first name	family name	student no.
Multiple-choice	e questions (12 points):	
1. Which of the fo	llowing is a bipartite network?	
\Box a network of	f people linked by friendship	
\Box a network of	f words linked whenever they appear i	in the same sentence
\Box a network of	f books connected to the authors	
\Box a network of	f plants linked if they grow in the sam	ne area
2. What informati	on gives a power-law exponent $\gamma = 2$.	14?
\Box We are deal	ing with a random network	
\Box We are deal	ing with a small world network	
\Box We are deal	ing with an ultra-small world network	:
\Box We are deal	ing with a scale-free regime with no la	arge hubs
3. Under the Biander exponent η of grow	coni-Barabasi model, what is the infor wth?	mation carrried by the dynamic
\Box It identifies	the node degree centrality, the larger	η the higher the degree
\Box It identifies	the attractiveness of a node, the large	er η the faster the node growth
\Box It identifies	the fitness of a node, the smaller η th	e faster the node growth
\Box It identifies	a node quality independent on the gro	owth
4. Consider a sen same tweet. Which as authoritative in	nantic network of hashtags that are on of the following would you use to idea the online discourse?	connected if they appear in the entify the relevance of a hashtag
□ betweenness		
\Box pagerank		
\Box closeness		
assortativity	,	

Network Science - written exam: pre-call, January 15, 2024

first name	family name	student no.
5. Which one is the normalized adjace	The correct formalization of modula ency matrix \boldsymbol{A} and community as	arity in a directed network with signment C ?
$\Box Q = \operatorname{trace}(\boldsymbol{C})$	$C(\boldsymbol{A} - \boldsymbol{d}_{ ext{in}}, \boldsymbol{d}_{ ext{out}}^T) \boldsymbol{C}^T), \ \boldsymbol{d}_{ ext{in}} = \boldsymbol{A} 1, \ \boldsymbol{d}_{ ext{out}}$	$\mathbf{A}_{\mathrm{out}} = \mathbf{A}^T 1$
$\square Q = \operatorname{trace}(\mathbf{C})$	$C(\boldsymbol{A} - \boldsymbol{d}_{ ext{out}}, \boldsymbol{d}_{ ext{in}}^T) \boldsymbol{C}^T), \boldsymbol{d}_{ ext{in}} = \boldsymbol{A} 1, \boldsymbol{d}_{ ext{out}}$	$_{ m out} = oldsymbol{A}^T oldsymbol{1}$
$\Box \ Q = \operatorname{sum}(\boldsymbol{C}$	$(\boldsymbol{A} - \boldsymbol{d}_{ ext{in}}, \boldsymbol{d}_{ ext{out}}^T) \boldsymbol{C}^T), \ \boldsymbol{d}_{ ext{in}} = \boldsymbol{A} \boldsymbol{1}, \ \boldsymbol{d}_{ ext{out}}$	$\mathbf{u}_{\mathrm{tt}} = oldsymbol{A}^T 1$
$\square Q = \operatorname{trace}(\boldsymbol{C})$	$C(\boldsymbol{A} - \boldsymbol{d}_{ ext{in}}, \boldsymbol{d}_{ ext{out}}^T) \boldsymbol{C}^T), \boldsymbol{d}_{ ext{in}} = \boldsymbol{A}^T \boldsymbol{1}, \boldsymbol{d}_{ ext{in}}$	$d_{ m out}=A1$
6. What is the not ment on a word-to	rmalized mutual information (NM p-document network?	II) measuring in a topic assign-
\Box How well do	cuments are described by the wor	rds they contain
□ How well we	ords are interconnected inside each	h topic
□ How well do	cuments inside a topic are connec	cted
□ How well we	ords are able to clearly identify th	ne topics
7. What is the ma	ain drawback of stochastic block i	models (SBMs)?
□ They cannot	t capture the most common netwo	ork structures
\Box They are on	ly applicable to binary adjacency	matrices
\Box They They	generally too complex to be run o	on large networks
□ They cannot	t handle distributions other than	the Gaussian one
8. What is HDBS	CAN?	
$\Box \text{ It is an hiera} \\ \text{ture}$	archical agglomerative approach,	providing a dendrogram struc-
\Box It is an hiera	archical divisive approach, based	on distances
□ It is a comm of modularit	nunity detection algorithm based	on an empirical simplification
\Box It is an optim	mization tool for community dete	ection

first name	family name	student no.
9 Consider ForceAtlas? Which of the following is true?		
\Box It is a comm	aunity detection algorithm based of	on nodes distances
□ It is a force portional to	directed layout algorithm where the the desired distance	he equilibrium distance is pro-
□ It is a force better visua	e directed algorithm taking into a l layout	ccount the node degree, for a
\Box It is based of	on a logarithm mapping of nodes of	listances
10. How to proper uments, N_{wd} ?	erly build a semantic network from	n occurrences of words in doc-
\Box By building	a document-to-document probabi	lity matrix $oldsymbol{P}_{dd}$
\Box By exploiting	ng the TF-IDF matrix linking word	ds to documents
□ By doing a p two words a	projection onto the words network, ppear in the same document	i.e., counting how many times
\Box By linking v	words only if they appear in a suff	icient number of documents
11. How does non-negative matrix factorization (NMF) works?		
\Box It assumes a	a Dirichlet distribution for topics	
\Box It considers	a binary document-to-topic map	C
\Box It does not	take into account for the documen	nt-to-topic map C
☐ It expresses of the distri	the word probability in each docur bution inside each topic contained	nent as the weighted collection l in the document

mily name	student no.	
prosonce of an ocho chamber	in a notwork?	
e presence of an echo chamber		
eaning of nodes is similar to t	the individual leaning of	
-	-	
odes is similar to the degree of	f their neighbors	
\Box When the individual leaning of nodes is always positive		
\Box When the nodes are organized in communities		
	e presence of an echo chamber eaning of nodes is similar to t odes is similar to the degree o eaning of nodes is always posi rganized in communities	

first name	family name	student no.
Open question $\#1$ (10 points, 1 page):		

Explain and comment the PageRank algorithm when applied on an undirected network whose adjacency matrix is A. Consider discussing the following aspects: Which is the PageRank equation? Which are the parameters of interest? What is their meaning? How can these be used to infer interesting analytics from the network? Any further (mathematical) insight is welcome.

first name	family name	student no.
Open question $#2$ (10 points, 1 page):		

List, describe in some detail, and discuss the most interesting evaluation metrics for assessing the quality of a community detection algorithm. Any insight on mathematical equations, meaning, reliability, generality, etc. is welcome. Assume that the adjacency matrix \boldsymbol{A} is normalized (elements summing up to 1).