
signet.dei.unipd.it

Introduction: technologies

Andrea Zanella (zanella@dei.unipd.it)
Office number: (049 827)7770

SIGnals and NETworking research group

ICT for Industrial Applications
(ICT4IA)

http://signet.dei.unipd.it/

«Internet of things»
what’s that?

Mainly… a change of perspective in the
development of services, systems and
business models...

2

The IoT vision: horizontal structure

Business
specific

Business
agnostic

3

Exploit data (to build/improve services)

The five building blocks of IoT

Generate data

Access data

Process data (to extract information)

Transmit data

4

Generate data

¨ Objective: monitoring, measurement, tracking (environmental parameters,
remote sensing, industrial sensors, transport, home automation, agriculture,
...)

¨ Technologies: sensors of light, temperature, humidity, pollution, presence,
proximity, acceleration, pressure, power consumption, but also portable
devices such as smartphones, smartwatch, wearable,...

¨ Requirements: high energy efficiency, possibility to obtain energy from the
environment (energy harvesting), low cost, small size, high robustness,
standard interface

5

Transmit data

• Objective: to collect data from peripheral devices

• Technologies: sensor data transmission technologies
(Bluetooth LE, WiFi, ZigBee, Zwave, LPWAN, NB-IoT...),
gateway for TCP/IP network interconnection

• Requirements: high energy efficiency, ubiquitous
coverage, low cost, low complexity of network
management, security

6

IoT Service Requirements

Place-&-Play

Ubiquito
us

coverage
Zero

configurat
ion

Low Cost

Simple
Hardwar

e
Massive
producti

on

Little
maintenance

Very
long

battery
life

Very low
fault rate
Remote
control
& sw

update
7

Service types

• Short range
• LoRaWANStand alone

• LTE, NB-IoT, GSM, ...
• SigFox
• LoRaWAN

Platform-
as-a-service

13

Who is the winner?

• Complementary technologies for different services

• Very likely we will need all of them

• Integration MUST occur at upper layers

14

Access data

• Objective: to make data accessible in a transparent manner

• Technologies: Open data, REST paradigms (HTTP based),
MQTT (public-subscribe paradigm), cloud services

• Requirements: independence from underlying
technologies, low complexity, ease of integration into
applications, security, reliability

15

Process data

• Objective: Use the collected data to extract useful
information, profiling, classification, time series prediction,
automatic anomaly detection, ...
• Technologies: Data Analytics, Machine Learning, Data

Visualization and Analysis Tools
• Requirements: ability to handle large data quays, ease of

use of tools, ease of interpretation of results, reliability of
results

16

Exploit data

• Objective: Use extracted information to build value-added
services, process automation, predictive maintenance,
context-aware systems self-configuration, ...
• Technologies: new business models (no longer based on

data ownership but on sharing)
• Requirements: ability to integrate new information sources,

security, privacy, ``functional ergonomics’’ (acceptability and
trust by the user)

17

DATA ACCESS
TECHNOLOGIES

18

RESTFULL PARADIGM

ReSTfull paradigm

• REST: Representational State Transfer

• Widely used; based on HTTP

• Lighter version: CoAP (Constrained Application
Protocol)

20

RESTful

• A “request” is sent to a server via URL
• http://api.example.com/resources/user/1036721?name=something

• Response is usually text in HTML, XML, or JSON

• Great if you’re asking for something
• What’s about “push”?

• Used when server wants to tell device to do something

Path or variables variables

21

http://api.example.com/resources/user/1036721?name=something

HTTP: RESTful Hypothetical Light Switch

ServerCell Phone

api.example.com/turnoff

22

api.example.com/turnon
api.example.com/flipstate

PUBLISH-SUBSCRIBE

• Based on a publish-
subscribe structure:
• A Publisher sends messages

according to Topics, to
specified Brokers.

• A Broker acts as a
switchboard, accepting
messages from publishers on
specified topics, and sending
them to subscribers to those
Topics

• A Subscriber receives
messages from connected
Brokers and specified Topics

Pub/sub approach

24

Publish/subscribe
• Multiple clients connect to a broker and subscribe to topics

that they are interested in

• Clients connect to the broker and publish messages to topics
• Topics are treated as a hierarchy, using a slash (/) as a separator.

• Example: multiple computers may all publish their hard drive
temperature information on the following topic, with their own
computer and hard drive name being replaced as appropriate:
• sensors/COMPUTER_NAME/temperature/HARDDRIVE_NAME

• Clients can receive messages by creating subscriptions
• A subscription may be to an explicit topic, in which case only messages to

that topic will be received, or it may include wildcards.
• Two wildcards are available, + or #

25

Example of pub/sub architecture

Source: https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot

26

MQTT

MQTT
• MQTT: Message Queuing Telemetry Transport

• Invented by Andy Stanford-Clark (IBM) and Arlen Nipper
(Arcom, now Cirrus Link) back in 1999
• their use case was to create a protocol for minimal battery loss and

minimal bandwidth connecting oil pipelines over satellite connection

• They specified the following goals, which the future protocol
should have:
• Simple to implement
• Provide a Quality of Service Data Delivery
• Lightweight and Bandwidth Efficient
• Data Agnostic
• Continuous Session Awareness

28

Main characteristics
• A lightweight publish-subscribe protocol that can run on

embedded devices and mobile platforms à http://mqtt.org/

• Low power usage

• Binary compressed headers

• Maximum message size of 256MB
• not really designed for sending large amounts of data
• better at a high volume of low size messages

• Documentation sources:
• The MQTT community wiki:

• https://github.com/mqtt/mqtt.github.io/wiki

• A very good tutorial:
• http://www.hivemq.com/mqtt-essentials/

29

http://mqtt.org/
http://www.hivemq.com/mqtt-essentials/

Some details about versions
• MQTT 3.1.1 is the current version of the protocol.

• Standard document here:
• http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

• October 29th 2014: MQTT was officially approved as OASIS Standard.
• https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt

• MQTT v5.0 is the successor of MQTT 3.1.1
• Current status: Committee Specification 02 (15 May 2018)

• http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html
• Not backward compatible; too many new things are introduced so existing

implementations have to be revisited, for example:
• Enhancements for scalability and large scale systems in respect to setups with

1000s and millions of devices.
• Improved error reporting (Reason Code & Reason String)
• Performance improvements and improved support for small clients

• https://www.youtube.com/watch?time_continue=3&v=YIpesv_bJgU

30

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html
http://www.youtube.com/watch?time_continue=3&v=YIpesv_bJgU

MQTT works on top of…
• Mainly of TCP

• There is also the closely related MQTT for Sensor Networks (MQTT-SN) where
TCP is replaced by UDP because TCP stack is too complex for WSN

• websockets can be used, too!
• Websockets allows you to receive MQTT data directly into a web browser.

• Both, TCP & websockets can work on top of “Transport Layer Security
(TLS)”

31

FEATUREs
• Small code footprint

• Ideal if processor or memory resources are limited

• Ideal if bandwidth is low or network is unreliable

• Publish/subscribe message exchange pattern

• Works on top of TCP/IP

• Quality of service: at most once, at least once, exactly once

• Client libraries for Android, Arduino, C, C++, C#, Java, JavaScript, .NET

• Security: authentication using user name and password, encryption using
SSL/TLS

• Persistence: MQTT has support for persistent messages stored on the broke

• MQTT-SN (protocol for sensor network) works on non-TCP/IP networks (e.g.
Zigbee)

• MQTT over websocket possible (browser as MQTT client)

• Request/response message exchange pattern as add-on

32

MQTT: Pub/Sub
• Clients connect to a “Broker”
• Clients subscribe to topics eg,

• client.subscribe(‘toggleLight/1’)
• client.subscribe(‘toggleLight/2’)
• client.subscribe(‘toggleLight/3’)

• Clients can publish messages to topics:
• client.publish(‘toggleLight/1’, ‘toggle’);
• client.publish(‘toggleLight/2’, ‘toggle’);

• All clients receive all messages published to topics they subscribe
to

• Messages can be anything
• Text
• Images
• etc

33

The Broker

• Broker is running on DigitalOcean
• https://www.digitalocean.com/

• Broker is Mosquitto
• https://mosquitto.org/

• Test
• https://test.mosquitto.org

• mosquitto_sub -h test.mosquitto.org -t "#" -v

34

https://www.digitalocean.com/
https://mosquitto.org/

Channels in MQTT

• Channels/topics in MQTT work like file paths

• When subscribing to a channel we have to specify the
whole path

• Or use a wildcard
• +
• #

35

Message types

• CONNECT - Client request to connect to Server (broker)

• PUBLISH - Publish message

• SUBSCRIBE - Client Subscribe request

36

QoS level

• At most once: no ACK expected from receiver

• At least once: the message will continue to be resent at
regular intervals, until the sender receives an
acknowledgement.

• Exactly once: msg delivered one and only one time to
upper layer (four way handshake)

37

Summing up

• MQTT (pub-sub) easy to use, robust and scales well for
one to many comm.

• Fast
• 0.04 s for message delivery

• Light

• Efficient

• Widespread

39

