Calculus of Commumicating systems (CCS, Milmer 180)

Idea: set of procenes

$$
\left\{\begin{array}{l}
\text { - executing in porallel } \\
\text { - imteraction / commumication }
\end{array}\right.
$$

pb: Which Kimd of commumication ?

- ether :
(1) send is olways possible (umbounded)
(2) receive is possible if a message is evailable (destuctive)
(3) mo order guoromtee
- buffer
(1), (2) as before
(boumaled?)
(3) order of messages is preserved
- shored me mory
(1) semol no write
(2) receive \rightarrow read
(3) order : mo guorontee
idea: mo distinction between
\rightarrow active entities \rightarrow agents
\rightarrow posoive $\quad \rightarrow$ medium
slogan: everything is a proaen

PROCESSES: communicating via sym chromous interactions
(hand shake)

STRUCTURE

nome
interface (ports, chommels)

Example: Computer scientist coffee ma publications

Behoviour \rightarrow cSS program

- structure
- interaction

Symtox of cos praquams

* Inaction (mil)
O deadlock
* Action prefixing
given a channel (sim, coffee....)

$$
\overline{\operatorname{colm}} .0
$$

coffee. O
corm. coffee. O
in general given an action (imput/output chommel) α $\alpha . P$

* Procen constant

$$
\begin{aligned}
& \text { Break } \stackrel{\text { def }}{=} \overline{\text { coin. coffee. O }} \\
& \text { Clock } \stackrel{\text { def }}{=} \overline{\text { tick. Clack }} \\
& \text { CM } \stackrel{\text { def }}{=} \text { coin. } \overline{\text { coffee. }} \text { cM }
\end{aligned}
$$

* Non Deterministic Choice given process P and Q

$$
P+Q
$$

CTM $\stackrel{\text { def }}{=}$ coin. ($\overline{\text { coffee. CTM }}+\overline{\text { tea. CTM }}$) 2 equivalent?
CTM $\stackrel{\text { def }}{=}$ coin. coffee. CTM + comm. Fess. CTM'
different behaviour!

Exercise: Broken Clock
It surely emits one tick, then it com stop at any time

$$
\begin{array}{ll}
\text { Clock }=\overline{t_{1 c k}} \cdot \text { Cock } \\
B C=\overline{t_{i c k}} \cdot(B C+0) & B C+O=B C \\
B C=\overline{l_{i c k}} \cdot B C+\overline{t_{1 c k}} \cdot 0 & \text { ok }
\end{array}
$$

Exercise: $\quad C M=$ com. $\overline{\text { coffee }} . c M$
failing mochime
\rightarrow cam input a coin without providing coffee
\rightarrow at any time it com farl emitting signal fail

$$
\begin{aligned}
B C M=\operatorname{coin} \cdot B C M & + \text { coin. } \overline{\operatorname{coffee}} \cdot B C M \\
& + \text { comm. } \overline{\text { fail. }} .0 \\
& +\overline{\text { coffee. fail. }} \cdot \overline{\text { fail. }}
\end{aligned}
$$

equivalent?
07

$$
B C M=\overline{\text { foil }} O+\operatorname{coin}(B C M+\overline{\text { coffee }} . B C M)
$$

* Parallel Composition

* Restriction

CMICS

* Rebobeling
cHOC $\stackrel{\text { def }}{=}$ coin. $\overline{c h o c}, ~ C H O C$
CHIPS oof coin. chips. CHIPS
$V M \stackrel{\text { def }}{=}$ corm. $\overline{\text { Hem. VM }}$
CHOC $=$ VI $\left[\begin{array}{c}\text { choc } \\ \text { Hem }\end{array}\right]$

CHIPS $=\quad V M\left[\begin{array}{c}\text { chips } \\ \text { Item }\end{array}\right]$

* Behaviour
processes will perform
\rightarrow state tromalioms
\rightarrow determined by communications

CM \quad I CS
$\downarrow \overline{\text { pol }}$
CM \mid CS $\xrightarrow{\tau} C M 1 \mid C S 2$

> invisible /
> silent action

$$
\begin{aligned}
& c s=\overline{p u b} \cdot c s 1 \\
& c s 1=\overline{c o 1 m} \cdot c s 2 \\
& c s 2=\text { coffee. cs }
\end{aligned}
$$

$$
\begin{aligned}
& C M=\operatorname{com} \cdot C M 1 \\
& C M 1=\text { coffee. } \cdot C M
\end{aligned}
$$

Office $=($ Cs $\mid \mathrm{cM}) \cdot \underbrace{\{\text { comm, coffee }\}}_{L}$

Spec $=\overline{\text { pub }} \cdot$ Spec

Spec \sim Off

implementation
specification

We meed to define rigorously:
\rightarrow symiox
\rightarrow operohomal behaviour
\rightarrow program equivalence
\rightarrow verification abouthms and tools

