Laboratorio di Calcolo Numerico: Interpolazione e approssimazione di funzioni

Giacomo Elefante

Laboratorio di calcolo numerico 14/12/23

Scopo di oggi

Analizzare algoritmi per l'interpolazione e approssimazione di dati e funzioni:

- Problema di interpolazione e matrice di Vandermonde
- Interpolazione su nodi equispaziati
- Interpolazione su nodi di Chebyshev

Problema di interpolazione

Dato \mathbb{P}_n lo spazio dei polinomi di gradi al più n, ovvero i polinomi del tipo

$$a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

con $a_i \in \mathbb{R}, i = 0, ..., n$ allora il problema di interpolazione, ovvero trovare una funzione p(x) che dati n + 1 coppie $(x_0, y_0), ..., (x_n, y_n)$ soddisfa alla relazione

$$p(x_i) = y_i, \qquad i = 0, \ldots, n,$$

ha una soluzione (se gli x_i sono distinti) con $p(x) \in \mathbb{P}_n$ ed è unica.

Problema di interpolazione

In particolare, il polinomio si può costruire utilizzando le basi monomiali $\{1,x,x^2,...\}$ e andando a risolvere il problema

$$Va = y, (1)$$

dove V è la matrice di Vandermonde $V_{ij} = x_i^j$, $a = [a_0, \dots, a_n]'$ e $y = [y_0, \dots, y_n]'$.

Scegliendo una base differente di \mathbb{P}_n , si può cercare il polinomio interpolante costruito su quella base, ovvero data $\{b_i\}_{i=0}^n$ un'altra base di \mathbb{P}_n , si può cercare il polinomio

$$p(x) = \sum_{i=0}^{n} a_i b_i(x)$$

che soddisfi il problema di interpolazione.

Problema di interpolazione

I coefficienti del polinomio interpolante saranno la soluzione del problema

$$Va = y, (2)$$

dove V è la matrice di Vandermonde $V_{ij}=b_j(x_i)$, $a=[a_0,\ldots,a_n]'$ e $y=[y_0,\ldots,y_n]'$.

Un'ottima base è quella data dai polinomi di Chebyshev

$$T_n(x) = \cos(n \arccos x)$$

infatti il condizionamento della matrice di Vandermonde in quella base è assai migliore rispetto a quello con la base monomiale.

Esercizio

Usando il comando gallery ('chebvand', x), si costruisca la matrice di Vandermonde con la base di Chebyshev su n+1 punti equispaziati e si calcoli il condizionamento di tale matrice. Ugualmente si faccia con la base monomiale e si faccia un grafico in scala semilogaritmica dei condizionamenti per le matrici ottenute da 1 a M=30 punti.

Interpolazione su Matlab

Su Matlab, gli n+1 coefficienti a_i , possono essere trovati attraverso facilmente con il comando polyfit, infatti date delle coppie di dati $(x_0, y_0), \ldots, (x_n, y_n)$, polyfit può generare i coefficienti del polinomio interpolatorio tra questi punti.

In seguito per valutare un polinomio su dei punti, dati i coefficienti, è utile il comando polyval.

Figure: Codice per generare le valutazioni del polinomio interpolante.

Nodi equispaziati

Consideriamo ora come nodi n+1 punti equispaziati in un intervallo [a,b], generabili attraverso i comandi linspace oppure a:h:b definendo però il passo h come

$$h=\frac{b-a}{n}.$$

Essi potranno essere usati per interpolare una funzione f.

Esercizio

Esercizio

Data la funzione $f(x) = \frac{e^{-2x}}{3} + x^2 + 7x^3$, si crei uno script dove vengono definiti

- Una variabile n indicante il grado massimo del polinomio interpolante
- Un vettore x contenente gli n+1 nodi equispaziati in [-1,1]
- Un vettore y i cui elementi sono $f(x_i)$
- Un vettore s con 500 punti di valutazione in [-1,1].

Utilizzare quindi la routine interpol per valutare il polinomio interpolante in questi punti e creare un grafico dove vengono sovrascritti la funzione f in blu e il polinomio interpolante in rosso tratteggiato.

Calcolare quindi l'errore assoluto massimo tra il polinomio e la funzione e stamparne il valore a schermo. Come si comporta al variare di n?

◄□▶◀圖▶◀불▶◀불▶ 불

In questo caso la convergenza dovrebbe essere assicurata per il tipo di funzione scelta ma al crescere di n si vede l'interpolante costruita sui nodi equispaziati perdere di efficacia e crescere il suo errore. Infatti, tale interpolante non è molto stabile poiché la sua costante di Lebesgue cresce esponenzialmente con n.

Per l'interpolazione infatti, si preferisce utilizzare delle distribuzioni di punti migliori come i punti di Chebyshev di prima specie

$$x_i = -\cos\left(\frac{(2i+1)}{2(n+1)}\pi\right), \qquad i = 0, \dots, n$$

o quelli di Chebyshev-Lobatto

$$x_i = -\cos\left(\frac{i\pi}{n}\right), \quad i = 0, \dots, n,$$

la cui interpolante costruita su questi punti ha una costante di Lebesgue che cresce come log(n), quindi più lentamente.

Esercizio

Ripetere l'esercizio precedente ma utilizzando i due insiemi di punti descritti sopra al posto di quelli equispaziati.

Esercizio

In alcuni casi invece la convergenza con i punti equispaziati può non esserci proprio, come può essere il caso della funzione di Runge in I=[-1,1], ovvero

$$f(x) = \frac{1}{1+25x^2}$$

Si costruisca, quindi, uno script dove al variare del grado del polinomio n da 1 a 25, si calcola il polinomio interpolante sia su nodi equispaziati sia su nodi di Chebyshev-Lobatto, valutandone poi il valore su 1000 punti equispaziati s in I.

Trovare quindi l'errore assoluto massimo dei polinomi con la funzione in s e fare in seguito la sovrapposizione dei grafici in scala semilogaritmica degli errori in funzione del grado del polinomio.

Esercizio (per casa)

Esercizio

Creare una funzione leja che genera una approssimazione dei punti di leja dato un grande numero di punti nell'intervallo [-1,1]. Essa prenderà in input un valore ${\tt n}$ corrispondente a quanti punti si vogliono generare. Internamente si andrà a creare una griglia di 10000 punti in [-1,1], denominata ${\tt T}$, e partendo dall'elemento $x_1=1$, andrà a calcolare l'elemento x_i a partire dai i-1 punti estratti precedentemente. Ovvero, l'elemento i sarà il punto $\bar x \in {\tt T}$ tale che

$$\bar{x} = \arg\max_{x \in \mathbb{T}} \prod_{j=1}^{i-1} |x - x_j|$$

Una volta estratti gli n punti, devono essere ordinati in maniera crescente prima di essere restituiti come output.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q Q