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Partial Differential Equations (PDEs). Concept

PDEs: differential equations that involve more than 1 variable

PDEs ARE UBIQUITOUS IN PHYSICS/ASTROPHYSICS

Examples:

– wave equation

– where Laplacian operator in Cartesian coordinates is

Other examples: diffusion equation, Laplace equation, 
Schroedinger equation, gravitational-wave equation,
stellar interior equations 
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Partial Differential Equations (PDEs). Concept

1. BOUNDARY-VALUE PDE PROBLEMs:
we know only boundary conditions

If there is NO TIME EVOLUTION, simple case:
STATIONARY SOLUTION

can be solved with FINITE-DIFFERENCE METHODS (FDMs)

2. INITIAL-VALUE PDE PROBLEMs:
we know initial conditions

but PDE evolves with time

can be solved with FDMs but requires one more trick
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

Practical example, Laplace’s equation: 

In cartesian coordinates 

where φ is the electrostatic potential in absence of electric charges

NO TIME DEPENDENCE!

e.g. the case of a 2-dimensional
empty box 
with conducting walls

top wall V = 1 volt

other walls (insulated from top wall)
V = 0 volt
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a

- a can be fixed or variable – let’s make it fixed for simplicity
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a

- a can be fixed or variable – let’s make it fixed for simplicity
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a

- a can be fixed or variable – let’s make it fixed for simplicity

- use numerical solution of PARTIAL DERIVATIVES (chapter 7)
to rewrite Laplace equation
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a

- a can be fixed or variable – let’s make it fixed for simplicity

- use numerical solution of PARTIAL DERIVATIVES (chapter 7)
to rewrite Laplace equation

- substitute these back to the main equation
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- remove 1/a2   and reshuffle bringing the term f(x,y) to the left-hand side

→ we can derive the value of f(x,y)  at any point in the grid, provided 

that we solve a set of linear equations
i.e. solving PDEs with a finite difference method is 
equivalent to solving systems of linear equations

WHAT METHOD TO SOLVE LINEAR EQUATIONS CAN WE USE?
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- remove 1/a2   and reshuffle bringing the term f(x,y) to the left-hand side

→ we can derive the value of f(x,y)  at any point in the grid, provided 

that we solve a set of linear equations
i.e. solving PDEs with a finite difference method is 
equivalent to solving systems of linear equations

WHAT METHOD TO SOLVE LINEAR EQUATIONS CAN WE USE?

We simplified derivatives with NUMERICAL derivatives:
our model will always be a huge simplification

→ just go for a very simple, ITERATIVE APPROACH,
 like the RELAXATION technique we have seen for non-linear eqs. 
(but can be used also for linear eqs, of course)
and can be easily generalized to a system of equations
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Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

- Steps to solve the equations:
1. assign the boundary values

2. assign to all the other points of the grid 
a guess value, e.g. zero 

3. solve the equation below by iteration (like relaxation)

    or apply the over-relaxation

    try with w = 0.9 and then reduce w if the result does not converge

    w > 0.9 is often non-stable 

f = 1 volt
insulating   
material

f = 0 volt

a

insulating   
material

f
 =

 0
 v

o
lt

f
 =

 0
 v

o
lt



12

Partial Differential Equations (PDEs). Boundary-value 
problem with finite-difference methods (FDMs)

Where the relaxation formula comes from?

Define

& define

Combining the two of them:

Expressing in terms of fnew :

Substituting to the left-hand term of 

and rearranging, we get:
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Partial Differential Equations (PDEs). Exercise

V = 1 volt

V = 0 volt

insulating   
material

V
 =

 0
 v

o
lt

V
 =

 0
 v

o
lt



14

Partial Differential Equations (PDEs). Exercise
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Partial Differential Equations (PDEs). Exercise
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Partial Differential Equations (PDEs). Exercise 
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Partial Differential Equations (PDEs). Initial-value PDEs 
with finite difference methods 

INITIAL-VALUE PDEs: PDEs for which we know the initial conditions and 
we must calculate the  time evolution of one or more variables.

Example: One-dimensional DIFFUSION EQUATION

where f is f(x,t) = physical quantity that is diffusing in time and space
(e.g. temperature, density of particles, etc)

D = diffusion coefficient

Suppose we know the initial conditions

We will try to solve this with the forward-time centered-space 
(FTCS) method for initial-value PDEs
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Partial Differential Equations (PDEs). FTCS method

- First consider the spatial dependence of f(x,t) and 
write numerical derivative:

Where we chose a spatial step a 
and we have gridded our spatial domain into a grid of M points

0 1 M – 1
a
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Partial Differential Equations (PDEs). FTCS method

- First consider the spatial dependence of f(x,t) and 
write numerical derivative:

Where we chose a spatial step a 
and we have gridded our spatial domain into a grid of M points

- Substitute the above numerical derivative into the diffusion equation:

We have a set of M ordinary differential equations, 
one per each point of the spatial grid
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Partial Differential Equations (PDEs). FTCS method

We must solve a set of ordinary differential equations with one of the
methods we learned

WHICH ONE?
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Partial Differential Equations (PDEs). FTCS method

We must solve a set of ordinary differential equations with one of the
methods we learned

WHICH ONE?

A smart option is simply the EULER’S METHOD 
because

1. we have a very large system of equations to solve
2. we have already done a huge approximation with

the numerical derivatives in space

Euler’s method equation: 
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Partial Differential Equations (PDEs). FTCS method
Diffusion equation written with finite differences

Euler’s equation:

Rewrite Euler’s equation in terms of ∂f(x,t) / ∂t:

Substitute the eq.             into diffusion equation                  

Multiply by h and nd rewrite in terms of f(x,t+h)

basic equation of the forward-time centered-space (FTCS) method 
for initial-value PDEs, applied to diffusion equation. 



23

Partial Differential Equations (PDEs). Exercise
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Partial Differential Equations (PDEs). Exercise 
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Partial Differential Equations (PDEs). Exercise 
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Partial Differential Equations (PDEs). Exercise 
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Partial Differential Equations (PDEs). Exercise

ADDITIONAL SUGGESTIONS for the EXERCISE:

- here you have both spatial step (a) and temporal step (h)
- select spatial step a  as a = L/N  

where L=length of steel, N=# of grid points (suggested N=100)
In this way you control the resolution by simply changing N

- define a constant const=D*h/(a*a) and calculate it just once 
before the loops: you will reduce computing time and numerical errors

- you need two loops: an INNER one for the spatial calculation
  an OUTER one for the temporal calculation

- solve with a loop over the spatial coordinates at each time-step 

- SAVE RAM AND DO NOT unnecessarily COMPLICATE THE PROBLEM:
phi can be a matrix (over time and spatial position)
but this requires more RAM + you are not able to generalize in 2D 

→ define phi as an array with one index for the spatial motion

You can print the time steps of interest without using a matrix!
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