RANDOM NUMBERS (form $1^{\text {st }}$ lesson)
informal: a number $m \in \mathbb{N}$ is ramdorm if for every program P which outputs m, P is larger than m
show that
\rightarrow there are infinitely many random numbers
\rightarrow the property of being ramolom is undecidable

Formal view :
\rightarrow program size $|\mathrm{Pe}|=e$
$\rightarrow m \in \mathbb{N}$ is random if for all progioms $e \in \mathbb{N}$ sit. $\varphi_{e}(0)=m$ it holds $e>m$
(1) there are infinitely many random numbers

Recall that each computable functions is computed by infinitely mong programs. Hence for each $k \in \mathbb{N}$ there is $e_{1}<e_{2}<\ldots<e_{k}$ s.t. $\varphi_{e_{i}}=\varnothing \quad i=1, \neg k$

$$
\left|\left\{\varphi_{i}(0) \mid i \leqslant e_{k} \wedge \varphi_{i}(0) \downarrow\right\}\right| \leqslant e_{k}-k
$$

henna there ore at lost k numbers $m \leqslant e_{k}$ which com' + be generated by profiorms $e<m$ no these numbers are random
since this holds for every k, there are infinitely many random numbers.
(2) $R=\{m$ I m is random $\}$ is mot recursive

Assume R to be Recursive ie.

$$
x_{R}(m)= \begin{cases}1 & \text { if } \quad m \in R \\ 0 & \text { otherwise }\end{cases}
$$

Define

$$
\begin{aligned}
g(m, x) & =\text { lost random number }>m \\
& =\mu z \cdot \quad z \in R \text { and } z>m \\
& =n+1+\mu z \cdot(n+1+z \in R) \\
& =m+1+\mu z \cdot\left(x_{R}(m+1+z)-1 \mid\right.
\end{aligned}
$$

computable
by sum there is $s: \mathbb{N} \rightarrow \mathbb{N}$ total computable st.

$$
\begin{aligned}
& g(m, x)=\varphi_{s(m)}(x) \\
& \text { lest romdom number }>m
\end{aligned}
$$

By $2^{\text {md }}$ recursion theorem there is $m_{0} \in \mathbb{N} \quad \varphi_{m_{0}}=\varphi_{\text {sin }}$)

$$
\varphi_{m_{0}}(0)=\varphi_{s\left(m_{0}\right)}(0)=g\left(m_{0}, 0\right)=\left(\text { lost } 20 \text { dom number }>m_{0}\right)
$$

hence no generates a random number $>$ mo, contradialon!
$\Rightarrow R$ not recursive.

Note \bar{R} is re.

$$
S C_{\bar{R}}(m)=\mathbb{1}\left(\mu t . \bigvee_{e=0}^{m} s(e, 0, n, t)\right) \quad \text { computable. }
$$

mb R is mot ie. $\left\{\begin{array}{l}\text { check if some } \\ \text { program } e<m \text { outputs } m \text { om } 0\end{array}\right.$

