Languages for Concurrency and Distribution

Paolo Baldan

Master's Degree in Computer Science
University of Padua

Paolo Baldan (DM UniPD) 1/46

What are we talking about?

Paolo Baldan (DM UniPD) 2 /46

What are we talking about?

just outlined

An approach for

understanding
designing
verifying

concurrent and distributed systems

with a view on the corresponding

programming languages

Paolo Baldan (DM UniPD) 3/46

What is concurrency?

Concurrent System

rograms, processes, transactions

A system where different activities (processes) are performed at the same time

(A) P

Activities can proceed

cep-
tu-
ally

o independently
@ interacting

e cooperation, for completing some task
e competition, for accessing resources

Paolo Baldan (DM UniPD) 4/46

An old story ...

Concurrency is a theme since the early years of CS .

o multitasking/multiuser operating systems (processes sharlng
cpu/memory/devices . ..)

@ multiuser databases (with concurrent transaction on common data)

.with (continuously) renewed interest

@ with enormous growth of interconnected computing devices (laptops,
smartphones, embedded devices, .. .)

@ with multicore CPUs

Paolo Baldan (DM UniPD) 5/46

The world is concurrent
Computing is pervasive in the world

Computing needs to be concurrent

[Aristotle (almost)]

Paolo Baldan (DM UniPD) 6/46

The world of software is getting more and more complex

@ concurrency
. . . with connectivity problem
o distribution
. data and code mobility
@ mobility
L. communication topology is not fixed
dynamicity

the environment it works in is not always completely known

o
@ open endedness
°

Paolo Baldan (DM UniPD) 7 /46

Old and new problems

Good old concurrency problems ..

@ deadlock

starvation

fairness

.and many others
connectivity
remote failures
security

resource control

Paolo Baldan (DM UniPD) 8/46

Concurrency is everywhere
it is very important and useful
but complex!

We need help!

Paolo Baldan (DM UniPD) 9/46

Complexity: technological advances

The technological progress is tumultuous . ..

Each second day we have new
@ programming languages
@ tools
@ paradigms
@ architectural solutions

Exercise: Take a random three letter strong and check whether it is a CS acronym

We need conceptual tools to be guided in the “technological forest’! J

Paolo Baldan (DM UniPD) 10/ 46

Complexity: too many details!

Example: Producer-Consumer
A process producing data and one using such data (asynchronously)

Producer Consumer

public class ProducerConsumerTest {
public static void main(String(] args) { class Consumer extends Thread {
private CubbyHole cubbyhole;

CubbyHole c = new CubbyHole();
private int number;

Producer pl = new Producer(c, 1);
Consumer cl = new Consumer(c, 1);
pl.start(); public Consumer(CubbyHole c, int number) {
cl.start(); cubbyhole = c;
b this.number = number;
+ }
class CubbyHole { public void run() {
private int contents; int value = 0;
private boolean available = false; for (int i = 0; i < 10; i++) {
value = cubbyhole.get();
public synchronized int get() { System.out.println("Consumer #" + this.number + " got: " + value);
while (available == false) {
try { ¥
wait(); }
} catch (InterruptedException e) {} class Producer extends Thread {
private CubbyHole cubbyhole;
available = false; private int number
notifyAll(); public Producericubbyﬂole c, int number) {
return contents; cubbyhole = c;
} this.number = number;
public synchronized void put(int value) { i
while (available == true) { public void run() {
try { for (int i = 0; i < 10; i++) {
wait(); cubbyhole.put(i);
} catch (InterruptedException e) { } System.out.println("Producer #" + this.number + " put: " + i);
} try {
contents = value; sleep((int) (Math.random() * 100));
available = true; } catch (InterruptedException e) { }
notifyAll(); }
11/ 46

Paolo Baldan (DM U

Complexity: conceptuall

@ We want to buy a new laptop, with a budget of 1000 euros.

@ We collect a (long) list of e-shops where to look for

Our goal

Develop a program for querying each e-shop until one offering a laptop with the
right price is found.

A brilliant idea: Let's go concurrent!

To speed up the program we split the list in two pieces and we run two processes
in parallel, each taking care of one sublist.

Paolo Baldan (DM UniPD) 12 /46

Complexity: conceptuall

The same problem, abstractly

Let f be a (computationally expensive) function from integers to integers

Our goal

Develop a program that terminates iff function f has a non-null zero, i.e., there is
x # 0 such that f(x) = 0, and proceeds indefinitely otherwise.

A brilliant idea: Let's go concurrent!

Define
@ A positive zero an integer n > 0 such that f(n) =0
@ A negative zero an integer z < 0 such that f(z) =0

To speed up we run in parallel two processes, one looking for a positive zero and
the other for a negative zero

Paolo Baldan (DM UniPD) 13 /46

A program T1 that looks for a positive zero

found=false

n=20

while (not found) T1
n++
found = (£(n) == 0)

.and T2 that looks for a negative zero, by cut-and-paste

found=false

z =0

while (not found) T2
Z-—
found = (£(z) == 0)

And run T1 and T2 in parallel:
T1 | T2

v

Paolo Baldan (DM UniPD) 14 / 46

Attempt 1, contd.

found=false found=false
n=20 z =0
while (not found) while (not found)
n++ Z--
found = (£(n) == 0) found = (f(z) == 0)

If f has only a positive zero and T1 terminates before T2 starts, the latter sets
found to false and looks indefinitely for the nonexisting negative zero.

The problem is the fact that found is initialized to false twice.

Paolo Baldan (DM UniPD) 15 / 46

A solution that initializes found only once
found=false; (T1 | T2)

where

n=20 z =0
while (not found) while (not found)
n++ Z--
found = (£(n) == 0) found = (£(z) == 0)

o

If f has (again) only a positive zero assume that:

© T2 just enters the while body and is preempted

© T1 computes till it finds the positive zero

© T2 gets the CPU back, set found to false and loop forever
@ The program does not terminate!!!!

Paolo Baldan (DM UniPD) 16 / 46

Attempt 2, ctd.

The problem is the fact that found is set to false after it has been already set to
true.

Paolo Baldan (DM UniPD) 17 / 46

Attempt 3

Let us see what happens it we do not pertorm "unnecessary" assignments and only assign true when we tind a x or a y such that
f(x) = 0 or f(y) = 0.

Avoid assigning found to false in T1 and T2

found=false; (T1 | T2)

where

n=20 z =0
while (not found) while (not found)
n++ Z--
if (f(n) == 0) if (£(z) == 0)
found=true found=true

If f has (again) only a positive zero, it can happen that
@ T2 gets the CPU to keep it forever
@ T1 will never have the chance of finding the positive zero

© The program does not terminate!!!!
Paolo Baldan (DM UniPD) 18 / 46

This problem is due to non fair scheduling policies. \

Paolo Baldan (DM UniPD) 19 / 46

To avoid assumptions on the scheduler, we can think of forcing context switches by adding a turn variable with processes passing
the turn one to the other.

Fairness with token passing

turn=1; found=false; (T1 | T2)

where

n=20 z =0

while (not found) while (not found)
wait (turn == 1) wait (turn == 2)
turn=2 turn=1
n++ Z--
if (£(n) == 0) if (£(z) == 0)

found=true found=true

Wrong!

A\,
.

If T1 finds a zero and stops when T2 has already set turn to 1, then T2 would be
blocked by the wait command because the value of turn cannot be changed.

Paolo Baldan (DM UniPD) 20/ 46

Attempt 4 - ctd.

The program does not terminate because of the waiting of an impossible event:
on termination care is needed for other processes.

Paolo Baldan (DM UniPD) 21/46

Attempt 5

On termination, enable the other process

turn=1; found=false;
where

n=20

while (not found)
wait (turn == 1)
turn=2
n++

if (f(n) == 0)
found=true

(T1; turn=2 | T2; turn=1)

z =0

while (not found)
wait (turn == 2)
turn=1

Z——
if (£(z) == 0)
found=true

Looks like, but we are unsure!l!!

Paolo Baldan (DM UniPD) 22 /46

We need help!

Paolo Baldan (DM UniPD) 23 /46

We need somebody's help!

The proposal in this course

ematically

Adopt a rigorous, solidlymétrounded approach to the study of concurrency as (one
of your) tools for understanding, designing and programming systems.

Program

o Start from foundations

@ and study how they reflect on languages and programming

Benefits at two levels . ..

Paolo Baldan (DM UniPD) 24 /46

Conceptual level

o A foundational approach that identifies the basic operators and constructs of
concurrency
@ helps in understanding the multiplicity of languages, architectures, paradigms

@ which are reduced to a bunch of fundamental principles.

Think of what you've done for
@ imperative

o functional

@ object-oriented

Paolo Baldan (DM UniPD) 25 /46

Practical level

Errors, errors and errors

Software is error-prone and even small concurrent programs can be hard to
understand and analyse

A formal framework comes along with techniques for

@ design of systems

For proving

o . 0 o ha
@ specification of the desired properties brogram i
e 5 5 . correct (it
@ verification, assisted or automatic. o= i
e y

we have to
define what
. .) it does (its

@ Not for free: syntax and semantics have to be defined rigorously samantics)
we want
the checks
to be au-
tomatized,
this must
be formal!

o But rewarding!

Paolo Baldan (DM UniPD) 26 /46

We are not alonel

While until 15 years ago formal methods were confined to the academy, nowadays . ..

@ No longer confined to the academia

@ Formal techniques, like model checking and abstract interpretation, are
commonly used (and investigated) by the software giants (Microsoft, Apple,
Facebook, Google)

Paolo Baldan (DM UniPD) 27 /46

New foundations?

Paolo Baldan (DM UniPD) 28 /46

Why new foundations?

We already know that in any (imperative) language we can find constructs
@ assignements (x = expr)
@ control (conditionals: if, case, iterations: while, for, ...)

@ structuring, encapsulation

Sequential behaviour

A sequential program P implements a function:

memory — memory

[[P]] : inputs — outputs

Example: Factorial

fact(n):
res=1
while (n > 0)
res = res * n
n--
return res

v
Paolo Baldan (DM UniPD) 29 /46

Why new foundations?

In the Seventies they were wondering the same ...

Robin Milner Tony Hoare

Turing award winners

Paolo Baldan (DM UniPD) 30/ 46

Sequential programs

Example: Factorial

fact(n):
res=1
while (n > 0)
res = res * n
n--
return res

@ Non termination is BAD!

o Output is UNIQUELY determined by input!
Actually, each step is uniquely determined by the memory

Paolo Baldan (DM UniPD) 31/46

Concurrent programs: Output not unique

The situation changes radically for concurrent programs!)

Example: A strange program ...

strange (x):
set2(x) | set2(x)
return x

where

set2 (x):

x=2

What does strange (x) compute?

Paolo Baldan (DM UniPD) 32/46

Concurrent programs: Output not unique

Example: An even stranger program . ..

strange-new (x):
set2(x) | set2new(x)
return x

where

set2new (x):
x=0
X=X+2

What does strange-new(x) compute?

Paolo Baldan (DM UniPD) 33/46

Concurrent programs: Output not unique, contd.

An execution of strange-new(x)

set2 | set2new
x=0
x=2
X=x+2
We can get 2 but also 4 ... J

Paolo Baldan (DM UniPD) 34 /46

Concurrent programs: Non termination

Non termination possible often desirable
Operating systems, commut protocols, systems

Hence the concept of mput output behaviour can cease to be meaningful.

Example: Printer Daemon

@ receive a job to be printed
@ send the job to the printer
@ send an ack when done

Rather than on 1/O behaviour the interest is shifted to interactivity
(communication capabilities)

Internal behaviour (calculation) is inessential

are interested at how a system react to external stimuli

instead of concurrent

We will use the term reactive systems.

Paolo Baldan (DM UniPD) 35 /46

Programs, behaviour and correctness

Paolo Baldan (DM UniPD) 36 /46

Programs, behaviour and correctness

We need three ingredients:
e Syntax: Language for writing programs

@ Semantics: Behaviour (for saying what a program does) and program
equivalence

o Verification: for saying that a program does the right things

Paolo Baldan (DM UniPD) 37 /46

Calculus of communicating systems

The above considerations motivates the design of the CCS.

Calculus of Communicating Systems [Milner, 80's]

It describes a concurrent system by highlighting
@ structure (parallel components)
@ possible interactions (communications)

abstracting from the internal computation

A system represented as

A set of processes in parallel interacting through ports

1lpr lpr

ack Q % ack

Paolo Baldan (DM UniPD) 38 /46

CCS: Behaviour

The behaviour is described by simple constructs:

Communication

output (send) input (receive)

1pz(file) 1pr(x)

Parallel execution

Given processes P and @

PlQ

Nondeterministic composition

Given process P and @
P+Q)

Restriction of a channel

Given process P and channel 1pr

P~ lpr

Back to the example

shutdown
1lpr

oprint

USER = LPD =
lpr(file). 1pr(x) . + shutdown ()
ack() print(x).
ack().
LPD

System = (USER | LPD) ~ { lpr, ack }

Paolo Baldan (DM UniPD) 40/ 46

Program equivalence?

o Certainly not the same 1/O behaviour

@ Same interactivity: Two processes are equivalent if interacting with them we
cannot observe any difference

Example

| A\

For instance, for LPD we are happy if

o it is willing to receive a file, after that, eventually, the file get printed and
we get an ack

@ independently of any internal computation

Observe communications

Idea of observational semantics, intuitive, not easy to formalize ...

Paolo Baldan (DM UniPD) 41 /46

Program equivalence: Idea

Observe communications

com . . .
P —— P’ if process P can perform communication com and become P’

Bisimulation, intuitively
Given processes P and @ we define P ~ Q if

e for any transition P —" P’ there exists a transition Q@ —— Q' for some Q'
such that P/ ~ Q'

e for any transition @ —"+ @’ there exists a transition P —— P’ for some P’
such that P/ ~ Q'

P simulates each interaction of @ and vice versa, and after they remain equivalent
v

Not a definition!!

... but we can work it out ...

...and get a well-defined notion of program equivalence which is compositional

Paolo Baldan (DM UniPD) 42 /46

Single-language approach

Write the system specification Spec as an abstract process and then prove
correctness of the implementation Impl by showing

Spec ~ Impl.

A language for specifying behavioural properties
Temporal properties of the kind:

o If I send a file it will be eventually printed

@ The system will never reach a deadlock

with tools for (automatic) verification that a program enjoy the property.

Paolo Baldan (DM UniPD) 43 /46

Course overview

Paolo Baldan (DM UniPD) 44 / 46

What will we do?

o Calculus of Communicating Systems
A foundational (specification) language for concurrent systems

o Behaviour and correctness
Does my program have the desired behaviour? What is it?
@ Specification and verification

An assertion language for specifying the properties desired and automatic
verification tools

From specification to programming
Languages with (modern) design choices consistent with the studied theory:

o Google Go, message passing concurrency

Erlang (Elixir), and the actor model

o Clojure, functional concurrency (or, data concurrency for free)
@ Rust based on ownership;
°

and others? (Jolie / Ballerina for service oriented computing)

Paolo Baldan (DM UniPD) 45 / 46

Material and exam

@ First part: We will use the book
L. Aceto, A. Ingolfsdottir, K.G. Larsen, J. Srba

Reactive systems
Cambridge University Press, 2007 (Chap. 1-7, except 6.4)

@ Second part: Electronic resources linked at the course page (Slide decks
available).

Two parts . ..
© Two exercises on the foundational part chosen from a list, available at the
course page
@ Mini-project / deepening (/ programming exercises)

Paolo Baldan (DM UniPD) 46 / 46

	What are we talking about?
	We need help!
	New foundations?
	Programs, behaviour and correctness
	Course overview

