,2,3,4}, William C. Comb^{1,2,3,4} & David M. Sabatini^{1,2,3,4,5}

Cancer metabolism: looking forward

Inmaculada Martínez-Reyes b and Navdeep S. Chandel

Alessandro Carrer alessandro.carrer@unipd.it VIMM - via Orus, 2 Tel: 049/7923242

Massimo Santoro

massimo.santoro@unipd.it

Vallisneri - via Bassi, 58 Tel: 049/8276270

Why study metabolism?

Old view: Metabolism is a servant for cell biosynthetic demands

New view: Metabolism is a driver of biology

Normal processes

- Proliferation
- Cell death
- Differentiation
- Gene expression
- Response to stress
- Aging

Pathology

- Cancer
- Inflammation
- Obesity
- Diabetes
- Neurodegeneration

Why study metabolism?

Old view: Metabolism is a servant for cell biosynthetic demands

New view: Metabolism is a driver of biology

Normal processes

- Proliferation
- Cell death
- Differentiation
- Gene expression
- Response to stress
- Aging

What are the mechanisms?

Pathology

- Cancer
- Inflammation
- Obesity
- Diabetes
- Neurodegeneration

What is the difference with Biochemistry I, II, III,?

What is the difference with Biochemistry I, II, III,?

Metabolic Metro Мар Nucleotide & Protein 🔘 Ribosome Double/Multiple Ascorbate Sugar Simple Sugars & Glycans Glyco- Sugars Inositol-P (Vitamin C) Acids Various Neurotransmitters

Metabolism

Metabolic Metro Map

Metabolism is DYNAMIC.

Cells need to reprogram their metabolism in order to:

- Produce more biomass (cell division; cell growth)
- Produce more nucleotides (cell division; meiosis)
- Preserve energy (storage; response to nutrient scarcity)
- Cope with (oxidative) stress (replication and nutrient stress)
- Compartmentalize toxic metabolites (iron overload)
- Adapt to different environments (mobility, 3D growth)
- Secrete immunomodulatory molecules (immune response)
- Adjust availability of "signaling metabolites" (support signals)
- Support epigenetic rewiring (differentiation)

...NOT to "produce" more energy

Class layout:

Part 1: Basics of integrated metabolism (AC)

Part 2: Impact of metabolism on biological processes (MS)

Part 3: Contribution of metabolism to pathophysiology (AC/MS)

Part 4: Metabolism across scales (AC)

Part 5: Journal clubs (AC/MS)

Part 6: Methods in metabolic research (hybrid)

What is metabolism?

What is metabolism?

Humans ingest, metabolize or encounter more than 200,000 metabolites[#]. Metabolite classes include peptides, lipids, amino acids, nucleic acids, carbohydrates and minerals found in the diet, as well as food additives, drugs, cosmetics, contaminants and pollutants incorporated from our modern life.

METABOLISM removes unwanted or toxic substances and ensures adequate levels of energy and building blocks in a dynamic environment.

Ref: Wishart DS et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 50, D622–D631 (2022). [PubMed: 34986597]

Metabolism is linked to body health and performance

Systemic Metabolism

Systemic Metabolism

Tissue Metabolism

What is Systemic Metabolism?

Systemic metabolism is a multi-organ affair

Inter-organ communication contributes significantly to nutrient uptake and metabolite availability.

Inter-organ metabolism provides nutrient supply to satisfy tissue-specific demands

Systemic metabolism tends to homeostasis

In the 19th century, Claude Bernard articulated the need to maintain a stable internal environment that would allow biological processes to proceed despite variations in the external environment. Bernard's concept was further explored, developed, and popularized by Walter Cannon, who coined the term "**homeostasis**" in describing how key physiological variables are maintained within a predefined range by feedback mechanisms.

In 1954, James Hardy proposed a model in which homeostatic mechanisms maintain physiological variables within an acceptable range.

<u>Regulated variables</u>: physiological parameters that are maintained at stable levels

<u>Controlled variables</u>: activities (or rates) of the processes that contribute to the stability of the RV

Systemic metabolism tends to homeostasis

Metabolites mediate homeostatic mechanisms

Homeostatic mechanisms are subject to regulation

In addition to being subject to well-appreciated homeostatic control, metabolism is subject to supply-driven and demand-driven controls, each operated by a dedicated set of signals throughout various physiological states

Food intake impacts systemic homeostasis

Overnutrition (or excessive fat intake) initiates a series of event that leads to systemic dyshomeostasis

Some nutrients bypass homeostatic regulation

Hedonic or reward-based regulation can override the homeostatic pathway during periods of relative energy abundance by increasing the desire to consume foods that are highly palatable

Some micronutrients bypass homeostatic regulation

Nutrient uptake (and bioavailability) is regulated by the microbiome

Systemic Metabolism

Systemic Metabolism

TissueMetabolism

What is Tissue Metabolism?

Every tissue is composed by a mixture of different cell types (and states), each having specific metabolic demands/activities

Balance dictates LOCAL nutrient availability

Tissue metabolism is multifactorial

Dietary intake dictates local abundance of metabolites in peripheral tissues

SYSTEMIC/TISSUE RELATIONSHIP

Tissue metabolism is multifactorial

Dietary intake dictates local abundance of metabolites in peripheral tissues

SYSTEMIC/TISSUE RELATIONSHIP

Different cell types often compete for the same nutrients.

METABOLIC COMPETITION

Tissue metabolism is multifactorial

Dietary intake dictates local abundance of metabolites in peripheral tissues

SYSTEMIC/TISSUE RELATIONSHIP

Different cell types often compete for the same nutrients.

METABOLIC COMPETITION Nutrients can be provided by a different cell type in the tissue

METABOLIC COOPERATION/ SYMBIOSIS

Article

https://doi.org/10.1038/s41589-022-01154-9

Hepatic glutamine synthetase controls N^5 -methylglutamine in homeostasis and cancer

Article

https://doi.org/10.1038/s41589-022-01154-9

Hepatic glutamine synthetase controls N^5 -methylglutamine in homeostasis and cancer

Article

https://doi.org/10.1038/s41589-022-01154-9 Hepatic glutamine synthetase controls N^5 -methylglutamine in homeostasis and cancer

6

Article

GS

https://doi.org/10.1038/s41589-022-01154-9

6

Hepatic glutamine synthetase controls N^5 -methylglutamine in homeostasis and cancer

Tissue metabolism is heterogeneous

Tissue metabolism is heterogeneous

Systemic Metabolism

Systemic Metabolism

Tissue Metabolism

What is Cellular Metabolism?

Cellular metabolism is a collective term that denotes a wide set of biochemical processes whereby small molecules (called "metabolites") change in abundance over time and in the steady states that characterize various physiologic conditions.

Metabolites are small molecules that supply the cell with energy, structural constituents and the materials to enable the synthesis of other macromolecules such as DNA or proteins.

What is Cellular Metabolism?

Cellular metabolism is a collective term that denotes a wide set of biochemical processes whereby small molecules (called "metabolites") change in abundance over time and in the steady states that characterize various physiologic conditions.

Metabolites are small molecules that supply the cell with energy, structural constituents and the materials to enable the synthesis of other macromolecules such as DNA or proteins.

Underscoring the importance of metabolic reactions in cellular and organismal fidelity, it is estimated that more than 30% of human genes are involved in metabolism (Human Metabolome Database 5.0), accounting for ~3,000 possible chemical reactions. Defects in these pathways or their regulation can result in human disease, with inborn errors of metabolism thought to underlie over 1,300 disorders. The vast complexity of human metabolism necessitates a high degree of organization.

What is Cellular Metabolism?

51) Sa Caboratories

What is Cellular Metabolism? Glycosphingolipid biosynthesis -lact and peolacto series Other glycar degradation -Citrate cycle (TCA cycle) e-----e

Laboratories

Laboratories

Laboratoria

Laboratoria

Laboratories

II Raboratorios

Laboration .

Macromolecules compose 70/80%* of the cell mass

* different in quiescent/proliferating

the many building blocks for biosynthesis

the many building blocks for biosynthesis

the many building blocks for biosynthesis

which can be stored in high-energy molecules.

Catabolism transfers energy to ATP and electron donors

Catabolism transfers energy to ATP and electron donors

NADH and FADH₂ donate electrons to ETC to generate ATP (*mitochondria*)

NADPH donates electrons for reductive biosynthesis (e.g.: lipid synthesis)

NADH and NAD cannot cross the mitochondrial membrane

In cells with functioning mitochondria and oxygen available, <u>NADH is shuttled into the</u> <u>mitochondria via the malate-aspartate</u> shuttle with electrons transferred to the electron transport chain (this is relatively slow)

Rates of NADH usage and compartmentalization are dictated by multiple conditions (i.e.: hypoxia, differentiation stage, etc)

Mitochondria

Mitochondrial DNA (many copies, maternally inherited, 37 genes, 13 in OXPHOS)

the many building blocks for biosynthesis

...and levels of intracellular metabolic intermediates!!

Catabolism and Anabolism coexist in each cell

Catabolism and Anabolism coexist in each cell

...and their equilibrium is tightly regulated by sensing mechanisms!!

What is Cellular Metabolism?

Metabolic pathways

Main catabolic pathways

In eukaryotes, catabolic pathways converge to generate acetyl-CoA - a pivotal metabolite

Main catabolic pathways

In eukaryotes, catabolic pathways converge to generate acetyl-CoA - a pivotal metabolite

Main catabolic pathways

Acetyl-CoA is a central metabolite because:

- It is at the cross-road of all catabolic pathways
- It is the building block for the synthesis of several macromolecules (fatty acids, sterols, glycans)
- It regulates protein acetylation
- It is compartmentalized
- Its levels <u>fluctuate</u> constantly
- Highly regulated / controlled / monitored

Main catabolic pathways: carbohydrates

acetyl-CoA

Main catabolic pathways: lipids

Main catabolic pathways: lipids

Main catabolic pathways: fatty acids oxidation (FAO)

- Fatty acids are incorporated into the cell by dedicated transporters (e.g.: CD36)
- Fatty acids are activated by CoA ligation
- An acyl-carnitine shuttle brings them into the mitochondria
- Beta-ox of FA occurs in the mitochondrial matrix
- Beta-ox is a cyclic reaction that breaks FAs into <u>multiple</u> acetyl-CoA molecules (ANAPLEROSIS)
- Palmitoyl-CoA + 7CoA + 7NAD⁺ + 7FAD + 7H₂O $\rightarrow \rightarrow$ 8Acetyl-CoA + 7NADH + 7FADH₂ + 7H⁺
- Ton of ATP

Main catabolic pathways: cholesterol is metabolically inert

Main catabolic pathways: proteins and amino acids

sure to look for a balanced formula that includes all nine essential amino acids.
Main catabolic pathways: proteins and amino acids

If you're thinking about adding an amino acid supplement to your current diet, be sure to look for a balanced formula that includes all nine essential amino acids.

Transaminases swap nitrogen to and from different amino acid carbon backbones

Nitrogen groups can be funneled into nucleotide biosynthesis, synthesis of other amino acids, synthesis of bioactive amines, or the urea cycle

Main catabolic pathways: amino acids

Main catabolic pathways: amino acids

Glutaminolysis

Glutamine is the most abundant EAA in the circulation

Multi-layer view of cell catabolism

Unconventional catabolic pathway: AUTOPHAGY

- Self degradation of cellular proteins/structures within dedicated acidic compartments (lysosomes)
- Specific (targets exhausted proteins/organelles, or specific proteins)
- Inhibited in nutrient-replete conditions
- Triggered by nutrient sensors through the recruitment of ULK1 initiation complex
- Requires autophagy-related genes/proteins (ATGs)
- Marker: lipoylation of LC3

Catabolism can be opportunistic

Multi-layer view of cell catabolism

Figure 4.8: Overall Metabolism of Protein , Carbohydrates and Lipids

Cells can utilize non-canonical nutrients

Ketone bodies are small, water-soluble lipids (containing ketone group) that are produced in excess during fed state and can be mobilized as alternative energy source.

Also: lactate, uridine, inosine, SCFA, formate, vitamins, still growing......

Cells can utilize non-canonical nutrients

Ketone bodies are small, water-soluble lipids (containing ketone group) that are produced in excess during fed state and can be mobilized as alternative energy source.

Also: lactate, uridine, inosine, SCFA, formate, vitamins, still growing......

CARBON SOURCE: molecule that can provide carbon units to living cells for biosynthetic purposes

Main anabolic pathways

Typically linked to catabolic pathways (ex: glycolysis branching pathways)

Pentose Phosphate Pathway (PPP)

Serine/glycine pathway is a branch of glycolysis

Serine/glycine pathway is branch off glycolysis at 3-phosphoglycerate

3-phosphoglycerate dehydrogenase (PHGDH) requires NAD⁺ (must have functional ETC)

Conversion of serine to glycine generate one-carbon folate units for methylation (DNA/RNA/protein) and nucleotide biosynthesis

PHGDH is amplified in several cancers

Chandel "Navigating Metabolism"

Main anabolic pathways Mitochondria are major metabolic hubs

Main anabolic pathways

Mitochondria are major metabolic hubs

The TCA cycle at the crossroad of catabolism and anabolism

The TCA cycle at the crossroad of catabolism and anabolism

Fatty acid synthesis

Fatty acid synthesis is an iterative elongation by 2-carbon acetyl-CoA units and reduction by NADPH

Acetyl-CoA carboxylase is key enzyme regulating fatty acid synthesis

- ACC uses ATP to carboxylate acetyl-CoA and make 3-carbon malonyl-CoA
- Malonyl-CoA condenses with first with acetyl-CoA, then repeatedly with elongating fatty acid chain, each time undergoing decarboxylation, in effect adding acetyl-CoA units (coupling elongation to decarboxylation of malonyl-CoA is energetically favorable)

2 NADPH are used to reduce each acetyl-CoA unit

Mevalonate Pathway

Nucleotide synthesis

Critically different for purines (double ring: 6C+5C) and pyrimidines (one ring: 5C)

Nucleotide synthesis

Different for purines and pyrimidines

Purines nucleotide synthesis begins with 5phosphoribosyl-1-pyrophosphate (PRPP) which ultimately is converted to inosine-5'monophosphate (IMP)

Requires glutamine, glycine, aspartate (NAD⁺), one carbon folate units, and lots of ATP

IMP can be converted to AMP->ADP or GMP->GDP (IMP->GMP directly requires NAD⁺, while IMP->AMP requires aspartate)

Humans cannot catabolize purine rings; partial catabolism produces uric acid

Pyrimidine synthesis begins with carbamoylphosphate and aspartate generating the pyrimidine base orotate

Requires glutamine, aspartate (NAD+) and ATP

Dihydroorotate dehydrogenase (DHODH) is located in the mitochondria (interesting);

Pyrimidine rings can be completely catabolized

Nucleotide synthesis is targeted in cancer therapy

MTX was the first drug used (approved) to treat cancer (chemotherapy)

Metabolic waste (or sinking) pathways

Keshet et al, Nat Rev Cancer, 2020

Jessica B. Spinelli,^{1,2} Haejin Yoon,¹ Alison E. Ringel,¹ Sarah Jeanfavre,² Clary B. Clish,² Marcia C. Haigis¹*

Waste

Assimilation

Α

Metabolic waste (or sinking) pathways

Shlomi & Rabinowitz, , **Nat Chem Biol**, 2013 Ulanovskaya et al, **Nat Chem Biol**, 2013