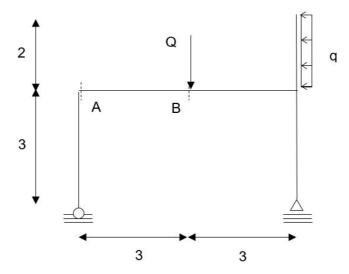
Università degli Studi di Padova

Corso di Laurea in Ingegneria Edile – Architettura e Ingegneria Civile; A.A. 2017-2018.


12/06/2018 Prova scritta di Tecnica delle Costruzioni – Proff. C. Pellegrino e F. Faleschini

Quesito 1: Sia data la struttura rappresentata in figura (misure espresse in metri), soggetta ai seguenti carichi:

carico variabile distribuito carico variabile concentrato

$$q = 20 \text{ kN/m}$$

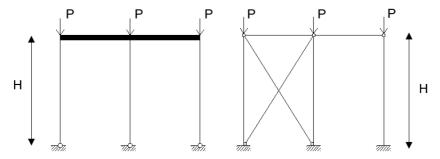
$$Q = 60 \text{ kN}$$

- (i) determinare i diagrammi e i valori significativi dei parametri di sollecitazione (M, N, T);
- (ii) scelta una sezione di opportune dimensioni come da sagomario allegato, assumendo che la sezione sia in classe 3, verificare a flessione ed a taglio la sezione in A (assumendo f_{yk} = 235 MPa e γ_{M0} = 1.05).
- (iii) in corrispondenza della sezione A, calcolare le tensioni normali σ massime ai lembi della sezione, le tensioni tangenziali τ all'attacco anima-ala e la tensione tangenziale τ massima. Tracciare inoltre il diagramma delle σ e delle τ , lungo l'altezza della sezione A;
- (*iv*) si supponga che in corrispondenza della sezione B sia presente un appropriato giunto bullonato travetrave. Si progetti e verifichi il collegamento, utilizzando le seguenti formule:

$$F_{v,Rd} = \frac{0.6 \cdot f_{tb} \cdot A_{res}}{\gamma_{M2}}; \ F_{t,Rd} = \frac{0.9 \cdot f_{tb} \cdot A_{res}}{\gamma_{M2}}; \ \frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1.4 \cdot F_{t,Rd}} \le 1$$

essendo: $\gamma_{M2} = 1.25$, bulloni di classe 8.8.

d (mm)	12	14	16	18	20	22	24	27	30
A _{res} (mm ²)	84.3	115	157	192	245	303	353	459	581


(v) dimensionare un giunto saldato trave-colonna nella sezione A, assumendo per la trave il profilo scelto nel punto (ii), ed un opportuno profilo per la colonna. Verificare le saldature secondo le formulazioni seguenti (considerando la sezione di gola ribaltata):

$$\sqrt{\sigma_{\perp}^2 + \tau_{\perp}^2 + \tau_{\parallel}^2} \le \beta_1 f_{yk} \qquad |\sigma_{\perp}| + |\tau_{\perp}| \le \beta_2 f_{yk}$$

essendo: $\beta_1 = 0.85$ e $\beta_2 = 1.0$

- (vi) data una sezione in calcestruzzo C20/25 ($\gamma_C = 1.5$) di dimensioni (bxh) 25x40cm, dimensionare l'armatura longitudinale (acciaio B450C, $\gamma_S = 1.15$) necessaria per assorbire le sollecitazioni agenti nella sezione A e rappresentare schematicamente la sezione armata;
- (vii) considerando la medesima geometria e materiali del punto (vi), dimensionare l'armatura trasversale eventualmente necessaria per assorbire le sollecitazioni agenti nella sezione A, considerando nella sezione un taglio addizionale di 30 kN, e rappresentare schematicamente la sezione armata.
- (viii) data una sezione di dimensioni (bxh) 25x25cm, considerando i medesimi materiali del punto (vi), dimensionare l'armatura longitudinale necessaria per assorbire le sollecitazioni agenti nella sezione A e rappresentare schematicamente la sezione armata.

Quesito 2: Disegnare e quantificare le lunghezze libere di inflessione dei seguenti telai valutandone il carico critico Euleriano, essendo ogni asta realizzata con un profilo IPE 300, $E_s = 210$ GPa e H = 3m.

Quesito 3: Si descrivano le diverse tipologie ed il funzionamento di controventi nelle strutture metalliche rappresentandone una possibile disposizione, in pianta ed in alzato, in un edificio industriale a pianta rettangolare.

Quesito 4: Si determinino alcuni punti significativi del dominio di interazione per una sezione in c.a. avente dimensioni 40x40cm (con copriferro 30 mm) con armatura simmetrica costituita da $4\Phi18$ in zona inferiore e $4\Phi18$ in zona superiore. Si assumano gli stessi materiali adottati per il quesito 1 (vi).

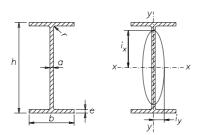


Tabella 3. Travi IPE ad ali strette parallele.

Designazione							Area	Massa		Asse xx		Asse yy		
		h mm	b mm	a mm	e mm	r mm	S	lineica P	I_{x}	$W_{\frac{x}{2}}$	i_x	I_{y}	W_{y_2}	i _y
							cm ²	kg/m	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
IPE 80	UNI 5398	80	46	3,8	5,2	5	7,64	6,0	80,1	20,0	3,24	8,49	3,69	1,05
» 100	»	100	55	4,1	5,7	7	10,3	8,1	171	34,2	4,07	15,9	5,79	1,24
» 120	»	120	64	4,4	6,3	7	13,2	10,4	318	53,0	4,90	27,7	8,65	1,45
» 140	»	140	73	4,7	6,9	7	16,4	12,9	541	77,3	5,74	44,9	12,3	1,65
» 160	»	160	82	5,0	7,4	9	20,1	15,8	869	109	6,58	68,3	16,7	1,84
» 180	»	180	91	5,3	8,0	9	23,9	18,8	1 317	146	7,42	101	22,2	2,05
» 200	»	200	100	5,6	8,5	12	28,5	22,4	1 943	194	8,26	142	28,5	2,24
» 220	»	220	110	5,9	9,2	12	33,4	26,2	2 772	252	9,11	205	37,3	2,48
» 240	»	240	120	6,2	9,8	15	39,1	30,7	3 892	324	9,97	284	47,3	2,69
» 270	»	270	135	6,6	10,2	15	45,9	36,1	5 790	429	11,2	420	62,2	3,02
» 300	»	300	150	7,1	10,7	15	53,8	42,2	8 356	557	12,5	604	80,5	3,35
» 330	»	330	160	7,5	11,5	18	62,6	49,1	11 770	713	13,7	788	98,5	3,55
» 360	»	360	170	8,0	12,7	18	72,7	57,1	16 270	904	15,0	1043	123	3,79
» 400	»	400	180	8,6	13,5	21	84,5	66,3	23 130	1160	16,5	1318	146	3,95
» 450	»	450	190	9,4	14,6	21	98,8	77,6	33 740	1500	18,5	1676	176	4,12
» 500	»	500	200	10,2	16,0	21	116	90,7	48 200	1930	20,4	2142	214	4,31
» 550	»	550	210	11,1	17,2	24	134	106	67 120	2440	22,3	2668	254	4,45
» 600	»	600	220	12,0	19,0	24	156	122	92 080	3070	24,3	3387	308	4,66