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Regular expressions

Cleaning up a text data set requires the use of specialized regular
expressions.

Most programming languages have facilities for
@ compiling regular expressions into efficient finite automata

@ running these automata on input text

Regular expressions come in many variants. We describe here the
so-called extended regular expressions.

Different regular expression parsers may treat some expressions slightly

differently.
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/d/ matches d in woodchuck.
/a/ does not match anything in woodchuck.

/ck/ matches the last two letters in woodchuck.
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Sets of characters

/ [abc]/ matches a, b or c.
/["abc]/ matches any character other than a, b and c.
/[a-z]/ matches any character from a to z.

/ ./ matches any character; also called wildcard.
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Aliases

\d stands for any digit; same as [0-9].

\D stands for any character other than a digit; same as [0-9].
\w stands for any alphanumeric or underscore.

\W converse of above.

\s stands for any whitespace character.

\S converse of above.

\. stands for period.

\n stands for newline.
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Repetition

/\d{2,5}/ matches between 2 and 5 digits.
/\d{3,}/ matches 3 or more digits.

/\d{4}\w?/ matches exactly 4 digits and one optional
alphanumeric or underscore.

/ [a-z]+/ matches one or more lowercase letters (positive
closure).

/\s+java\s+/ matches java with one or more whitespace
characters before and after.

/ ["\+]*/ matches zero or more characters other than + (Kleene
star).
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Longest match

Tools generally return the leftmost occurrence of a match in text.

Example : /\$\d+/ returns $4 rather than $6 in string How
many is $4 plus $67?

By POSIX (Portable Operating System Interface, |EEE standard)
the returned substring should be the longest match.

Example : /\d+/ returns 64000 in The $64000 question,
rather than 6 or 64 or 640, etc.

Regrettably, many tools are not POSIX and some tools apply a ‘greedy’ search
strategy.
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Anchors

/~/ matches beginning of input string or line.

/$/ matches end of input string or line.

/\b/ matches word boundary.

/"The/ matches occurrence of The at the beginning of a string.

Example : /\bthe\b/ would not match any occurrence of the in
word other, as there is no word boundary before t and after e.
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Disjunctions and groups

/thelany/ matches the or any.
/gupp(ylies)/ matches guppy or guppies.

Example : /(" |["a-zA-Z]) [tTlhe(["a-zA-Z] |$)/ matches
any occurrences of the and The as isolated words.
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Substitution & back-reference

We can replace matches of a regular expression by a given pattern
using the substitute operator.

Example : s/colour/color/ changes UK spelling to US
spelling.

We can use matches of a regular expression through the
back-reference operator.

Example : s/([0-9]1+)/<\1>/ where \1 is replaced by contents
of first parenthesis pair, so replace e.g. al23b by a<123>b.
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Words and punctuation marks

We need to distinguish between words and punctuation marks.

Example :

He stepped out into the hall, was delighted to encounter
a water brother.

The above sentence has 13 words and 2 punctuation symbols.

Punctuation is critical
e for finding sentence boundaries (period, colon, etc.)

e for identifying some aspects of meaning (question mark, etc.).
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Tokens vs. types

There are two ways of talking about words
@ types are the distinct words appearing in a document

@ tokens are the individual occurrences of words in a document

Example :
They picnicked by the pool, then lay back on the grass and
looked at the stars.

Ignoring punctuation marks, the above sentence has 16 tokens and
14 types.
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Vocabulary

The set of all types in a corpus is the vocabulary V.

More about corpora in later slides.
The vocabulary size | V| is the number of types in the corpus.

The size of the corpus N is the number of tokens, if we ignore
punctuation marks.
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Vocabulary

Example : N vs. |V| for a few English corpora

Corpus

Tokens =N Types= |V|

Shakespeare

Brown corpus

Switchboard telephone conversations
COCA

Google n-grams

884 thousand 31 thousand
1 million 38 thousand

2.4 million 20 thousand
440 million 2 million

1 trillion 13 million
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Herdan/Heaps law
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In very large corpora, the relation between N and |V/| can be
expressed as

V| = kN?

where k € [10,100] and /3 € [0.4,0.75].
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Zipf/Mandelbrot law
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In very large corpora, the r-th most frequent type has frequency
f(r) that scales according to

with a ~ 1 and § ~ 2.7
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Word-forms and lemmas

The word-form is the full inflected or derived form of the word.

Each word-form is associated with a single lemma, the citation
form used in dictionaries.

Example : Word-forms sing, sang, sung are associated with the
lemma sing.

Alternatively to |V/|, another measure of the number of words in a
corpus is the number of lemmas.
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Multi-element word-forms

A word-form can be made of several separated elements
Example : English: San Francisco; French: sine die (from Latin).

A word-form can be made of several merged elements
Example : English: don't = do + not; Spanish: damélo = da +
me + lo (give + to me + it).

There is no one-to-one correspondence between tokens and
word-forms
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Corpora

Corpus (plural corpora): large collection of text, in
computer-readable form.

Several dimensions of variation for corpora should be taken into
account: language, genre, etc.

Language: It is important to test NLP algorithms on more than
one language.

There is an unfortunate current tendency to developed corpora mainly for

English.

Languages lacking large corpora are considered low-resource
languages.
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Corpora

Genre: Text documents might come from newswire, fiction,
scientific articles, Wikipedia, etc.

Time: Language changes over time. For some languages we have
good corpora of texts from different historical periods.

Collection process: How big is the data and how was it sampled?
How was the data pre-processed, and what metadata is available?

Annotation: What are the specifics of the used annotation? How
was the data annotated? How were the annotators trained?
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Text Normalization
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Text Normalization

Text normalization is the process of transforming a text into
some predefined standard form. This consists of several tasks.

There is no all-purpose normalization procedure: text
normalization depends on

@ what type of text is being normalized

@ what type of NLP task needs to be carried out afterwards

Text normalization is also important for applications other than
NLP, such as text mining and WEB search engines.
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Text Normalization

In this lecture we briefly overview the most common tasks involved
in text normalization

@ language identification @ sentence segmentation
@ spell checking @ case folding

@ contraction @ stop words

@ punctuation @ stemming

@ special characters @ lemmatization

o tokenization

Ordering of the above modules is important. Some modules are optional.
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Language identification

Language identification is the task of detecting the source
language for the input text.

This is preliminary to spell checking, tokenization, acronym expansion, etc.

Several statistical techniques for this task: functional word
frequency, N-gram language models (some later lecture), distance
measure based on mutual information, etc.

Explore the following libraries
@ Python langdetect
@ Apache OpenNLP LanguageDetector
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Spell checker

Spell checkers correct grammatical mistakes in text.

Especially useful for quickly written text, such as Twitter and Amazon reviews.

Spell checkers use approximate string matching algorithms such as
Levenshtein distance to find correct spellings.

Difficult cases: a misspelled word might still be in the language
(English: than vs. then, their vs. there). To deal with these cases,
more sophisticated algorithms analyze the context formed by the
surrounding words.

Explore the following libraries

@ Python TextBlob, based on the Natural Language Toolkit
(NLTK) library
@ Resources for fuzzy string matching

e https://github.com/seatgeek/fuzzywuzzy
e https://pypi.org/project/fuzzywuzzy/
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Contractions

The following should be managed before further normalization (all
examples in English language)

@ contracted forms: we'll, don’t
@ abbreviations: inc., Mr.
e slang: IMHO, LOL, tl;dr

Difficult cases: ambiguity with apostrophe which is also used as
@ genitive marker (book’s cover)

@ quotative (‘The other class’, she said)

The most straightforward technique is to create a dictionary of
contractions and abbreviations with their corresponding expansions.
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Punctuation

Punctuation marks in text need to be isolated and treated as if
they were separate words. This is critical for finding sentence
boundaries and for identifying some aspects of meaning (question
marks, exclamation marks, quotation marks).

Difficult cases: many punctuation symbols also used in
abbreviations (period), company names (Yahoo!), compound
words (-), etc.

Explore the following libraries
@ Python string.punctuation
o NLTK nltk.punkt

Natural Language Processing Text Normalization



Special characters

Special care for

e emoticons: :) ;) etc., use regular expressions

. and T . .
@ emoji: & & etc., use specialized libraries

Explore the following library
@ https://github.com/NeelShah18/emot
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Tokenization

Tokenization is the process of segmenting text into units called
tokens.

Tokenization techniques can be grouped into three families
@ word tokenization
@ character tokenization

@ subword tokenization

Tokens are then organized into a vocabulary and, depending on
the specific NLP application, may later be mapped into natural
numbers.

Token indexing is very common when using neural networks.
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Word tokenization
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Word tokenization

Word tokenization is a very common approach for European
languages.

For English, most of the text is already (word) tokenized after
previous steps, with the following important exceptions

@ special compound names (white space vs. whitespace)
@ city names (San Francisco, Los Angeles), companies, etc.

This requires named entity recognition, presented in some later lecture.

Explore the following libraries
o NLTK word.tokenize
@ SpaCy Tokenization

https://spacy.io/usage/linguistic-features#tokenization
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Word tokenization

German writes compound nouns without spaces.

Example : Computerlinguistik, ‘computational linguistics'.

Several compound-splitter tools available.

Italian and Spanish incorporate verbs and clitics, which are special
type of pronouns.

Example : comprarlo > comprare + lo, ‘to buy it

This process can be iterated on the same word.
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Word tokenization

There are certain language-independent tokens that require
specialized processing

@ phone numbers: (800) 234-2333

o dates: Mar 11, 1983
https://dateparser.readthedocs.io/en/latest/
email addresses: jblack@mail.yahoo.com

web URLs: http://stuff.big.com/new/specials.html
hashtags: #nlproc

Use of regular expressions is recommended in these cases.
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Character tokenization
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Character tokenization

Major east Asian languages (e.g., Chinese, Japanese, Korean, and
Thai) write text without any spaces between words.

For most Chinese NLP tasks, character tokenization works better
than word tokenization
@ each character generally represents a single unit of meaning
@ word tokenization results in huge vocabulary, with large
number of very rare words
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Character tokenization

Example : Consider the following Chinese sentence and possible
tokenizations

kB N SR TR

“Yao Ming reaches the finals”

P B AN B REE

Yao Ming reaches overall finals

o oE A B R 7%

Yao Ming enter enter overall decision game
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Character tokenization

For Japanese and Thai the character is too small a unit, and
algorithms for word segmentation are required.

Standard segmentation algorithms for these languages use neural
sequence models.

This is related to sequence labelling, presented in some later lecture.
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Subword tokenization
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Subword tokenization

Many NLP systems need to deal with unknown words, that is,
words that are not in the vocabulary of the system.

Example :

If the training corpus contains the words foot and ball, but not the
word football, then if football appears in the test set the system
does not know what to do.

Example :

If the training corpus contains the words low, new, newer but not
lower, then if lower appears in the test set the system does not
know what to do.
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Subword tokenization

To deal with the problem of unknown words, modern tokenizers
automatically induce sets of tokens that include tokens smaller
than words, called subwords.

Subword tokenization reduces vocabulary size, and has become the
most common tokenization method for large language modelling
and neural models in general (see future lectures).

Subword tokenization is inspired by algorithms originally developed
in information theory as a simple and fast form of data
compression alternative to Lempel-Ziv-Welch.

Data compression provides more interesting results than morphemes.
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Subword tokenization

Subword tokenization schemes consists of three different
algorithms

o the token learner takes a raw training corpus and induces a
set of tokens, called vocabulary

o the token segmenter (encoder) takes a vocabulary and a raw
test sentence, and segments the sentence into the tokens in
the vocabulary

o the token merger (decoder) takes a token sequence and
reconstructs the original sentence
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Subword tokenization

Example :
Given the sample sentence ‘GPT-3 can be used for linguistics’

@ learner constructs the vocabulary:
{ -, 3, be, can, for, G, istics, lingu, PT, used }

@ encoder translates sample sentence into token sequence:
G, PT, -, 3, can, be, used, for, lingu, istics

@ decoder translates back to the original sentence, including

white spaces:
GPT-3 can be used for linguistics
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Subword tokenization

Three algorithms are widely used for subword tokenization
@ byte-pair encoding (BPE) tokenization
@ unigram tokenization

@ WordPiece tokenization

Explore the following library
@ SentencePiece

Includes implementations of BPE and unigram tokenization
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BPE: learner

The BPE token learner is usually run inside words, not merging
across word boundaries. To this end, use a special end-of-word
marker.

The algorithm iterates through the following steps
@ begin with a vocabulary composed by all individual characters

@ choose the two symbols A, B that are most frequently
adjacent

@ add a new merged symbol AB to the vocabulary

@ replace every adjacent A, B in the corpus with AB

The algorithm follows a greedy approach.

Stop when the vocabulary reaches size k, a hyperparameter.

Stopping criterion can alternatively be the number of iterations (merges).

Natural Language Processing Text Normalization



BPE: learner

Example : Underscore is the end-of-word marker

corpus vocabulary

5 low _ _,d, e, i, 1, n, o, r, s, t, w
2 lowest_

6 newer _

3 wider __

2 new_—

Most frequent pair is e, r with a total of 9 occurrences (we
arbitrarily break ties).

corpus vocabulary

low _ _,d, e, i, 1, n, o, r, s, t, w, er
lowest _

newer _

wider _

new_

B L N
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BPE: learner

The algorithm now learns the word-final token er_

corpus vocabulary

5 low _ _,d,e,i,1,n,0, 1,5, t,w, er, er__
2 lowest_

6 newer_

3 wider—

2 new_

The next merge produces token ne

corpus vocabulary

low _ _,d,e,i,1,n,0,r,s,t,w, er, er_, ne
lowest _

ne w er_

wider_

ne w _

W N W
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BPE: learner

If we continue, the next merges are

Merge Current Vocabulary

(ne, w) —,d,e,i,1,no0,r,s, t,wer, er_, ne new

1, o) —.de i, l,n o0, r, s, t,wer, er_, ne new, lo

(lo, w) _,d.e,i,1,no0,r,s, t.w,er, er_, ne, new, lo, low

(new, er_) _.,d,e,i,1,n 0, r, s, t,w, er, er_, ne, new lo, low, newer__

(low, ) _,d,e,i,1,n,0,r,s, t,w, er, er_, ne, new, 1o, low, newer_, low__

After several iterations, BPE learns
@ entire words

@ most frequent units, useful for tokenizing unknown words
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BPE: encoder

Two versions of BPE token segmenter (encoder)
@ apply merge rules in frequency order all over the data set
o for each word, left-to-right, match longest token from
vocabulary (eager)

Not clear whether the two algorithms always provide the same encoding.
Example :
Assume training corpus contained words newer, low, but not

lower. Typically, the test word [lower] will be encoded by means
of tokens [low, er_].
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BPE: encoder

Encoding is computationally expensive.

Many systems use some form of caching;:
@ pre-tokenize all the words and save how a word should be
tokenized in a dictionary
@ when an unknown word (not in dictionary) is seen

o apply the encoder to tokenize the word
e add the tokenization to the dictionary for future reference
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BPE: decoder

BPE token merger: To decode, we have to
@ concatenate all the tokens together to get the whole word

@ use the end-of-word marker to solve possible ambiguities

Example :
The encoded sequence

[the_, high, est_, range_, in_, Seattle_]
will be decoded as
[the, highest, range, in, Seattle]

as opposed to

[the, high, estrange, in, Seattlel
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WordPiece

WordPiece is a subword tokenization algorithm used by the large
language model BERT.

BERT will be presented in a later lecture.

Like BPE, WordPiece starts from the initial alphabet and learns
merge rules.

The main difference is the way pair A, B is selected to be merged
(f(X) is the frequency of token X)

f(A, B)
F(A) % f(B)

The algorithm prioritizes the merging of pairs where the individual
parts are less frequent in the vocabulary.
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Sentence segmentation

Text normalization also includes sentence segmentation:
breaking up a text into individual sentences

This can be done using cues like periods, question marks, or
exclamation points.
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Case folding

Lower casing is very useful to standardize words and before stop
words removal.

After this step, you can perform word statistics, such as Zip's law.

Difficult cases: if some words must be capitalized (proper names,
cities), specialized pre-processing is needed.

Sometimes it might be useful to keep both versions of the text data.

Most programming languages have facilities for string lowercasing.
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Stop words

Stop word removal includes getting rid of
@ common articles
@ pronouns
@ prepositions
"]

coordinations

Stop word removal heavily depends on the task at hand, since it
can wipe out relevant information.

This is more of a dimensionality reduction technique than normalization. Much

more common in IR than in NLP.
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Stemming

Stemming refers to the process of slicing a word with the
intention of removing affixes.

Stemming is problematic in the linguistic perspective, since it
sometimes produces words that are not in the language, or else
words that have a different meaning.

Example :
@ arguing > argu, flies > fli
e playing > play, caring > car
@ news > new
Much more commonly used in IR than in NLP. Porter and Snowball stemmers

very popular (rule based). For low-resource languages statistical stemmers are

also an option.
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Lemmatization

Lemmatization has the objective of reducing a word to its base
form, also called lemma, therefore grouping together different
forms of the same word.

Example :
@ am, are, is > be

@ car, cars, car's, cars’ > car

Lemmatization and stemming are mutually exclusive, and the
former is much more resource-intensive than the latter.

Explore the following library
@ TextBlob, word inflection and lemmatization

https://textblob.readthedocs.io/en/dev/
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Should we always normalize?

We need to ask ourselves
@ is important information being lost?

@ is noisy information being removed?
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Research papers

Title: Neural Machine Translation of Rare Words with Subword
Units

Authors: Rico Sennrich, Barry Haddow, Alexandra Birch
Conference: ACL 2016

Content: In this work we introduce an effective approach making
NMT models capable of open-vocabulary translation by encoding
rare and unknown words as sequences of subword units.

https://aclanthology.org/P16-1162/
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Research papers

Title: SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing

Authors: Taku Kudo, John Richardson

Conference: EMNLP 2018

Content: This work describes SentencePiece, a language-
independent subword tokenizer and detokenizer designed for
Neural-based text processing, including Neural Machine
Translation.

https://aclanthology.org/D18-2012/
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Research papers

Title: Between words and characters: A Brief History of
Open-Vocabulary Modeling and Tokenization in NLP

Authors: Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin
Raffel, Manan Dey, Matthias Gallé, Arun Raja, Chenglei Si, Wilson
Y. Lee, Benoit Sagot, Samson Tan

Repository: arXiv.org.cs.Computation and Language, 20 Dec 2021
Content: Subword-based approaches have become dominant in
many areas, enabling small vocabularies while still allowing for fast
inference. This survey connects several lines of work from the
pre-neural and neural era, showing how hybrid approaches based on
words, subword and characters have been proposed and evaluated.

https://arxiv.org/abs/2112.10508
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