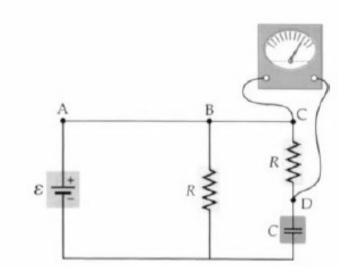
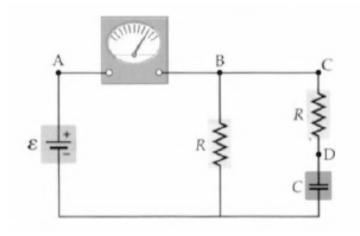


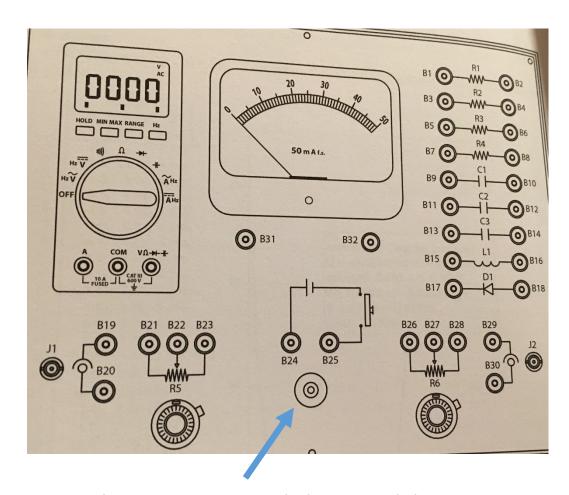
Verifica della Legge di Ohm




Il voltmetro e l'amperometro

Il voltmetro e l'amperometro vengono utilizzati per misurare la differenza di potenziale e la corrente in alcuni punti di un circuito elettrico.

Gli strumenti non dovrebbero alterare le grandezze che misurano.

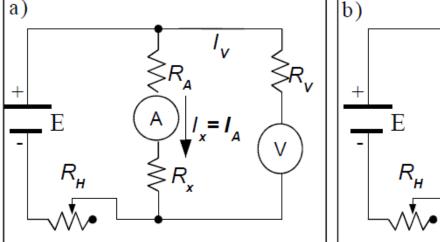

Il voltmetro viene posto in parallelo e quindi deve avere una resistenza interna molto grande, l'amperometro viene collegato in serie quindi deve avere una resistenza interna molto piccola.

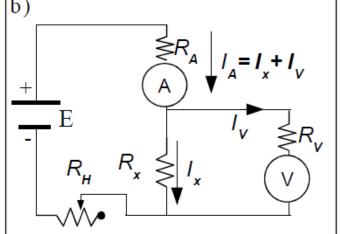
Strumentazione

Pulsante per attivare la batteria del circuito

Collegando tra loro gli elementi potete realizzare un circuito elettrico a vostro piacimento.

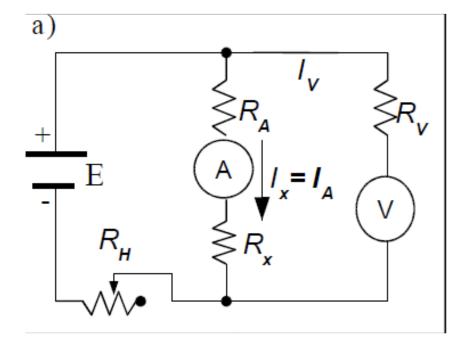
Avete a disposizione:


- resistenze (fisse R1,R2,R3,R4 e variabili R5 ed R6)
- batteria
- milli-amperometro: corrente di fondo scala = 50 mA
- multimetro digitale: utilizzabile per leggere tensione e valore della resistenza, incertezza sull'ultima cifra decimale.


Misura di una resistenza ignota

- Collegando tra loro gli elementi potete realizzare un circuito per misurare il valore di una resistenza incognita ${f R}_{f X}$
- Utilizziamo la legge di Ohm R = V/I dobbiamo quindi misurare tensione e corrente ai capi della resistenza

Possiamo costruire due circuiti per farlo (uso R6 come resistenza variabile, indicato come R_H in figura), dove R_A è la resistenza interna del milli-amperometro e R_V è la resistenza interna del multimetro.

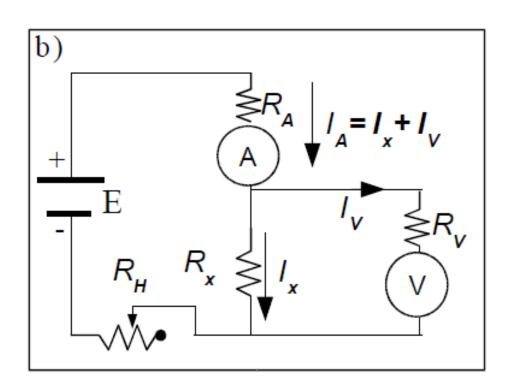


Nel caso a) la corrente Ix misurata dal milliamperometro e quella I_A che circola nella resistenza Rx, ma la differenza di potenziale misurata con un multimetro digitale e pari a $V = Ix(Rx + R_A)$.

Il valore misurato dalla resistenza R_M misurata vale:

$$R_{M} = \frac{V}{I_{A}} = \frac{I_{A}(R_{X} + R_{A})}{I_{A}} = R_{X} + R_{A}$$

Quindi R_A è un errore sistematico sulla misura della resistenza incognita.


Dato che
$$R_A = 6\Omega$$
 e $R_V \approx 40 \text{ M}\Omega$

*Posso usare questo metodo se R*x \geq 15 k Ω

Misura di una resistenza ignota

Nel caso b) il valore misurato dal voltmetro coincide con la differenza di potenziale effettiva ai capi della resistenza R_X ma la corrente misurata dal milliamperometro è $I_A = I_X + I_V$. Il valore di resistenza R'_M misurato risulta:

$$R_{M}' = \frac{V}{I_{X} + I_{V}} = \frac{R_{X}I_{X}}{I_{X}(1 + \frac{R_{X}}{R_{V}})} = \frac{R_{X}R_{V}}{R_{X} + R_{V}}$$

Quindi l'errore sistematico sulla misura della resistenza Incognita vale

$$\Delta R_X' = \left| R_M' - R_X \right| = \frac{R_X^2}{R_V (1 + \frac{R_X}{R_V})} \simeq \frac{R_X^2}{R_V} \qquad \text{dove } R_V \approx 40 \text{ M}\Omega$$

*Posso usare questo metodo se R*x < 15 k Ω

Procedimento

A piacere, scegliere come resistenza R_X una tra le quattro resistenze presenti nella cassetta, in base al valore di R_X si scelga l'opportuno circuito da costruire. Usare R_6 come resistenza variabile R_H

Riportare in tabella i valori della differenza di potenziale Ve della corrente I misurati per almeno 10 posizioni del reostato R_H . Per ciascuna misura calcolare $R = V/I con l'errore \Delta R$ associato.

Misura	I [mA]	Δ <i>I</i> [mA]	V [V]	ΔV [V]	R [Ω]	ΔR [Ω]

Calcolare il valore di R_{χ} come media delle misure riportate in tabella e verificare che sia confrontabile entro l'errore con la misura diretta ottenuta con il multimetro digitale.

Calcolare inoltre R_x come il coefficiente angolare della retta di tendenza V=R I e verificare che sia compatibile con le misure ottenute.

Stima delle incertezze di misura

$$\Delta I = \frac{classe \cdot 10^{-2} \cdot I_{f.s.}}{\sqrt{3}} = 0.43 \,\text{mA}$$

per il milli-amperometro

$$\Delta V = 0.7 \cdot 10^{-2} \cdot V$$

$$\Delta R = \pm 0.9 \cdot 10^{-2} R$$

per il multimetro

$$\Delta R_X = R_x \sqrt{\left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta I}{I}\right)^2}$$

per il valore calcolato