
Languages for Concurrency and Distribution

Paolo Baldan

Master’s Degree in Computer Science
University of Padua

Paolo Baldan (DM UniPD) 1 / 46

What are we talking about?

Paolo Baldan (DM UniPD) 2 / 46

What are we talking about?

An approach
just outlined

for

understanding
designing
verifying

concurrent and distributed systems

with a view on the corresponding

programming languages

Paolo Baldan (DM UniPD) 3 / 46

What is concurrency?

Concurrent System
A system where different activities (processes)

programs, processes, transactions
are performed at the same time

At
least
con-
cep-
tu-
ally

P1 P2 Pn

Activities can proceed
independently
interacting

cooperation, for completing some task
competition, for accessing resources

Paolo Baldan (DM UniPD) 4 / 46

An old story . . .

Concurrency is a theme since the early years of CS . . .
multitasking/multiuser operating systems (processes sharing
cpu/memory/devices . . .)
multiuser databases (with concurrent transaction on common data)

. . . with (continuously) renewed interest
with enormous growth of interconnected computing devices (laptops,
smartphones, embedded devices, . . .)
with multicore CPUs
. . .

Paolo Baldan (DM UniPD) 5 / 46

The world is concurrent

Computing is pervasive in the world

Computing needs to be concurrent

[Aristotle (almost)]

Paolo Baldan (DM UniPD) 6 / 46

The world of software is getting more and more complex

concurrency
distribution

with connectivity problem

mobility
data and code mobility

dynamicity
communication topology is not fixed

open endedness
the environment it works in is not always completely known

. . .

Paolo Baldan (DM UniPD) 7 / 46

Old and new problems

Good old concurrency problems . . .
deadlock
starvation
fairness
. . .

. . . and many others
connectivity
remote failures
security
resource control
. . .

Paolo Baldan (DM UniPD) 8 / 46

Concurrency is everywhere
it is very important and useful

but complex!

We need help!

Paolo Baldan (DM UniPD) 9 / 46

Complexity: technological advances

The technological progress is tumultuous . . .
Each second day we have new

programming languages
tools
paradigms
architectural solutions
. . .

Exercise: Take a random three letter strong and check whether it is a CS acronym

We need conceptual tools to be guided in the “technological forest”!

Paolo Baldan (DM UniPD) 10 / 46

Complexity: too many details!

Example: Producer-Consumer
A process producing data and one using such data (asynchronously)

Producer buffer Consumer

1/21/2017 Java Examples - Producer Consumer Problem

https://www.tutorialspoint.com/javaexamples/thread_procon.htm 1/2

 Previous Page Next Page

Java Examples Producer Consumer Problem
Advertisements

How to solve the producer consumer problem using thread?

Following example demonstrates how to solve the producer consumer problem using thread.

public class ProducerConsumerTest {
 public static void main(String[] args) {
 CubbyHole c = new CubbyHole();
 Producer p1 = new Producer(c, 1);
 Consumer c1 = new Consumer(c, 1);
 p1.start();
 c1.start();
 }
}
class CubbyHole {
 private int contents;
 private boolean available = false;

 public synchronized int get() {
 while (available == false) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 available = false;
 notifyAll();
 return contents;
 }
 public synchronized void put(int value) {
 while (available == true) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notifyAll();
 }
}
class Consumer extends Thread {
 private CubbyHole cubbyhole;
 private int number;

 public Consumer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }
 public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = cubbyhole.get();
 System.out.println("Consumer #" + this.number + " got: " + value);
 }
 }
}
class Producer extends Thread {
 private CubbyHole cubbyhole;
 private int number;
 public Producer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 cubbyhole.put(i);
 System.out.println("Producer #" + this.number + " put: " + i);
 try {
 sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
 }

Sony KDL40WD653 40''...

€ 499,00 €
416,59

ACQUISTA

-17%

Ƈ Ɔ

Problem Description

Solution

Í

1/21/2017 Java Examples - Producer Consumer Problem

https://www.tutorialspoint.com/javaexamples/thread_procon.htm 1/2

 Previous Page Next Page

Java Examples Producer Consumer Problem
Advertisements

How to solve the producer consumer problem using thread?

Following example demonstrates how to solve the producer consumer problem using thread.

public class ProducerConsumerTest {
 public static void main(String[] args) {
 CubbyHole c = new CubbyHole();
 Producer p1 = new Producer(c, 1);
 Consumer c1 = new Consumer(c, 1);
 p1.start();
 c1.start();
 }
}
class CubbyHole {
 private int contents;
 private boolean available = false;

 public synchronized int get() {
 while (available == false) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 available = false;
 notifyAll();
 return contents;
 }
 public synchronized void put(int value) {
 while (available == true) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notifyAll();
 }
}
class Consumer extends Thread {
 private CubbyHole cubbyhole;
 private int number;

 public Consumer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }
 public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = cubbyhole.get();
 System.out.println("Consumer #" + this.number + " got: " + value);
 }
 }
}
class Producer extends Thread {
 private CubbyHole cubbyhole;
 private int number;
 public Producer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 cubbyhole.put(i);
 System.out.println("Producer #" + this.number + " put: " + i);
 try {
 sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
 }

Sony KDL40WD653 40''...

€ 499,00 €
416,59

ACQUISTA

-17%

Ƈ Ɔ

Problem Description

Solution

Í

Paolo Baldan (DM UniPD) 11 / 46

Complexity: conceptual!

A problem
We want to buy a new laptop, with a budget of 1000 euros.
We collect a (long) list of e-shops where to look for

Our goal
Develop a program for querying each e-shop until one offering a laptop with the
right price is found.

A brilliant idea: Let’s go concurrent!
To speed up the program we split the list in two pieces and we run two processes
in parallel, each taking care of one sublist.

Paolo Baldan (DM UniPD) 12 / 46

Complexity: conceptual!

The same problem, abstractly
Let f be a (computationally expensive) function from integers to integers

Our goal
Develop a program that terminates iff function f has a non-null zero, i.e., there is
x ̸= 0 such that f (x) = 0, and proceeds indefinitely otherwise.

A brilliant idea: Let’s go concurrent!
Define

A positive zero an integer n > 0 such that f (n) = 0
A negative zero an integer z < 0 such that f (z) = 0

To speed up we run in parallel two processes, one looking for a positive zero and
the other for a negative zero

Paolo Baldan (DM UniPD) 13 / 46

Attempt 1

A program T1 that looks for a positive zero
found=false
n = 0
while (not found) T1

n++
found = (f(n) == 0)

. . . and T2 that looks for a negative zero, by cut-and-paste
found=false
z = 0
while (not found) T2

z--
found = (f(z) == 0)

And run T1 and T2 in parallel:
T1 | T2

Paolo Baldan (DM UniPD) 14 / 46

Attempt 1, contd.

T1
found=false
n = 0
while (not found)

n++
found = (f(n) == 0)

T2
found=false
z = 0
while (not found)

z--
found = (f(z) == 0)

Wrong!
If f has only a positive zero and T1 terminates before T2 starts, the latter sets
found to false and looks indefinitely for the nonexisting negative zero.

Idea
The problem is the fact that found is initialized to false twice.

Paolo Baldan (DM UniPD) 15 / 46

Attempt 2

A solution that initializes found only once
found=false; (T1 | T2)

where

T1
n = 0
while (not found)

n++
found = (f(n) == 0)

T2
z = 0
while (not found)

z--
found = (f(z) == 0)

Wrong!
If f has (again) only a positive zero assume that:

1 T2 just enters the while body and is preempted
2 T1 computes till it finds the positive zero
3 T2 gets the CPU back, set found to false and loop forever
4 The program does not terminate!!!!

Paolo Baldan (DM UniPD) 16 / 46

Attempt 2, ctd.

Idea
The problem is the fact that found is set to false after it has been already set to
true.

Paolo Baldan (DM UniPD) 17 / 46

Attempt 3
Let us see what happens if we do not perform "unnecessary" assignments and only assign true when we find a x or a y such that
f(x) = 0 or f(y) = 0.

Avoid assigning found to false in T1 and T2
found=false; (T1 | T2)

where

T1
n = 0
while (not found)

n++
if (f(n) == 0)

found=true

T2
z = 0
while (not found)

z--
if (f(z) == 0)

found=true

Wrong!
If f has (again) only a positive zero, it can happen that

1 T2 gets the CPU to keep it forever
2 T1 will never have the chance of finding the positive zero
3 The program does not terminate!!!!
Paolo Baldan (DM UniPD) 18 / 46

Attempt 3 - ctd

Idea:
This problem is due to non fair scheduling policies.

Paolo Baldan (DM UniPD) 19 / 46

Attempt 4
To avoid assumptions on the scheduler, we can think of forcing context switches by adding a turn variable with processes passing
the turn one to the other.

Fairness with token passing
turn=1; found=false; (T1 | T2)

where

T1
n = 0
while (not found)
wait (turn == 1)
turn=2
n++
if (f(n) == 0)

found=true

T2
z = 0
while (not found)

wait (turn == 2)
turn=1
z--
if (f(z) == 0)

found=true

Wrong!
If T1 finds a zero and stops when T2 has already set turn to 1, then T2 would be
blocked by the wait command because the value of turn cannot be changed.

Paolo Baldan (DM UniPD) 20 / 46

Attempt 4 - ctd.

Idea
The program does not terminate because of the waiting of an impossible event:
on termination care is needed for other processes.

Paolo Baldan (DM UniPD) 21 / 46

Attempt 5

On termination, enable the other process
turn=1; found=false; (T1; turn=2 | T2; turn=1)

where

T1
n = 0
while (not found)
wait (turn == 1)
turn=2
n++
if (f(n) == 0)

found=true

T2
z = 0
while (not found)

wait (turn == 2)
turn=1
z--
if (f(z) == 0)

found=true

Is this correct?
Looks like, but we are unsure!!!

Paolo Baldan (DM UniPD) 22 / 46

We need help!

Paolo Baldan (DM UniPD) 23 / 46

We need somebody’s help!

The proposal in this course
Adopt a rigorous, solidly

mathematically
grounded approach to the study of concurrency as (one

of your) tools for understanding, designing and programming systems.

Program
Start from foundations
and study how they reflect on languages and programming

Benefits at two levels . . .

Paolo Baldan (DM UniPD) 24 / 46

Conceptual level

A foundational approach that identifies the basic operators and constructs of
concurrency
helps in understanding the multiplicity of languages, architectures, paradigms
which are reduced to a bunch of fundamental principles.

Think of what you’ve done for
imperative
functional
object-oriented

Paolo Baldan (DM UniPD) 25 / 46

Practical level

Errors, errors and errors
Software is error-prone and even small concurrent programs can be hard to
understand and analyse

A formal framework comes along with techniques for
design of systems
specification of the desired properties
verification, assisted or automatic.

Not for free: syntax and semantics have to be defined rigorously

For proving
that a
program is
correct (it
does what
we want),
we have to
define what
it does (its
semantics)
and since
we want
the checks
to be au-
tomatized,
this must
be formal!

But rewarding!

Paolo Baldan (DM UniPD) 26 / 46

We are not alone!

While until 15 years ago formal methods were confined to the academy, nowadays . . .

No longer confined to the academia
Formal techniques, like model checking and abstract interpretation, are
commonly used (and investigated) by the software giants (Microsoft, Apple,
Facebook, Google)

Paolo Baldan (DM UniPD) 27 / 46

New foundations?

Paolo Baldan (DM UniPD) 28 / 46

Why new foundations?

We already know that in any (imperative) language we can find constructs
assignements (x = expr)
control (conditionals: if, case, iterations: while, for, . . .)
structuring, encapsulation

Sequential behaviour
A sequential program P implements a function:

[[P]] : inputs → outputs
memory → memory

Example: Factorial
fact(n):

res=1
while (n > 0)

res = res * n
n--

return res

Paolo Baldan (DM UniPD) 29 / 46

Why new foundations?

In the Seventies they were wondering the same ...

Robin Milner Tony Hoare

Turing award winners

Paolo Baldan (DM UniPD) 30 / 46

Sequential programs

Example: Factorial
fact(n):

res=1
while (n > 0)

res = res * n
n--

return res

Non termination is BAD!

Output is UNIQUELY determined by input!
Actually, each step is uniquely determined by the memory

Paolo Baldan (DM UniPD) 31 / 46

Concurrent programs: Output not unique

The situation changes radically for concurrent programs!

Example: A strange program . . .
strange (x):
set2(x) | set2(x)
return x

where
set2 (x):
x=2

What does strange(x) compute?

Paolo Baldan (DM UniPD) 32 / 46

Concurrent programs: Output not unique

Example: An even stranger program . . .
strange-new (x):
set2(x) | set2new(x)
return x

where
set2new (x):
x=0
x=x+2

What does strange-new(x) compute?

Paolo Baldan (DM UniPD) 33 / 46

Concurrent programs: Output not unique, contd.

An execution of strange-new(x)
set2 set2new

x=0
x=2

x=x+2

We can get 2 but also 4 . . .

Paolo Baldan (DM UniPD) 34 / 46

Concurrent programs: Non termination

Non termination possible, often desirable
Operating systems, communication protocols, embedded systems
Hence the concept of input-output behaviour can cease to be meaningful.

Example: Printer Daemon
receive a job to be printed
send the job to the printer
send an ack when done

Rather than on I/O behaviour the interest is shifted to interactivity
(communication capabilities)
Internal behaviour (calculation) is inessential

We are interested at how a system react to external stimuli
We will use the term reactive systems.

instead of concurrent

Paolo Baldan (DM UniPD) 35 / 46

Programs, behaviour and correctness

Paolo Baldan (DM UniPD) 36 / 46

Programs, behaviour and correctness

We need three ingredients:
Syntax: Language for writing programs
Semantics: Behaviour (for saying what a program does) and program
equivalence
Verification: for saying that a program does the right things

Paolo Baldan (DM UniPD) 37 / 46

Calculus of communicating systems

The above considerations motivates the design of the CCS.

Calculus of Communicating Systems [Milner, 80’s]
It describes a concurrent system by highlighting

structure (parallel components)
possible interactions (communications)

abstracting from the internal computation

A system represented as
A set of processes in parallel interacting through ports

USER LPD
ack ack

lpr lpr
print

Paolo Baldan (DM UniPD) 38 / 46

CCS: Behaviour
The behaviour is described by simple constructs:

Communication
output (send) input (receive)

lpr(file) lpr(x)

Parallel execution
Given processes P and Q

P | Q

Nondeterministic composition
Given process P and Q

P + Q

Restriction of a channel
Given process P and channel lpr

P ∖ lpr

. . .
Paolo Baldan (DM UniPD) 39 / 46

Back to the example

USER LPD
ack ack

lpr lpr
print

shutdown

USER =

lpr(file).

ack()

LPD =

lpr(x).

print(x).

ack().

LPD

+ shutdown()

System
System = (USER | LPD) ∖ { lpr, ack }

Paolo Baldan (DM UniPD) 40 / 46

Program equivalence?

Certainly not the same I/O behaviour
Same interactivity: Two processes are equivalent if interacting with them we
cannot observe any difference

Example
For instance, for LPD we are happy if

it is willing to receive a file, after that, eventually, the file get printed and
we get an ack
independently of any internal computation

Observe communications
Idea of observational semantics, intuitive, not easy to formalize . . .

Paolo Baldan (DM UniPD) 41 / 46

Program equivalence: Idea

Observe communications
P

com−−−→ P ′ if process P can perform communication com and become P ′

Bisimulation, intuitively
Given processes P and Q we define P ∼ Q if

for any transition P
com−−−→ P ′ there exists a transition Q

com−−−→ Q ′ for some Q ′

such that P ′ ∼ Q ′

for any transition Q
com−−−→ Q ′ there exists a transition P

com−−−→ P ′ for some P ′

such that P ′ ∼ Q ′

P simulates each interaction of Q and vice versa, and after they remain equivalent

Not a definition!!

. . . but we can work it out . . .

. . . and get a well-defined notion of program equivalence which is compositional

Paolo Baldan (DM UniPD) 42 / 46

Verification

Single-language approach
Write the system specification Spec as an abstract process and then prove
correctness of the implementation Impl by showing

Spec ∼ Impl.

A language for specifying behavioural properties
Temporal properties of the kind:

If I send a file it will be eventually printed
The system will never reach a deadlock
. . .

with tools for (automatic) verification that a program enjoy the property.

Paolo Baldan (DM UniPD) 43 / 46

Course overview

Paolo Baldan (DM UniPD) 44 / 46

What will we do?

Foundations
Calculus of Communicating Systems
A foundational (specification) language for concurrent systems
Behaviour and correctness
Does my program have the desired behaviour? What is it?
Specification and verification
An assertion language for specifying the properties desired and automatic
verification tools

From specification to programming
Languages with (modern) design choices consistent with the studied theory:

Google Go, message passing concurrency
Erlang (Elixir), and the actor model
Clojure, functional concurrency (or, data concurrency for free)
Rust based on ownership;
and others? (Jolie / Ballerina for service oriented computing)

Paolo Baldan (DM UniPD) 45 / 46

Material and exam

Material
First part: We will use the book
L. Aceto, A. Ingolfsdottir, K.G. Larsen, J. Srba
Reactive systems
Cambridge University Press, 2007 (Chap. 1-7, except 6.4)
Second part: Electronic resources linked at the course page (Slide decks
available).

Exam
Two parts . . .

1 Two exercises on the foundational part chosen from a list, available at the
course page

2 Mini-project / deepening (/ programming exercises)

Paolo Baldan (DM UniPD) 46 / 46

	What are we talking about?
	We need help!
	New foundations?
	Programs, behaviour and correctness
	Course overview

