Numerical Methods for Astrophysics: PARTIAL DIFFERENTIAL EQUATIONS (PDEs)

Michela Mapelli

Partial Differential Equations (PDEs). Concept

PDEs: differential equations that involve more than 1 variable

PDEs ARE UBIQUITOUS IN PHYSICSIASTROPHYSICS

Examples:

- wave equation

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}+\nabla^{2} \psi=0
$$

- where Laplacian operator in Cartesian coordinates is

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

Other examples: diffusion equation, Laplace equation, Schroedinger equation, gravitational-wave equation, stellar interior equations

Partial Differential Equations (PDEs). Concept

1. BOUNDARY-VALUE PDE PROBLEMs:
we know only boundary conditions

If there is NO TIME EVOLUTION, simple case: STATIONARY SOLUTION
can be solved with FINITE-DIFFERENCE METHODS (FDMs)
2. INITIAL-VALUE PDE PROBLEMs:
we know initial conditions
but PDE evolves with time
can be solved with FDMs but requires one more trick

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

Practical example, Laplace's equation: $\quad \nabla^{2} \phi=0$
In cartesian coordinates

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

where φ is the electrostatic potential in absence of electric charges

NO TIME DEPENDENCE!
e.g. the case of a 2-dimensional empty box with conducting walls
top wall $\mathrm{V}=1$ volt
other walls (insulated from top wall) $\mathrm{V}=0$ volt

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a
- a can be fixed or variable - let's make it fixed for simplicity

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a
- a can be fixed or variable - let's make it fixed for simplicity

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a
- a can be fixed or variable - let's make it fixed for simplicity
- use numerical solution of PARTIAL DERIVATIVES (chapter 7) to rewrite Laplace equation

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial x^{2}} & \simeq \frac{1}{a^{2}}[\phi(x+a, y)+\phi(x-a, y)-2 \phi(x, y)] \\
\frac{\partial^{2} \phi}{\partial y^{2}} & \simeq \frac{1}{a^{2}}[\phi(x, y+a)+\phi(x, y-a)-2 \phi(x, y)]
\end{aligned}
$$

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- divide box into a GRID of points separated by a
- a can be fixed or variable - let's make it fixed for simplicity
- use numerical solution of PARTIAL DERIVATIVES (chapter 7) to rewrite Laplace equation

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial x^{2}} & \simeq \frac{1}{a^{2}}[\phi(x+a, y)+\phi(x-a, y)-2 \phi(x, y)] \\
\frac{\partial^{2} \phi}{\partial y^{2}} & \simeq \frac{1}{a^{2}}[\phi(x, y+a)+\phi(x, y-a)-2 \phi(x, y)]
\end{aligned}
$$

- substitute these back to the main equation

$$
\frac{1}{a^{2}}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)-4 \phi(x, y)]=0
$$

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- remove $1 / a^{2}$ and reshuffle bringing the term $\phi(x, y)$ to the left-hand side $\phi(x, y)=\frac{1}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]$
\rightarrow we can derive the value of $\phi(x, y)$ at any point in the grid, provided that we solve a set of linear equations
i.e. solving PDEs with a finite difference method is equivalent to solving systems of linear equations

WHAT METHOD TO SOLVE LINEAR EQUATIONS CAN WE USE?

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- remove $1 / a^{2}$ and reshuffle bringing the term $\phi(x, y)$ to the left-hand side $\phi(x, y)=\frac{1}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]$
\rightarrow we can derive the value of $\phi(x, y)$ at any point in the grid, provided that we solve a set of linear equations
i.e. solving PDEs with a finite difference method is equivalent to solving systems of linear equations

WHAT METHOD TO SOLVE LINEAR EQUATIONS CAN WE USE?
We simplified derivatives with NUMERICAL derivatives: our model will always be a huge simplification
\rightarrow just go for a very simple, ITERATIVE APPROACH,
like the RELAXATION technique we have seen for non-linear eqs.
(but can be used also for linear eqs, of course)
and can be easily generalized to a system of equations

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

- Steps to solve the equations:

1. assign the boundary values $\quad \phi[0,:]=1$

$$
\phi[M,:]=\phi[0: M, 0]=\phi[0: M, M]=0
$$

2. assign to all the other points of the grid a guess value, e.g. zero

$$
\phi[i, j]=0 \quad \text { if } i \neq(0, M) \text { and } j \neq(0, M)
$$

insulating material

3. solve the equation below by iteration (like relaxation)
$\phi(x, y)=\frac{1}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]$
or apply the over-relaxation
$\phi(x, y)=\frac{(1+\omega)}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]-\omega \phi(x, y)$
try with $\omega=0.9$ and then reduce ω if the result does not converge
$\omega>0.9$ is often non-stable

Partial Differential Equations (PDEs). Boundary-value problem with finite-difference methods (FDMs)

Where the relaxation formula comes from?
Define $\quad \Delta \phi(x, y) \equiv \phi_{\text {new }}(x, y)-\phi(x, y)$
\& define $\quad \phi_{\omega}(x, y)=\phi(x, y)+(1+\omega) \Delta \phi(x, y)$
Combining the two of them:

$$
\phi_{\omega}(x, y)=\phi(x, y)+(1+\omega)\left[\phi_{\mathrm{new}}(x, y)-\phi(x, y)\right]
$$

Expressing in terms of ϕ new : $\phi_{\text {new }}(x, y)=\frac{1}{(1+\omega)} \phi_{\omega}(x, y)+\frac{\omega}{(1+\omega)} \phi(x, y)$
Substituting to the left-hand term of

$$
\phi_{\mathrm{new}}(x, y)=\frac{1}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]
$$

and rearranging, we get:
$\phi_{\omega}(x, y)=\frac{(1+\omega)}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]-\omega \phi(x, y)$

Partial Differential Equations (PDEs). Exercise

EXERCISE:

Consider an empty 2D box with conducting walls. The boundary conditions are that one wall is kept at voltage $\mathrm{V}=1$ volt (for example, the first row of the matrix is kept at voltage $\mathrm{V}=1$ volt), while the other three walls are insulated from it and are at 0 volts. We want to calculate the potential $\phi(x, y)$ at each point in the 2D box. Plot the result by using the function matplotlib.pyplot.imshow().
insulating
material

Partial Differential Equations (PDEs). Exercise

Suggestions: Require a tolerance delta $=10^{-3}$ (smaller tolerances require a significant computing time). For the definition of tolerance you can use
delta=numpy.linalg.norm(phi-phiold)
where phi and phiold are the new and the old iteration of the matrix (this treats the two matrices as two vectors and calculates the norm of their difference).
Create a grid of $(\mathrm{M}+1) \times(\mathrm{M}+1)$ cells, with $\mathrm{M}=100$. Rows 0 and M and columns 0 and M are the walls of the box (i.e. the boundaries) and must be assigned the given voltage. The result should look like Figure 49 and should require ≈ 3000 iterations to reach the required tolerance (for the above definition of tolerance).

Partial Differential Equations (PDEs). Exercise

To produce the plot use:
import matplotlib.pyplot as plt
plt.imshow(phi) \#where phi is the final matrix
plt.gray()
plt.show()

Now, solve the same exercise with relaxation, as proposed in equation 233.

$$
\phi(x, y)=\frac{(1+\omega)}{4}[\phi(x+a, y)+\phi(x-a, y)+\phi(x, y+a)+\phi(x, y-a)]-\omega \phi(x, y)
$$

Suggestions: Choose $\omega=0.9$ (higher ω might be unstable). With $\omega=0.9$ you should reach a tolerance of delta $=10^{-3}$ in $\approx 200-300$ iterations. The script is much faster with the relaxation.

Partial Differential Equations (PDEs). Exercise

Partial Differential Equations (PDEs). Initial-value PDEs with finite difference methods

INITIAL-VALUE PDEs: PDEs for which we know the initial conditions and we must calculate the time evolution of one or more variables.

Example: One-dimensional diffusion equation $\frac{\partial \phi}{\partial t}=D \frac{\partial^{2} \phi}{\partial x^{2}}$
where ϕ is $\phi(x, t)=$ physical quantity that is diffusing in time and space
(e.g. temperature, density of particles, etc)
$D=$ diffusion coefficient

Suppose we know the initial conditions
We will try to solve this with the forward-time centered-space
(FTCS) method for initial-value PDEs

Partial Differential Equations (PDEs). FTCS method

- First consider the spatial dependence of $\phi(x, t)$ and write numerical derivative:

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)}{a^{2}}
$$

Where we chose a spatial step a and we have gridded our spatial domain into a grid of M points

Partial Differential Equations (PDEs). FTCS method

- First consider the spatial dependence of $\phi(x, t)$ and write numerical derivative:

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)}{a^{2}}
$$

Where we chose a spatial step a and we have gridded our spatial domain into a grid of M points

- Substitute the above numerical derivative into the diffusion equation:

$$
\frac{\partial \phi}{\partial t}=\frac{D}{a^{2}}[\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)]
$$

We have a set of M ordinary differential equations, one per each point of the spatial grid

Partial Differential Equations (PDEs). FTCS method

We must solve a set of ordinary differential equations with one of the methods we learned

WHICH ONE?

Partial Differential Equations (PDEs). FTCS method

We must solve a set of ordinary differential equations with one of the methods we learned

WHICH ONE?

A smart option is simply the EULER'S METHOD because

1. we have a very large system of equations to solve
2. we have already done a huge approximation with the numerical derivatives in space

Euler's method equation: $\phi(x, t+h) \simeq \phi(x, t)+h \frac{\mathrm{~d} \phi(x, t)}{\mathrm{d} t}$

$$
\phi(x, t+h) \simeq \phi(x, t)+h \frac{\partial \phi(x, t)}{\partial t}
$$

Partial Differential Equations (PDEs). FTCS method

Diffusion equation written with finite differences
人 $\frac{\partial \phi}{\partial t}=\frac{D}{a^{2}}[\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)]$
Euler's equation: $\quad \phi(x, t+h) \simeq \phi(x, t)+h \frac{\partial \phi(x, t)}{\partial t}$
Rewrite Euler's equation in terms of $\partial \phi(x, t) / \partial t$:

$$
\sum \frac{\partial \phi(x, t)}{\partial t} \simeq \frac{\phi(x, t+h)-\phi(x, t)}{h}
$$

Substitute the eq.
into diffusion equation

$$
\frac{\phi(x, t+h)-\phi(x, t)}{h} \simeq \frac{D}{a^{2}}[\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)]
$$

Multiply by \boldsymbol{h} and nd rewrite in terms of $\phi(x, t+h)$

$$
\phi(x, t+h) \simeq \phi(x, t)+\frac{h D}{a^{2}}[\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)]
$$

basic equation of the forward-time centered-space (FTCS) method for initial-value PDEs, applied to diffusion equation.

Partial Differential Equations (PDEs). Exercise

EXERCISE:

Write a python script to solve the diffusion equation with the FTCS method for the following system.

The flat base of a container made of 1 cm thick stainless steel is initially at a uniform temperature of $\mathrm{T}_{0}=293 \mathrm{~K}$. The container is placed in a bath of cold water at $T_{\text {bath }}=273 \mathrm{~K}$ and is filled with hot water at $\mathrm{T}_{\text {hot }}=323 \mathrm{~K}$. Calculate the temperature profile of the steel as a function of distance x from the hot side to the cold side (from 0 to 1 cm) and as a function of time. The system is shown in Figure 50.

Partial Differential Equations (PDEs). Exercise

EXERCISE:

Write a python script to solve the diffusion equation with the FTCS method for the following system.

The flat base of a container made of 1 cm thick stainless steel is initially at a uniform temperature of $\mathrm{T}_{0}=293 \mathrm{~K}$. The container is placed in a bath of cold water at $\mathrm{T}_{\text {bath }}=273 \mathrm{~K}$ and is filled with hot water at $\mathrm{T}_{\text {hot }}=323 \mathrm{~K}$. Calculate the temperature profile of the steel as a function of distance x from the hot side to the cold side (from 0 to 1 cm) and as a function of time. The system is shown in Figure 50.
Thermal conduction is described by the diffusion equation as

$$
\begin{equation*}
\frac{\partial \mathrm{T}}{\partial t}=\mathrm{D} \frac{\partial^{2} \mathrm{~T}}{\partial x^{2}} \tag{239}
\end{equation*}
$$

where $\mathrm{D}=4.25 \times 10^{-2} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ for stainless steel. Use equation 238 to solve the problem.
Plot the temperature profile of the steel as a function of x at four different times $t=0.01,0.1,1$ and 10 s .

The result should look like Figure 51.

Suggestion: use a spatial grid with $M+1$ point, where $M=100$. Choose $h=0.001$. What happens if you change h and why?

Partial Differential Equations (PDEs). Exercise

Partial Differential Equations (PDEs). Exercise

Partial Differential Equations (PDEs). Exercise

ADDITIONAL SUGGESTIONS for the EXERCISE:

- here you have both spatial step (a) and temporal step (h)
- select spatial step a as $a=\mathrm{L} / \mathrm{N}$
where L=length of steel, $\mathrm{N}=\#$ of grid points (suggested $\mathrm{N}=100$)
In this way you control the resolution by simply changing N
- define a constant const=D*h/(a*a) and calculate it just once
before the loops: you will reduce computing time and numerical errors
- you need two loops: an INNER one for the spatial calculation an OUTER one for the temporal calculation
- solve with a loop over the spatial coordinates at each time-step

$$
\phi(x, t+h) \simeq=\phi(x, t)+\frac{h D}{a^{2}}[\phi(x+a, t)+\phi(x-a, t)-2 \phi(x, t)]
$$

- SAVE RAM AND DO NOT unnecessarily COMPLICATE THE PROBLEM: phi can be a matrix (over time and spatial position) but this requires more RAM + you are not able to generalize in 2D
\rightarrow define phi as an array with one index for the spatial motion
You can print the time steps of interest without using a matrix!

