Numerical Methods for Astrophysics:
PARTIAL DIFFERENTIAL EQUATIONS (PDESs)

Michela Mapelli

Partial Differential Equations (PDEs). Concept

PDEs: differential equations that involve more than 1 variable

PDEs ARE UBIQUITOUS IN PHYSICS/ASTROPHYSICS

Examples:
1 0?
— wave equation ¥ | V2¢ — ()
c? Ot?
— where Laplacian operator in Cartesian coordinates is
0* 0” 0?
Vi=e =+ —=+—
oxr? 0y?> 0z?

Other examples: diffusion equation, Laplace equation,
Schroedinger equation, gravitational-wave equation,

stellar interior equations

Partial Differential Equations (PDEs). Concept

1. BOUNDARY-VALUE PDE PROBLEMSs:
we know only boundary conditions

If there is NO TIME EVOLUTION, simple case:
STATIONARY SOLUTION

can be solved with FINITE-DIFFERENCE METHODS (FDMs)
2. INITIAL-VALUE PDE PROBLEMs:

we know initial conditions

but PDE evolves with time

can be solved with FDMs but requires one more trick

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)
Practical example, Laplace’s equation: v2¢ — O

In cartesian coordinates ~ 0°¢ 0°¢

Ox? i 0y? 0

where @ is the electrostatic potential in absence of electric charges

NO TIME DEPENDENCE!

insulating Insulating
: i material — material
e.g. the case of a 2-dimensional V =1 volt

empty box -

with conducting walls _g 5

>

o o

top wall V = 1 volt Il I

> >

other walls (insulated from top wall)

V =0 volt
V =0 volt

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a

- a can be fixed or variable - let’s make it fixed for simplicity

insulating Insulating
material V =1volt Material

0 volt
0 volt

Vv
Vv

V =0 volt

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a

- a can be fixed or variable - let’s make it fixed for simplicity

insulating Insulating
material V =1volt Material

0 volt
0 volt

Vv
Vv

V =0 volt

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a
- a can be fixed or variable - let’s make it fixed for simplicity

- use nhumerical solution of PARTIAL DERIVATIVES (chapter 7)
to rewrite Laplace equation

- N

Po
8_:13? 2% (x4 a,y) + ol —a,y) —2¢(x,y)]
% ~ i [gb(x,y—l—a)—kgb(ﬂi,y—a)_2§b($ay)] |

Oy* \@2 /

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a
- a can be fixed or variable - let’s make it fixed for simplicity

- use nhumerical solution of PARTIAL DERIVATIVES (chapter 7)
to rewrite Laplace equation

% g% b(z +a,y) + ¢(z — a,y) — 2¢(z, y)]
0” 1
3—;25 ~ =[x,y +a) + d(z,y —a) = 26(z,y)

- substitute these back to the main equation

- [b(z+a,y) + o(x — a,y) + ¢(x,y +a) + d(z,y —a) —4¢(x,y)] =0

a’2
8

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

- remove 1/a? and reshuffle bringing the term ¢(x,y) to the left-hand side

1

¢($,y) — Z [q5(£U—|—CL,y) +¢(ZC R Cl,y) —|—q§(x,y+a) —|—¢(£U,y— a)]

— we can derive the value of ¢(x,y) at any point in the grid, provided
that we solve a set of linear equations

l.e. solving PDEs with a finite difference method is
equivalent to solving systems of linear equations

WHAT METHOD TO SOLVE LINEAR EQUATIONS CAN WE USE?

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

- remove 1/a? and reshuffle bringing the term ¢(x,y) to the left-hand side

1

ole,y) =7 0z +ay) +é@—ay)+o(zy+a)+ o,y —a)

— we can derive the value of ¢(x,y) at any point in the grid, provided
that we solve a set of linear equations

l.e. solving PDEs with a finite difference method is
equivalent to solving systems of linear equations

WHAT METHOD TO SOLVE LINEAR EQUATIONS CAN WE USE?

We simplified derivatives with NUMERICAL derivatives:
our model will always be a huge simplification

- just go for a very simple, ITERATIVE APPROACH,
like the RELAXATION technique we have seen for non-linear egs.
(but can be used also for linear eqs, of course)

and can be easily generalized to a system of equations 1

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

insulating insula_ting
- Steps to solve the equations: material ¢ =1volt material
1. assign the boundary values qb[O, :] —1
O[M,:] = ¢[0: M,0]=[0: M,M] =0 S E
2. assign to all the other points of the grid ﬁ ﬁ
a guess value, e.g. zero S S
¢[7’7]]:O 1f27é(0,M)and]7é(0,M) ¢ = 0 volt

3. solve the equation below by iteration (like relaxation)
1
Qﬁ(l’,(ﬂ) — Z [¢(33 - &7y) + ¢(£Ij — a, y) T ¢(xay T CL) T ¢(xay o CL)]

or apply the over-relaxation

o) = L (e 4 a) 4 6o — a.) + 0wy + 0) + 0@y —)] — wola.y

try with ® = 0.9 and then reduce o if the result does not converge
® > 0.9 is often non-stable "

Partial Differential Equations (PDEs). Boundary-value
problem with finite-difference methods (FDMs)

Where the relaxation formula comes from?

Define A¢(SL‘, y) = ¢new<xa y) — Q5(£C, y)
& define Pu(7,y) = ¢(z,y) + (1 +w) Ad(x,y)

Combining the two of them:

Ou(T,y) = 0(z,y) + (1 + W) [Pnew(®, y) — &(7,)]

1 W

E ing int f : =
Xpl'ESSlng Interms o ¢new ¢new(x7 y) (1 n CU) ¢w(£€, y) T (1 4+ CU) ¢(£B, y)
Substituting to the left-hand term of
1
¢new(x7 y) — Z [¢($ - a, y) T ¢($ — Q, y) T ¢($7 Y+ CL) + ¢(l’, Yy — CL)]
and rearranging, we get:
(1+ w)

bul@,y) = —— [ble+a,y) + oz —a,y) + d(z,y +a) + d(z,y — a)] —w d(z,y)

Partial Differential Equations (PDEs). Exercise

EXERCISE:

Consider an empty 2D box with conducting walls. The boundary condi-
tions are that one wall is kept at voltage V = 1 volt (for example, the
first row of the matrix is kept at voltage V = 1 volt), while the other
three walls are insulated from it and are at 0 volts. We want to calculate
the potential ¢(x, y) at each point in the 2D box. Plot the result by using
the function matplotlib.pyplot.imshow().

insulating
material

V =0 volt 13

Partial Differential Equations (PDEs). Exercise

Suggestions: Require a tolerance delta = 107> (smaller tolerances require a
significant computing time). For the definition of tolerance you can use

[delta=numpy.linalg.norm(phi-phiold)

where phi and phiold are the new and the old iteration of the matrix (this
treats the two matrices as two vectors and calculates the norm of their
difference).

Create a grid of (M + 1) x (M + 1) cells, with M = 100. Rows 0 and M
and columns 0 and M are the walls of the box (i.e. the boundaries) and
must be assigned the given voltage. The result should look like Figure 49
and should require =~ 3000 iterations to reach the required tolerance (for the
above definition of tolerance).

14

Partial Differential Equations (PDEs). Exercise

To produce the plot use:

import matplotlib.pyplot as plt
plt.imshow(phi) #where phi is the final matrix

plt.gray()
plt.show()

Now, solve the same exercise with relaxation, as proposed in equa-

tion 233.

o) = L) (et a) 4 60— a.) + 0wy + 0) + 0lay — a)] - w (.

Suggestions: Choose w = 0.9 (higher w might be unstable). With w = 0.9
you should reach a tolerance of delta = 107> in ~ 200 — 300 iterations. The
script is much faster with the relaxation.

Partial Differential Equations (PDEs). Exercise

20

40

60

80

100
0 20 40 60 80 100

16

Partial Differential Equations (PDESs). Initial-value PDEs
with finite difference methods

INITIAL-VALUE PDEs: PDEs for which we know the initial conditions and
we must calculate the time evolution of one or more variables.

2
Example: One-dimensional DIFFUSION EQUATION aqb — D (9_§b

ot — Ox2

where ¢ Is ¢ (X,t) = physical quantity that is diffusing in time and space
(e.g. temperature, density of particles, etc)

D = diffusion coefficient

Suppose we know the initial conditions

We will try to solve this with the forward-time centered-space
(FTCS) method for initial-value PDEs

17

Partial Differential Equations (PDEs). FTCS method

- First consider the spatial dependence of ¢ (x,t) and
write numerical derivative:

¢ _ o(x+a,t)+ o(x —a,t) — 2¢(x, t)

ox? a?

Where we chose a spatial step a
and we have gridded our spatial domain into a grid of M points

a

0 1 A M-1

—

18

Partial Differential Equations (PDEs). FTCS method

- First consider the spatial dependence of ¢ (x,t) and
write numerical derivative:

¢ _ o(x+a,t)+ o(x —a,t) — 2¢(x, t)

012 a?

Where we chose a spatial step a
and we have gridded our spatial domain into a grid of M points

- Substitute the above numerical derivative into the diffusion equation:

a_¢ — D [gb(x—l—a,t)—|—¢($—@,t)_2¢(xvt)]

ot a2
We have a set of M ordinary differential equations,
one per each point of the spatial grid 19

Partial Differential Equations (PDEs). FTCS method

We must solve a set of ordinary differential equations with one of the
methods we learned

WHICH ONE?

20

Partial Differential Equations (PDEs). FTCS method

We must solve a set of ordinary differential equations with one of the
methods we learned

WHICH ONE?

A smart option is simply the EULER’S METHOD

because
1. we have a very large system of equations to solve
2. we have already done a huge approximation with
the numerical derivatives in space

do(z, t)
dt

Euler’s method equation: ¢ (x, ¢t + h) ~ ¢(x,t) + h

0p(z, 1)
at 21

> o(x,t+h) ~o(x,t)+h

Partial Differential Equations (PDEs). FTCS method

Diffusion equation written with finite differences

0 D
a—f =5 [Pz +at)+o(z—at)—24(z1)
Euler's equation: ¢ (z, ¢t + h) ~ ¢(x,t) + h a¢g;, t)

Rewrite Euler’s equation in terms of o¢(x,t)/ot:

ST h

Substitute the eq. i7 into diffusion equation 1

o(x,t+h) — o(x,t) ~ 2 d(x+a,t)+ oz —a,t) —2¢(x,t)]

h a?
Multiply by h and nd rewrite in terms of ¢(x,t+h)

¢(x,t+h) >~ o(x,t) + ha—? d(x+a,t) + o(x —a,t) —2¢(x,t)]

basic equation of the forward-time centered-space (FTCS) method
for initial-value PDEs, applied to diffusion equation. 22

Partial Differential Equations (PDEs). Exercise

EXERCISE:

Write a python script to solve the diffusion equation with the FTCS
method for the following system.

The flat base of a container made of 1 cm thick stainless steel is initially
at a uniform temperature of Ty = 293 K. The container is placed in
a bath of cold water at T, _,,;, = 273 K and is filled with hot water at
Thot = 323 K. Calculate the temperature profile of the steel as a function
of distance x from the hot side to the cold side (from 0 to 1 cm) and as
a function of time. The system is shown in Figure 50.

STEEL
CONTAINER

COLD WATER

23

Partial Differential Equations (PDEs). Exercise

Write a python script to solve the diffusion equation with the FTCS
method for the following system.

The flat base of a container made of 1 cm thick stainless steel is initially
at a uniform temperature of Ty = 293 K. The container is placed in
a bath of cold water at Ty, = 273 K and is filled with hot water at
Thot = 323 K. Calculate the temperature profile of the steel as a function
of distance x from the hot side to the cold side (from 0 to 1 cm) and as
a function of time. The system is shown in Figure 50.

Thermal conduction is described by the diffusion equation as

JT d*T
— =D—;, 2

dt dx? (239)
where D = 4.25 x 1072 cm? s7! for stainless steel. Use equation 238 to
solve the problem.

Plot the temperature profile of the steel as a function of x at four
different times t = 0.01, 0.1, 1 and 10 s.

The result should look like Figure 51.

Suggestion: use a spatial grid with M+1 point, where M=100. Choose
h=0.001. What happens if you change h and why?

Partial Differential Equations (PDEs). Exercise

3204 I —— 0.0s
—— 0.01s
— Q1.5
3101 — 1.0s
—— 10.0s
Z 300-
|—
290 -
280 -
0.0 0.2 0.4 0.6 0.8 1.0

X [em]

25

Partial Differential Equations (PDEs). Exercise

X [em]

| Aﬁ ll“y“u"v“" - ﬂﬂvﬁvhvﬁvﬁ ‘Mvhv
V'u"' S

26

Partial Differential Equations (PDEs). Exercise

ADDITIONAL SUGGESTIONS for the EXERCISE:

- here you have both spatial step (a) and temporal step (h)
- select spatial stepa as a=L/N

where L=length of steel, N=# of grid points (suggested N=100)

In this way you control the resolution by simply changing N
- define a constant const=D*h/(a*a) and calculate it just once

before the loops: you will reduce computing time and numerical errors
- you need two loops: an INNER one for the spatial calculation

an OUTER one for the temporal calculation

- solve with a loop over the spatial coordinates at each time-step

Oz, t+h) ~ = ¢(x,t) + ha—? b(x+a,t) + ¢(x —a,t) —2¢(x,)]

- SAVE RAM AND DO NOT unnecessarily COMPLICATE THE PROBLEM:
phi can be a matrix (over time and spatial position)
but this requires more RAM + you are not able to generalize in 2D

— define phi as an array with one index for the spatial motion

You can print the time steps of interest without using a matrix! -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

