COMPUTABILITY (08/01/2024)

EXERCISE: Given $f: \mathbb{N} \rightarrow \mathbb{N}$ a fixed function and define

$$
B_{f}=\left\{e \in \mathbb{N} \quad \mid \varphi_{e}=f\right\}
$$

The set B_{f} is saturated

$$
B_{f}=\left\{e \in \mathbb{N} \mid \quad \varphi_{e} \in B_{f}\right\} \quad B_{f}=\{f\}
$$

2 cases
(1) f is mot computable

$$
B_{f}=\phi \quad \bar{B}_{f}=\mathbb{N} \quad \text { recursive }
$$

(2) f is computable

* Bf is mot zee.
(2.0.) if f is finite $f=V$
let g be a total function st. $f \leqslant g$
 them $g \notin B_{f}$ and $f=\underset{\substack{\text { finite }}}{ }$ and $f \in B_{f}$ hence by hice-shepiro B_{f} mot re. (hence not recursive)
(2.b) f is mot finite
mote that $f \in B_{f}$ and $\forall \theta \subseteq f$ finite $\theta \notin B_{f}$ then Bf not re. by Rice-shopizo (hence Bf not recursive)
* $\overline{B f}$

$$
* \quad f=\phi \quad(\quad f(x) \uparrow \quad \forall x)
$$

$\overline{B f}$ is re. since
$e \in \overline{B_{f}}$ iff there is some input $\varphi_{e}(x) \downarrow$
hence

$$
\begin{aligned}
S C_{\overline{B_{f}}}(e) & =\mathbb{I}(\mu(x, t) \cdot H(e, x, t)) \\
& =\mathbb{I}\left(\mu \omega \cdot H\left(e,(\omega)_{1},(\omega)_{2}\right)\right)
\end{aligned}
$$

computable hence $\overline{B_{f}}$ re. (mot recursive since B_{f} mot $\left.z e.\right)$
hence mot recursive

* $f \neq \varnothing$
$\overline{B_{f}}$ is mot re. by Rice - shop 120
$f \notin \bar{B}_{f} \quad$ and $\quad \theta=\phi \subseteq f \quad \theta \notin B f$ hence $\theta \in \bar{B}_{f}$
hence by Rice-shapizo \bar{B}_{f} is mot re.

EXERCISE: show that $g \subset d: \mathbb{N}^{2} \rightarrow \mathbb{N}$
$\operatorname{gcd}(x, y)=$ greatest common divisor of x and y is computable (primitive recursive)

$$
\begin{aligned}
& \operatorname{gcd}(x, y)=\operatorname{mox} z . \quad z \text { divisor of } x \text { and } z \text { divisor of } y \\
& \text { III II } \\
& \operatorname{rm}(x, z)=0 \quad \operatorname{rm}(z, y)=0 \\
& =\operatorname{mox} z \leq \min (x, y) \cdot(\operatorname{rm}(z, x)+\operatorname{rm}(z, y)=0) \\
& z=\min (x, y)-\omega \\
& \uparrow \uparrow \\
& \text { borges } \\
& \text { least }
\end{aligned}
$$

$$
=\min (x, y) \therefore(\mu \omega \leqslant \min (x, y) \cdot(\underbrace{}_{P R} \begin{array}{rl}
\operatorname{Rm}(\operatorname{mim}(x, y)-\omega, x) \\
& +\operatorname{Rm}(\min (x, y)-\omega, y))
\end{array}
$$

hence god is primitive recursive.

EXERCISE : Show that there ore $m, m \in \mathbb{N}$
(i) $\varphi_{m}=\varphi_{m+1}$
(ii) $\varphi_{m} \neq \varphi_{m+1}$
(i) observe that $s(m)=m+1$ is total and computable, hence by the second recursion theorem there is $m \in \mathbb{N}$

$$
\varphi_{m}=\varphi_{s(m)}=\varphi_{m+1}
$$

(ii) if it were that $\forall m \quad \varphi_{m}=\varphi_{m+1}$ then inductively $\quad \varphi_{0}=\varphi_{1}=\varphi_{2}=\varphi_{3}=\ldots$ ie. all computable unary functions would be the same and this is mot the cove (e.g. II \neq succ)

EXERCISE : Define PR. Using only the definition show that

$$
\begin{aligned}
& \operatorname{mox}_{2}: \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{mox}_{2}(x)=\operatorname{mox}(2, x)
\end{aligned}
$$

Two whys:
(1) Rebuild max

$$
\begin{array}{ll}
& x+y \\
& \left\{\begin{array}{l}
x+0=x \\
x+(y+1)=(x+y)+1
\end{array}\right.
\end{array}
$$

predecenor $y-1$

$$
\left\{\begin{array}{l}
0-1=0 \\
y+1-1=y
\end{array}\right.
$$

differema $\quad x-y$

$$
\left\{\begin{array}{l}
x-0=x \\
x-(y+1)=(x-y)=1
\end{array}\right.
$$

$\operatorname{mox} \operatorname{mox}(x, y)=x+(y-x)$

$$
\operatorname{mox}_{2}(x)=\operatorname{mox}(2, x)=\operatorname{mox}(((0+1)+1), x)
$$

(2) Define what you really meed

$$
\begin{aligned}
& \operatorname{mox}_{2}(0)=2 \\
& \operatorname{mox}_{2}(y+1)=\left\{\begin{array}{cc}
2,1+1 & \text { if } y=0 \\
\vdots y+1 & \text { if } y>0 \\
\vdots \\
\operatorname{mox}(1, y)
\end{array}=y+1+\overline{\operatorname{sog}(y)}\right.
\end{aligned}
$$

sum as above
$\operatorname{sg}(y)$

$$
\begin{aligned}
& \overline{\operatorname{sg}}(0)=1 \\
& \overline{\operatorname{sg}}(y+1)=0
\end{aligned}
$$

(3) Even foster...

$$
\begin{aligned}
& \left\{\begin{array}{l}
\operatorname{mox}_{2}(0)=2 \\
\operatorname{mox}_{2}(y+1)=\operatorname{mox}_{1}(y)+1
\end{array}\right. \\
& \operatorname{mox}_{1}(y)=\max (1, y) \\
& \left\{\begin{array}{l}
\operatorname{mox}_{1}(0)=1 \\
\operatorname{mox}_{1}(y+1)=y+1
\end{array}\right.
\end{aligned}
$$

EXERCISE:
(1) $A=\left\{x \mid \quad \varphi_{x}(x)=x^{2}\right\}$
(2) $B=\{x) \quad \varphi_{x}(y)=y^{2}$ for infinitely many y 's $\}$

Questions:
(a) Clossify A, B according to recursivemess
(b) Are A, B saturated?
(1) $A=\left\{x \mid \varphi_{x}(x)=x^{2}\right\}$
conjecture $\left.A \begin{array}{l}\text { re. } \\ \text { not recursive }\end{array}\right\} \rightarrow \bar{A}$ not re. (hence not recursive)

* A re.

$$
\begin{aligned}
& \operatorname{SC}_{A}(x)=\mathbb{I}\left(\mu z .\left|\varphi_{x}(x)-x^{2}\right|\right)=\mathbb{I}\left(\mu z .\left|\psi_{U}(x, x)-x^{2}\right|\right) \\
& \rightarrow 0 \text { if } \varphi_{x}(x)=x^{2} \\
& L_{\square} \neq 0 \text { otherwise } \\
& \uparrow \\
& 0 \text { if } \varphi_{x}(x)=x^{2} \\
& \uparrow \text { otherwise } \\
& \text { computable } \\
& \rightarrow A \text { Re. }
\end{aligned}
$$

* A is not recursive
given x
$\operatorname{def} P(y)$:
$P_{x}(x)$
return y^{2}
$\leadsto \leadsto A$ yes if $P_{x}(x) \downarrow$
define no otherwise

$$
\begin{aligned}
g(x, y) & =\mathbb{I}\left(\varphi_{x}(x)\right) \cdot y^{2} \\
& =\mathbb{I}\left(\varphi_{=}(x, x)\right) y^{2}
\end{aligned}= \begin{cases}y^{2} & \text { if } \varphi_{x}(x) \downarrow \\
\uparrow & \text { otherwise }\end{cases}
$$

computable, hence by mm theorem there is $s: \mathbb{N} \rightarrow \mathbb{N}$ total and computable sit

$$
\varphi_{S(x)}(y)=g(x, y)= \begin{cases}y^{2} & \text { if } \varphi_{x}(x) \downarrow \\ \uparrow & \text { otherwise }\end{cases}
$$

and s is the reduction function for $k \leq m$ A

* If $x \in K$ then $\varphi_{s(x)}(y)=y^{2} \quad \forall y$, hence in particulor

$$
\varphi_{s(x)}(s(x))=(s(x))^{2}
$$

$\leadsto S(x) \in A$
x if $x \notin k$ then $\varphi_{s(x)}(y) \uparrow \forall y$ hence $\varphi_{s(x)}(s(x)) \neq(s(x))^{2}$ no $S(x) \notin A$
hem ce $K s_{m} A$ and sima K mot recursive, A is not recursive
(b) $A=\left\{x \mid \varphi_{x}(x)=x^{2}\right\}$ soturoted? NO
let $e \in \mathbb{N}$ s.t. $\quad \varphi_{e}(x)= \begin{cases}e^{2} & \text { if } x=e \\ \uparrow & \text { otherwise }\end{cases}$ mole that such e exists.

In fact define

$$
\begin{aligned}
& g(z, x)= \begin{cases}z^{2} & x=z \\
\uparrow & \text { otherwise }\end{cases} \\
&=z^{2}+\underbrace{\mu \omega \cdot|x-z|}_{0 \quad \text { if } x=z} \\
& \uparrow \text { otherwise }
\end{aligned}
$$

computable

By mm theorem there is $s: \mathbb{N} \rightarrow \mathbb{N}$ total computable s.t

$$
\varphi_{s(z)}(x)=g(z, x)= \begin{cases}z^{2} & \text { if } x=z \\ \uparrow & \text { otherwise }\end{cases}
$$

By the $2^{\text {md }}$ recursion theorem there is $e \in \mathbb{N}$ s.t. $\varphi_{e}=\varphi_{\text {see) }}$

$$
\varphi_{e}(x)=\varphi_{\text {she) }}(x)=g(e, x)= \begin{cases}e^{2} & \text { if } x=e \\ \uparrow & \text { otherwise }\end{cases}
$$

Given this

$$
* \quad e \in A \quad\left(\text { since } \quad \varphi_{e}(e)=e^{2}\right)
$$

* let $e^{\prime} \neq e$ s.t $\varphi_{e}=\varphi_{e^{\prime}}$

$$
\varphi_{e^{\prime}}\left(e^{\prime}\right)=\varphi_{e}\left(e^{\prime}\right) \uparrow \neq e^{\prime^{2}}
$$

$\Rightarrow \quad e^{\prime} \notin A$
no A mot saturated
(2) $B=\left\{x \mid \quad \varphi_{x}(y)=y^{2}\right.$ for infinitely many y 's $\}$
B is saturated

$$
B=\left\{x \mid \quad \varphi_{x} \in B\right\}
$$

$B=\left\{f \mid f(y)=y^{2} \quad\right.$ for infinitely many $\left.y^{\prime} \leq\right\}$
conjecture: B, \bar{B} mot re. (hence mot recurve)

* B is mot ie.
let $f: \mathbb{N} \rightarrow \mathbb{N}$

$$
f(y)=y^{2}
$$

then $f \in B$ (since $\left\{y \mid f(y)=y^{2}\right\}=\mathbb{N}$ infinite)
for all $\theta \leq f \quad \theta$ finite $\quad\left\{y \mid \nabla(y)=y^{2}\right\}=\operatorname{dom}(\theta)$ finite vi $\because \notin B$
hence by Rice-shopizo B not re.

* $\bar{B} \operatorname{mot}$ re.
mote that f os defined above $f \notin \bar{B}$ and $\vartheta=\phi \leq f$ $\theta \in \bar{B}$
hence, by Rice-shopizo \bar{B} mot re.

