A typical exam...

Computability Jan 19 2022

definitions proofs small voriahons

Exercise 1

- a. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- b. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- c. Show that if A is recursive then $A \leq_m \{1\}$.

Exercise 2

Is there a non-computable total function $f : \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.

classify sets (recursive), saturatedmess

Exercise 3

Say that a function $f : \mathbb{N} \to \mathbb{N}$ is quasi-total if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

Exercise 4

Classify the set $B = \{x \in \mathbb{N} \mid \exists y > 2x. y \in E_x\}$ from the point of view of recursiveness, i.e., establish whether B and \overline{B} are recursive/recursively enumerable.

Note: Each exercise contributes with the same number of points (8) to the final grade.

ORAL EXAM :

optional, meeded for distinction (lode) focused on theory/proofs range: t/ 4

=> A

IS RECUTSIVE

- a. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- b. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- c. Show that if A is recursive then $A \leq_m \{1\}$.

(a) We say

$$A \leq_{m} B$$

if there exists a total computable function $f: N \rightarrow N$
st. for all zell
 $x \in A$ if and only if $f(x) \in B$
(b) We prove the counternomimal, i.e. if $A \leq_{m} B$ and B recursive
then A is tream sive
Assume $A \leq_{m} B$ and get $f: N \rightarrow N$ be the reduction
function i.e.
 $\forall zelN$ zeA iff $f(x) \in B$ (if)
assume B treamsive, i.e.
 $\chi_{B}(x) = \int_{0}^{4} \int_{0}^{4} f(x) eB$ is computable
deserve that
 $\chi_{A}(x) = \int_{0}^{4} \int_{0}^{4} zeA \int_{0}^{(R)} \int_{0}^{4} eB$ is computable
 $= \chi_{B}(f(x))$
sume χ_{A} is the composition of computable functions, it is computable

(c) A is recursive => A ≤m {1}

if A is recursive, then

$$\chi_A : IN \rightarrow N$$

 $\chi_A (x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$

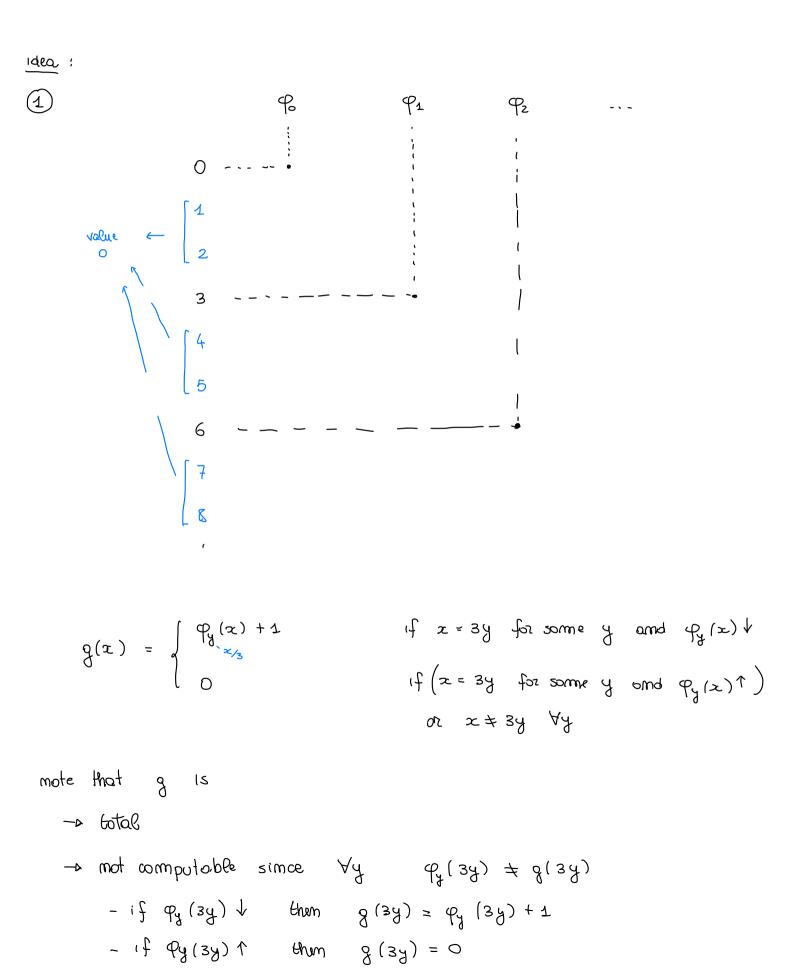
is computable and total

 $x \in A$ iff $\chi_A(x) = 1$ iff $\chi_A(x) \in \{1\}$ hence χ_A is the reduction function for $A \leq_{im} \{1\}$

Extra question: Does the converse hold?

$$A \leq_m d_{13}$$
 then A is recursive
ges, since $\{1\}$ is finite, hence it is recursive.
 $(\sigma_1, alterno.hvely: let f: IN \rightarrow IN$ be the reduction function
for $A \leq_m d_{13}$
Then $\forall x$
 $x \in A$ iff $f(x) \in \{1\}$ iff $f(x) = 1$
thus
 $\chi_A(x) = \overline{sg}(|f(x) - 1|) = \begin{cases} 1 & \text{if } f(x) = 1 \\ 0 & \text{otherwise} \end{cases}$

Is there a non-computable total function $f : \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.



- there are imfinitely many
$$x$$
 st. $g(x) = g(x+1)$
 $\forall y$ if $x = 3y + 1$
meither x mor $x+1$ are multiples of 3
hence $g(x) = g(x+1) = 0$

(2) alternative solution
Can I use
$$\chi_{K}$$
?

0 4 4 0 0 ...
1 2 3 4
0 1 2 3 4
0 85E ENATION: let $f: N \rightarrow N$ be a function st. $ad(f) = \{0, 4\}$
and thus is $d \in N$ st. $\forall x > d$ $f(x) \neq f(x + 1)$

0 1 2
0 1 2 4 dt. dt. dt.
Then f is computable 0 1 2 8...
Im fact, let
 $f(x) = N_{x}$ $x \leq d$ and $N_{d} = 0$
and define $g: N \rightarrow N$
 $\begin{cases} g(0) = 0 \\ g(g+1) = \overline{sg}(g(g)) \end{cases}$ computable

computable !

Hence the desized function in the exercise com be f= XK

- · XK total
- · XK mom computable
- $\forall d \exists x \ge d$ s.t. $\chi_{K}(x) = \chi_{K}(x+1)$ (otherwise it would be computable)
 - => $(x \in \mathbb{N}) | \mathcal{X}_{K}(x) = \mathcal{X}_{K}(x+1) \}$ is imfinite

Say that a function $f : \mathbb{N} \to \mathbb{N}$ is quasi-total if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

A is saturated

$$A = \{z \in \mathbb{N} \mid \varphi_z \in A\}$$

$$A = \{f \mid f \mid s \text{ quasi total}\} = \{f(\overline{dom(f)}, finite)\}$$

Classify the set $B = \{x \in \mathbb{N} \mid \exists y > 2x. \ y \in E_x\}$ from the point of view of recursiveness, i.e., establish whether B and \overline{B} are recursive/recursively enumerable.

conjecture :
$$\begin{bmatrix} B & \text{is } \underline{k} \underline{s}, & \text{mod fecturative} \\ \overline{B} & \text{mod } \underline{k} \underline{k} \underline{k} \\ \text{and } \underline{h} \underline{u} \underline{k} \overline{B} & \text{mod fecturative} \\ \end{bmatrix} = \underline{A} \left(\mu (\underline{k}, \underline{y}, \underline{k}) \cdot (\underline{s}(\underline{x}, \underline{z}, \underline{y}, \underline{k}) \wedge \underline{y} + 2\underline{x}) \right) \\ = \underline{A} \left(\mu (\underline{k}, \underline{q}, \underline{k}) \cdot \underline{s}(\underline{x}, \underline{z}, \underline{x}, \underline{y}, \underline{k}) \wedge \underline{y} + 2\underline{x} \right) \right) \\ = \underline{A} \left(\mu (\underline{w}, \underline{w}, \underline{k}) \cdot \underline{s}(\underline{x}, \underline{z}, \underline{x} + \underline{z} + (\underline{w})\underline{z}, (\underline{w})\underline{s}) \right) \\ = \underline{A} \left(\mu (\underline{w}, \underline{w}, \underline{s}(\underline{x}, (\underline{w})\underline{s}, \underline{z}\underline{x} + \underline{z} + (\underline{w})\underline{z}, (\underline{w})\underline{s}) \right) \\ = \underline{A} \left(\mu (\underline{w}, \underline{s}(\underline{x}, (\underline{w})\underline{s}, \underline{z}\underline{x} + \underline{z} + (\underline{w})\underline{z}, (\underline{w})\underline{s}) \right) \\ = \underline{A} \left(\mu (\underline{w}, \underline{s}(\underline{x}, (\underline{w})\underline{s}, \underline{z}\underline{x} + \underline{z} + (\underline{w})\underline{z}, (\underline{w})\underline{s}) \right) \\ \text{computable} \quad \text{formation } B \quad \text{is } \underline{z}\underline{e}. \\ \times \frac{\underline{B} (\underline{s} \text{ mod fecurative})}{\underline{A} (\underline{\mu} (\underline{w}, \underline{w}, \underline{s}) + \underline{z} + (\underline{w})\underline{z}, (\underline{w})\underline{s}) - \underline{z} \right) \\ \text{we need a total computable} \quad \text{funchom } \underline{s} \cdot [N \rightarrow N] \underline{s}\underline{t}. \\ x \underline{e} \underline{K} \quad \text{iff} \quad \underline{s}(\underline{x}) \in \underline{B} \\ \frac{1}{2} \quad \text{if} \quad \underline{z} \underline{e} \underline{K} \\ \frac{1}{2} \quad \text{if} \quad \underline{z} \underline{e} \underline{K} \\ \frac{1}{2} \quad \text{otherwise}} \\ \underline{g}(\underline{x}, \underline{z}) = \begin{cases} \underline{2} \quad \text{if} \quad \underline{z} \underline{e} \\ 1 \quad \text{otherwise}} \\ \underline{z} \quad \underline{s} \underline{s} \underline{s} \\ 1 \end{bmatrix}$$

By the smm theorem there is $s: IN \rightarrow IN$ total and computable $s,t. \forall x, z$

$$(z) = g(x, z) = \begin{cases} z & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases}$$

We claim that s is the reduction function K < m B

- * if $x \in k$ then $S(x) \in B$ let $x \in k$. Then $Q_{S(x)}(z) = z$ $\forall z$ hence $P_{S(x)}(2S(x)+1) = 2S(x)+1 > z S(x)$ thus $S(x) \in B$
- * if $x \notin K$ thus $S(x) \notin B$ let $x \notin K$. Hence $P_{S(x)}(B) \uparrow \forall z$ Thus we have $E_{S(x)} = \phi$, hence there is no $y \in E_{S(x)}$ s.t. y > 2S(z)hence $S(x) \notin B$.

Hemae B is not recursive.

Since B is ze. and not recursive, then B not ze. (otherwise if B, B ze. we would have B recursive)

In turn, this implies that B not recursive.

* EXTRA QUESTION: Is $B = \{x \in IN \mid \exists y > 2x, y \in E_{x}\}$ saturated?

Apportently it is not since it "refers to a in the property"

det's prove it by showing that there are $e \in B$ $e' \not \in B$ with $q_e = q_{e'}$ We show that there is $e \in \mathbb{N}$ s.t. $q_e(x) = 2e + 1$ Define $g(m_1 x) = 2m + 1$ computable, hence by smm theorem there is $s:\mathbb{N} \to \mathbb{N}$ total and computable s.t. $\forall m_1 x$ $q_{s(m)}(x) = g(m_1 x) = 2m + 1$ Since s is total and computable, there is $e \in \mathbb{N}$ st.

 $\varphi_{e}(x) = \varphi_{S(e)}(x) = 2e + 1$

q_{s(e)} = q_e

Thus

Hemce

Now, there are infinitely many indexes for q_e , thus we can take $e' \in IN$ e' > e s.t. $q_e = q_{e'}$ Note that $E_{e'} = E_e = (2e+1)$ and 2e+1 < 2e'thus $e' \notin B$ Summing up $e_1e' \in IN$ $e \in B$, $e' \notin B$ $q_e = q_{e'}$ $\Rightarrow B$ is not saturated

6