COMPUTABILITY (18/12/2023)

2 md RECURSION THEOREM

let f: IN -> IN computable total extensional

by Myhill-Shephendsom's theorem there a (unique)

recursive functional
$$\Phi: \mathcal{F}(N) \to \mathcal{F}(N)$$
 $\forall e \in N$
 $\Phi(e) = e_{f(e)}$

By 1st recursion theorem $\tilde{\Phi}$ has a least fixed point $f_{\tilde{\Phi}}: IN \to IN$ computable

Im summary

Given
$$f: |N \rightarrow |N|$$
 computable total extensional thure is $ext{e} \in |N| = ext{e}$

2^{md} recursion theorem

2 md RECURSION THEOREM

det $f: IN \to IN$ be total computable function Them there exists e.e. N s.t. $P_{es} = P_{f(es)}$

 $\frac{1}{2}$

let $f: IN \rightarrow IN$ be total computable

observe $x \mapsto \varphi_x(x)$ computable $\psi_{x}(x, x)$

 $x \mapsto f(\varphi_x(x))$ computable

define

 $g(x,y) = \varphi_{f(\varphi_{x}(x))}(y) \qquad \text{convention} \quad \varphi_{f} = \uparrow$ $= \psi_{v}(f(\varphi_{x}(x)), y)$ $= \psi_{v}(f(\psi_{x}(x)), y) \qquad \text{compulable}$

By smm theorem there s: $IN \rightarrow IN$ total computable s.t. $\forall x,y$ $\varphi_{S(x)}(y) = g(x,y) = \varphi_{f(\varphi_{x}(x))}(y) \qquad (*)$

Since S is computable thru is $m \in \mathbb{N}$ s.t. $S = \mathcal{Q}_m$. Substituting in (x)

 $\varphi_{q_{m}(\alpha)}(y) = \varphi_{f(q_{\alpha}(\alpha))}(y) \qquad \forall \alpha, y$

In particular, for x = m

Hemce

 $\varphi_{q_m(m)} = \varphi_{f(q_m(m))}$

If we let
$$\& = \varphi_m(m)$$
 we conclude $\varphi_{\&} = \varphi_{\varphi_{(a)}}$ (mote that $\varphi_m = s$ total, hence $\varphi_m(m) \downarrow$)

Idea:

If $h: N \to N$ compotable

 $h \not{>} \varphi_0 \qquad \varphi_1 \qquad \varphi_2 \qquad \varphi_3 \qquad \dots$
 $\varphi_{n(s)} \qquad \varphi_{n(s)} \qquad \varphi_{n(s)} \qquad \varphi_{n(s)} \qquad \dots$

You can do the above for $h = \varphi_1 \qquad i = 0, 4, 2, \dots$

Ea $\varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \dots$

Ez $\varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \dots$

In the proof we took the diagonal broms-formed by f
 $h(x) = f(\varphi_x(x)) = f(\varphi_x(x)) = \varphi_m(x)$

Ea $\varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \dots$

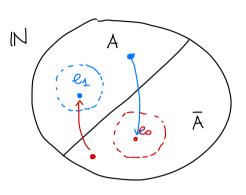
Ez $\varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \varphi_{\varphi_i(a)} \qquad \dots$

Rice's Theorem

Let A S IN saturated A \$ \$ them A mot recursive A± N

groof (alternative proof using 2md recursion theorem)

Let A=N A+Ø, A+N saturated



A
$$\Rightarrow$$
 \Rightarrow \Rightarrow A \Rightarrow B \Rightarrow B \Rightarrow A \Rightarrow A \Rightarrow B \Rightarrow B \Rightarrow A \Rightarrow B \Rightarrow B

Assume by contradiction A recursive and defined:

$$f(x) = \begin{cases} e_0 & \text{if } x \in A \\ e_1 & \text{if } x \notin A \end{cases}$$

=
$$\&\cdot \chi_{A}(x) + e_{1} \cdot \chi_{\bar{A}}(x)$$

$$\begin{pmatrix} \text{if } x \in A & \wedge \text{if } \chi_{A}(x) = 1 & \chi_{\overline{A}}(x) = 0 & \text{lo.}1 + \ell_{1} \cdot 0 = 6 \\ \text{if } x \notin A & \wedge \text{if } \chi_{A}(x) = 0 & \chi_{\overline{A}}(x) = 1 & \text{lo.}0 + \ell_{1} \cdot 1 = \ell_{1} \end{pmatrix}$$

if A recursive, f computable total

but for all e EIN pe + Pfre)

•
$$e \in A$$
 \Rightarrow $f(e) = e_0 \notin A$ and since A saturalted

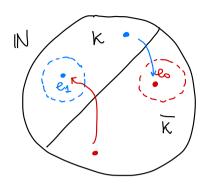
•
$$e \notin A$$
 = o $f(e) = e_1 \in A$ thus, since A saturated

 $e \notin A$ $e \notin A$

This comtradicts the 2nd recursion theorem. No A not recursive

Proposition: The halfmy set $K = \{ x \in \mathbb{N} \mid q_x(x) \neq \}$ is not recursive.

proof (alternative proof using 2nd recursion theorem)



of each st. $\varphi_{e_0}(x) \uparrow \forall x$ we have $e_0 \in \overline{K}$

if $e_i \in IN$ s.t. $\varphi_{e_i}(x) = 1 \quad \forall x$ we have $e_i \in K$

define $f: \mathbb{N} \to \mathbb{N}$ s.t.

$$f(x) = \begin{cases} e_0 & \text{if } x \in K \\ e_1 & \text{if } x \notin K \end{cases}$$

$$= e_0 \cdot \chi_K(x) + e_1 \cdot \chi_{\overline{K}}(x)$$

If K were recursive then \mathcal{N}_K , \mathcal{N}_K would be computable and thus f would be computable.

Since f is total, by 2nd recursion theorem there is $e \in IN$ s.t $e = e_{f(e)}$

Hemce K is not securisive.

We want to show that there are e, e' & IN st.

* Assume that there is e \in N s.t.

$$\varphi_{e}(x) = \begin{cases} 0 & \text{if } x = e \\ 1 & \text{otherwise} \end{cases}$$

them

* We need to show that there exists e \in N. t.

$$\varphi_{e}(\alpha) = \begin{cases} 0 & \text{if } \alpha = e \\ \uparrow & \text{otherwise} \end{cases}$$

intuition

for mally

$$g(e, x) = \begin{cases} 0 & \text{if } x = e \\ 1 & \text{otherwise} \end{cases}$$

= mz. [x-e]

computable

by smm theorem there is s! IN - IN total computable s.t.

$$\varphi_{s(e)}(x) = g(e,x) = \begin{cases} 0 & \text{if } x = e \\ 1 & \text{otherwise} \end{cases}$$

since s is total computable, by 2 and recursion theorem there is $eo \in IN$ s.t. $q_{eo} = q_{s(eo)}$. Hence

$$\varphi_{\infty}(x) = \varphi_{S(\infty)}(x) = g(\infty, x) = \begin{cases} 0 & \text{if } x = \infty \\ 1 & \text{otherwise} \end{cases}$$

Hence so is the desired program. Thus k not saturated.

EXERCISE: RANDOM NUMBERS (from 1st lessom)

-> m \in N is random if all programs producing m in output are "borger" than m

two questions:

- there are infinitely many landom numbers
- the proporty of being random is not decidable

Try again:

→ oll fime
$$m \in \mathbb{N}$$
 random if for all $e \in \mathbb{N}$ s.t. $q_e(o) = m$ it holds $e > m$

```
EXERCISE :
```

Let $f: \mathbb{N} \to \mathbb{N}$ be a function

and considur

(1) f mot computable

$$Bf = \emptyset$$
 , $\overline{Bf} = N$

recursive

(hence r.e.)

(2) f computoible

B¢ is saturated

$$Bt \neq \emptyset$$
 $Bt \neq N$

Rice =0 Bf mot rewrsive

 $\overline{\mathcal{B}t}$ mod recursive

can it be r.e. ? yes it can!

$$f = \emptyset$$
 ($f(x) \land \forall x$)

$$B_{s} = \{ e \mid \varphi_{e} \neq \emptyset \}$$

$$= \{ e \mid \exists x. \ \varphi_{e}(x) \downarrow \}$$

$$SC_{\overline{B_f}}(x) = \overline{A}(\mu\omega. H(x, (\omega)_1, (\omega)_2))$$

complete the exercise! .