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Exercise 1 (4 points) Find a formula φ that has the following truth table, and explain the method
you have followed to find it.

p q r φ
T T T T
T T F T
T F T F
T F F F
F T T F
F T F F
F F T T
F F F F

Solution A possible way to proceed is based on three main steps (1) building is by associating
a conjunction of literals that fully describes each interpretation that satisfies φ; (2) put them in a
disjunction and (3) simplify the resulting disjunction as much as possible.

1. For every interpretation I on the set of proposition P we can define the conjunction of the
literals that are satisfied by I

ψI ,
∧
l∈Lit
I|=l

l

where Lit is the set of literals on the propositional variables in P . Notice that ψI is satisfied
by I and I is the only model that satisfies ψI .

2. Let us put in disjunction all the ψI such that I |= φ.

(p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) (1)

Notice taht the above formula has exactly the same models than φ since is it the disjunction
of the formulas that are true in each model of φ.

3. We can then simplify it.

(p ∧ q) ∨ (¬p ∧ ¬q ∧ r) (2)

that can be reduced in the following set of clauses

(p ∨ ¬q) ∧ (p ∨ r) ∧ (q ∨ ¬p) ∧ (q ∨ r) (3)
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4. that cam be simplified in

(p↔ q) ∧ (¬p→ r) (4)

�

Exercise 2 (5 points) Consider a directed graph G = (V,E) composed of a set of nodes V =
{1, . . . , n} and a set of directed edges between them. Formulate the problem of finding the shortest
path that visits all the nodes starting from a node s and ending in a node e without passing through
the node p.

Solution For every edge (i, j) ∈ E and for every 1 ≤ t ≤ |V |, we define a propositional variable
ptij that is true if at time t we traverse the edge (i, j), The problem asks for a path:

Startig at i :
∨

h:(i,h)∈E

p1ih

Ending at j :
n∨

m=1

 ∨
h:(h,j)∈E

pmhj ∧
∧

m<t≤n
e∈E

¬ple


Passing through k :

∨
h:(k,h)∈E
1≤t≤n

ptk,h

The fact that we want to find the minimal path can be formulated with a set of weighted clauses,
that adds a cost of 1 every time we tracerse an edge. i.e., for every e ∈ E and 1 ≤ i ≤ n, we add
the weighted clause

1 : pte

�

Exercise 3 (4 points) Use B&B algorithm to solve the following maxSat problem

(¬a ∨ d ∨ ¬c :∞) (a ∨ ¬c : 3) (¬c : 2)

(¬b ∨ c :∞) (b : 1) (d : 1)

(¬d ∨ ¬a :∞)

Solution
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I = IUB = {}, UB =∞

¬a ∨ d ∨ ¬c : ∞
¬b ∨ c : ∞
¬d ∨ ¬a : ∞
a ∨ ¬c : 3

b : 1
¬c : 2
d : 1

(1)

¬b ∨ c : ∞
¬c : 3
b : 1
¬c : 2
d : 1

(2)

¬c : 3
{} : 1
¬c : 2
d : 1

(3)

IUB = {¬a,¬b}
UB = 1

I = {¬a,¬b}

{c} :∞ :
¬c : 3
¬c : 2
d : 1

(4)

{} : 3
b : 1

{c} : 2
d : 1

(5)

LB = 3 + 2 > UB

UP c, I = {¬a, b, c}

I = {¬a, b}

I = {¬a}
d ∨ ¬c : ∞
¬b ∨ c : ∞
¬d : ∞
b : 1
¬c : 2
d : 1

(6)

¬c : ∞
¬b ∨ c : ∞

b : 1
¬c : 2
{} : 1

(7)

LB = 1 ≥ UB

UP on ¬d,I = {a,¬d}

I = {a}

�

Exercise 4 (5 points) Suppose you have three coins: the faces of the first coin are black and
white, the faces of the second coin are yellow and green, and the faces of the third coin are red
and green. In an experiment you toss the first coin; if you obtain a black you toss the second coin
otherwise you toss the third coin.

1. Model this experiment in propositional logic by using the following propositinal variables

B :The result of tossing the first coing is black

W :The result of tossing the first coing is wite

Y :you toss the second coin and the result is yellow

R :you toss the third coin and the result is red

G :you toss either the second or the third coin and the result is green
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2. Let p, q and r be the probability of obtaining a black, yellow, and red faces when tossing the
first, second and third coin respectively. Compute the probability of obtaining an outcome
which is either red or green.

Solution

B ↔ ¬W : The first coin is tossed and the result is either black or white

B → (Y ↔ ¬G) : If the result of the first toss is blach then the second coin is tossed
and either we have a yellow or a green

B → ¬R : If the result of the first toss is blach the third coing is not tossed and
therefore we cannot obtain a red

W → (R↔ ¬G) : If the result of the first toss is white then the third coin is tossed and
either we have a red or a green

W → ¬Y : If the result of the first toss is white the second coing is not tossed
and therefore we cannot obtain a yellow

The set of assignments that satisfy the above formulas are the followin:

B W Y G R
1 0 1 0 0
1 0 0 1 0
0 1 0 1 0
0 1 0 0 1

The relative probabilities are the following

B W Y G R Pr
1 0 1 0 0 pq
1 0 0 1 0 p(1− q)
0 1 0 1 0 (1− p)(1− r)
0 1 0 0 1 (1− p)r

�

Exercise 5 (4 points) Describe all the models of the following set of formulas in the domain
{1, 2, 3}.

∀x∃y,¬R(x, y) (5)

∀x∀y(R(x, y)→ R(y, x)) ∧ (6)

∀x(A(x)→ (∀y(R(x, y)→ A(y)))) (7)

Solution R can be interpreted in any symmetric relations on {1, 2, 3} (to satisfy the second
formula) such that from every node can exit at most 2 arrows (to satisfy the first axioms) and such
that if there is an R-arc between two points either they are both in A or both not in A (to satisfy
the third formula). �
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Exercise 6 (5 points) Consider the following statements

A grandparent of a person is a parent of a parent of the person

Translate the above facts in FOL using the following symbols:

P (x, y) = x is a parent of y, P is a binary predicate

G(x, y) = x is a grandparent of y, G is a binary predicate

Then use resolution to show that if x and y have the same parents they also have the same grand-
parents. Only formulate the problem in clausal form without doing the resolution proof.

Solution The definition of grandparent can be obtrained by formalizing the sentence: “x is a
granparent of y if there is a z that has x as parent and is the parent of z. In FOL

∀x∀y(G(x, y)↔ ∃zP (x, z) ∧ P (z, y))

in clausal form after Skolemization:

{¬G(x, y), P (x, f(x, y))}
{¬G(x, y), P (f(x, y), y)}
{¬P (x, f(x, y)),¬P (f(x, y), y), G(x, y)}

The goal states that if two people has the same parents, then they have the same grandparents.
Let us first formalize the sentence x and y has the same parents. This can be formalized by
∀z(P (z, x) ↔ P (z, y)) Similarly “x, y having the same grapdparents” can be formalized with the
formula ∀z(G(z, x) ↔ G(z, y)). The entire statement is the implication between the two formulas
for every x and y. i.e.,

∀x∀y(∀z(P (z, x)↔ P (z, y))→ ∀z(G(z, x)↔ G(z, y)))

Negate the goal and transform in CNF

¬∀x∀y(∀z(P (z, x)↔ P (z, y))→ ∀z(G(z, x)↔ G(z, y)))

∃x∃y(∀z(P (z, x)↔ P (z, y)) ∧ ∃z¬(G(z, x)↔ G(z, y)))

∀z(P (z, a)↔ P (z, b)) ∧ ¬(G(c, a)↔ G(c, b)))

{¬P (z, a), P (z, b)}, {¬P (z, b), P (z, a)}, {¬G(c, a),¬G(c, b)}, {G(c, a), G(c, b)},

�

Exercise 7 (5 points) Find a formula that counts the number of models of the formula:

∀xy(A(x) ∧ A(y)→ ∃zR(x, z, y))

on a domain of n elements.
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Solution Consider the case in which A is interpreted in a set AI of a elements. Then for every
pair (i, j) in AI × AI there should be at least an elements k such that (i, k, j) ∈ RI ,

There sho R(i, z, j) must not be empty so there are 2n − 1 possibilities. For all the other pairs
(i, j) R(i, z, j) can be freely interpreted This means that we have 2n possibilities. In total we have

n∑
a=0

(
n

a

)
(2n − 1)a

2

(2n)n
2−a2

�
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