PHARMACOGENETICS BASIC PRINCIPLES

Current Therapeutic Approach

PATHOLOGY AND / OR SYMPTOMS

Current Therapeutic Approach

PATHOLOGY AND / OR SYMPTOMS

Current Therapeutic Approach

PATHOLOGY AND / OR SYMPTOMS

Same diagnosis

Same diagnosis same prescription

Patient group Same diagnosis same prescription Drug NOT toxic and beneficial

Inter-individual variability in response to drug treatment

EFFICACY OF DRUGS

«the vast majority of drugs – more than 90%only work in 30 or 50% of the people».

Allen Roses past vice president of GlaxoSmithKline

EFFICACY OF DRUGS

«the vast majority of drugs – more than 90% only work in 30 or 50% of the people».

Allen Roses past vice president of GlaxoSmi

Spear, B.B. et al. Trends Mol Med 2001;7:201-204.

Therapeutic area	Efficacy rate (%)
Alzheimer's	30
Analgesics (Cox-2)	80
Asthma	60
Cardiac Arrythmias	60
Depression (SSRI)	62
Diabetes	57
HCV	47
Incontinence	40
Migraine (acute)	52
Migraine (prophylaxis)	50
Oncology	25
Osteoporosis	48
Rheumatoid arthritis	50
Schizophrenia	60

ADVERSE DRUG REACTIONS (ADR)

ADRs were between the forth and sixth most common cause of death in the USA in 1994. (more than 2 million of cases, 100,000 fatal).

Estimated cost up to \$4 billion per year in the United States and £1 billion per year in the United Kingdom.

Lazarou J, et al. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998. Pirmohamed et al., Adverse drug reactions as a cause of admission to hospital: prospective analysis of 18820 patients BMJ 2004 (NEISS-CADES) National Electronic Injury Surveillance System – Cooperative Adverse Drug Event Surveillance Project USA National surveillance of emergency department visits for outpatient adverse drug events (n=21298) period 01 / 04-12 / 05 in 63 hospitals

Budnitz DS et al., JAMA. 2006

Table 4. Number of Cases and Annual Estimate of Individuals With Adverse Drug Events Treated In Emergency Departments by Drug Class—United States, 2004-2005

	Adverse Drug Events†	
Therapeutic Category (Drug Class)*	Cases	Annual Estimate, No. (%)
Central nervous system agents	4698	150257 (21.4)
Opioid-containing analgesics	1167	41 421 (5.9)
Non-opioid-containing analgesics	715	20887 (3.0)
Antidepressants and mood stabilizers	591	19817 (2.8)
Anticonvulsants	588	17 887 (2.6)
Antipsychotics	443	13 635 (1.9)
Benzodiazepines	288	9299 (1.3)
Non-benzodiazepine-derived sedatives	182	6375 (0.9)
Stimulants	177	4152 (0.6)
Anesthetics	92	3176 (0.5)
Other central nervous system agents or central nervous system agents from different classes	455	13608 (1.9)
Systemic antimicrobial agents	3867	127 807 (18.2)
Amoxicillin-containing agents	1150	35 228 (5.0)
Quinolones	445	16 074 (2.3)
Sulfonamide-containing agents	446	15 593 (2.2)
Cephalosporins	454	15 369 (2.2)
Erythromycins and macrolides	329	11 833 (1.7)
Penicillin	233	7848 (1.1)
Antivirals, antiparasitics, and antifungals	141	4338 (0.6)
Tetracyclines	106	3662 (0.5)
Lincomycins	100	3332 (0.5)
Metronidazole	59	1815 (0.3)
Other antimicrobial agents, unspecified	404	12715 (1.8)

antimicrobials, or drugs from different classes of antimicrobial agents

Table 4. Number of Cases and Annual Estimate of Individuals With Adverse Drug Events Treated In Emergency Departments by Drug Class—United States, 2004-2005

	Adverse Drug Events†	
Therapeutic Category (Drug Class)*	Cases	Annual Estimate, No. (%)
Hormone-modifying agents	2345	84 098 (12.0)
Insulins	1494	53 030 (7.6)
Oral hypoglycemic agents	374	14 528 (2.1)‡
Glucocorticoids	182	6575 (0.9)
Estrogens and progesterones	91	2588 (0.4)
Other hormone-modifying agents or drugs from different classes of hormone-modifying agents	204	7377 (1.1)
Hematologic and oncologic agents	2120	72 029 (10.3)
Anticoagulants	1045	36110 (5.1)‡
Platelet inhibitors	407	17 258 (2.5)‡
Antineoplastic agents	481	12129 (1.7)‡
Other hematologic and oncologic agents or drugs from different classes of blood-modifying agents	187	6532 (0.9)‡
Cardiovascular agents	1498	53 457 (7.6)
ACE inhibitors/ARBs	306	10392 (1.5)
Lipid-lowering agents	214	8828 (1.3)
β-Blockers	189	6596 (0.9)
Digitalis glycosides	131	5318 (0.8)‡
Diuretics	142	5108 (0.7)
Calcium channel blockers	138	5004 (0.7)
Nitrates/antiarrhythmics	69	2582 (0.4)
Centrally acting antiadrenergics	82	2162 (0.3)
Other cardiovascular drugs or drugs from different classes of cardiovascular agents	227	7467 (1.1)

 Table 4. Number of Cases and Annual Estimate of Individuals With Adverse Drug Events

 Treated In Emergency Departments by Drug Class—United States, 2004-2005

	Adve	rse Drug Events†
	Γ	Annual Estimate,
Therapeutic Category (Drug Class)*	Cases	No. (%)
Musculoskeletal agents	1043	35177 (5.0)
Nonselective nonsteroidal anti-inflammatory drugs	727	23 394 (3.3)
Muscle relaxants	133	4616 (0.7)
COX-2 selective nonsteroidal anti-inflammatory drugs	101	4587 (0.7)
Other musculoskeletal drugs or drugs from different classes of musculoskeletal agents	82	2580 (0.4)
Antihistamines, decongestants, expectorants, antitussives, and combination cold remedies	924	28 403 (4.0)
Vaccines	641	15911 (2.3)
Gastrointestinal agents	385	12 477 (1.8)
Diagnostic agents	256	9726 (1.4)
Dermatologic agents	283	9459 (1.3)
Herbs, dietary supplements, and alternative agents	262	9423 (1.3)
Therapeutic nutrients, vitamins, minerals, and electrolytes	254	8445 (1.2)
Topical eye, ear, nose, and throat agents	195	6408 (0.9)
Autonomic agents	148	4302 (0.6)
Respiratory tract agents	127	3812 (0.5)
Immune-modifying agents	116	3654 (0.5)
Other agents	114	4547 (0.6)
Drugs not stated or not known	650	20 022 (2.9)
Drugs from more than 1 therapeutic category	1372	42 136 (6.0)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; COX, cyclockygenase. *For 18.315 cases (annual estimate, 607 245; 86.6%) a single drug was implicated in the adverse event. For 1611 cases (annual estimate, 52 167; 7.4%) drugs from the same therapeutic category were implicated. For the remaining cases drugs from more than 1 therapeutic category were implicated and these are listed in a separate category. †Annual estimates and percentages may not total 100% due to rounding.

‡Estimates with coefficient of variation >30%: oral hypoglycemic agents, 31.1%; anticoagulants, 33.3%; platelet inhibitors, 32.2%; antineoplastic agents, 36.3%; other hematologic and oncologic agents or drugs from different classes of blood-modifying agents, 33.8%; and digitalis glycosides, 33.5%.

Table 5. Number of Cases and Annual Estimate of Drugs Most Commonly Implicated in Adverse Events Treated in Emergency Departments—United States, 2004-2005*

	Adverse	Adverse Drug Events	
Drug	Cases, No.	Annual Estimate, No. (%)	
Insulins	1577	55819 (8.0)	
Warfarin	1234	43401 (6.2)†	
Amoxicillin	1022	30 135 (4.3)	
Aspirin	473	17 734 (2.5)	
Trimethoprim-	447	15291 (2.2)	
sulfamethoxazole			
Hydrocodone-	420	15 512 (2.2)	
acetaminophen			
Ibuprofen	526	14852 (2.1)	
Acetaminophen	497	12,832 (1,8)	
Clopidogrel	241	10 931 (1.6)†	
Cephalexin	293	10.628 (1.5)	
Penicillin	270	9275 (1.3)	
Amoxicillin-clavulanat	e 274	8959 (1.3)	
Azithromycin	255	8794 (1.3)	
Levofloxacin	230	8682 (1.2)	
Naproxen	245	8634 (1.2)	
Phenytoin	238	7937 (1.1)	
Oxycodone-	227	7328 (1.0)	
acetaminophen			
Metformin	179	6678 (1.0)	
	()	5 E 40.4	

*Drugs implicated in ≥1% of adverse events. For 434 cases (annual estimate, 15 784 [2.2%]) 2 of these 18 drugs were implicated in the adverse event. Therefore, these 18 drugs accounted for adverse drug events in 8214 cases (annual estimate, 277 636 [39.6%]).

+Estimates with coefficient of variation >30%: warfarin, 32.5%; clopidogrel, 36.6%.

In Italy?

- 22 hospitals involved for a period of 10 days in 2000.
- 18854 patients admitted to the emergency room.
- ♦ 629 (3.3%) affected by ADE.
- Patients with ADE accounted for 4.3% of subsequently hospitalized patients.

Response to the drug: factors involved

Response to the drug: factors involved

Extrinsic Factors

Smoke Diet Alcohol Consumption Drugs Interaction Other

Response to the drug: factors involved

Extrinsic Factors

Smoke Diet Alcohol Consumption Drugs Interaction Other

Intrinsic Factors

Age - Sex - Race BSA Pregnancy / Breastfeeding Organ dysfunctions Pathologies Genetics

Importance of Genetics in Adverse Drug Reactions (ADE)

Frequency in their metabolism of enzymes with possible inactive allelic variants (PM)

JAMA. 2001;286:2270-2279

Pharmacogenetics

Interindividual variability in the sequence of genes that code for proteins involved in the modulation of drug response.

TARGET MOLECULE

PERSONALIZED MEDICINE: THE ROLE OF PHARMACOGENETICS

PERSONALIZED DRUG THERAPY GOALS

- the right drug
- at the right dose
- for the right patients
 - at the right time

PERSONALIZED DRUG THERAPY: STRATEGIES

«A POSTERIORI» METHOD

MONITORING

of the plasma concentrations of the specific drug (TDM)

PHENOTYPING

of enzymatic activities by means of "probe drugs"

«A PRIORI» METHODS

GENOTYPING

of the variants of the genes involved in the modulation of the response to drugs

END POINTS OF PHARMACOGENETIC TESTS

- A priori assessment of the risk of adverse events (safety)
- A priori customization of the dosage / pharmacological posology on a genetic basis (dosing)
- A priori determination of the most effective therapy for individual patients (efficacy)

Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels

Therein, a valid biomarker is described as a "biomarker that is measured in an analytical test system with well established performance characteristics and for which there is an established scientific framework or body of evidence that elucidates the physiologic, toxicologic, pharmacologic, or clinical significance of the test results." The classification of biomarkers is context specific.

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm 083378.htm

OPEN CACCESS Freely available online

Research In Translation

Translating Pharmacogenomics: Challenges on the Road to the Clinic

PLOS MEDICINE

Steps Toward Clinical Pharmacogenetic Labelling

Valid Genomic Biomarkers in the Context of Approved Drug Labels FDA

DRUG	BIOMARKER	GOAL	STATUS
Azathioprine	ТРМТ	SAFETY	recommended
Abacavir	HLA-B*5701	SAFETY	recommended
Atomoxetine	2D6	SAFETY	information only
Irinotecan	UGT1A1	SAFETY	recommended
Warfarin	2C9 and VKORC1	SAFETY	recommended
Celecoxib	2C9	SAFETY	Information only
Codeine	2D6	SAFETY	information only
Panitumumab	K-ras	EFFICACY	recommended
Clopidogrel	2C19	EFFICACY	information only
Tamoxifen	2D6	EFFICACY	Pending

Valid Genomic Biomarkers in the Context of Approved Drug Labels FDA

DRUG	BIOMARKER	GOAL	STATUS
Azathioprine	ТРМТ	SAFETY	recommended
Abacavir	HLA-B*5701	SAFETY	recommended
Atomoxetine	2D6	SAFETY	information only
Irinotecan	UGT1A1	SAFETY	recommended
Warfarin	2C9 and VKORC1	SAFETY	recommended
Celecoxib	2C9	SAFETY	Information only
Codeine	2D6	SAFETY	information only
Panitumumab	K-ras	EFFICACY	recommended
Clopidogrel	2C19	EFFICACY	information only
Tamoxifen	2D6	EFFICACY	Pending

Pharmacokinetics

The bioavailability of a drug and / or its metabolites in the target tissue depends on :

1.Absorption

2.Distribution

3.Metabolism

4.Excretion

Elimination of the drug

Zanger UM et al. Anal Bioanal Chem 2008

Eliminazione del Farmaco

Zanger UM et al. Anal Bioanal Chem 2008

DRUG METABOLISM

Phase 1 reactions

OXIDATIONS REDUCTIONS HYDROLYSIS

Phase 2 reactions CONJUGATIONS glucuronidation acetylations methylations sulfatations

DRUG METABOLISM

Phase 1 reactions

OXIDATIONS REDUCTIONS HYDROLYSIS

Phase 2 reactions CONJUGATIONS glucuronidation acetylations methylations sulfatations

GENETIC POLYMORPHISMS OF PHASE 1 AND 2 ENZYMES: EFFECT ON ENZYMATIC ACTIVITY

Phenotype and Metabolism of Drugs

METABOLIC ACTIVITY

METABOLIC ACTIVITY

Phenotype

Genotype

Phenotype

Genotype

Phenotype

Genotype

CYP2C9 GENOTYPE AND INDUCTION

Vormfelde SV,et al. Relative impact of genotype and enzyme induction on the metabolic capacity of CYP2C9 in healthy volunteers. Clin Pharmacol Ther. 2009 Jul;86(1):54-61.

CYP2C9 GENOTYPE AND INDUCTION

Vormfelde SV,et al. Relative impact of genotype and enzyme induction on the metabolic capacity of CYP2C9 in healthy volunteers. Clin Pharmacol Ther. 2009 Jul;86(1):54-61.

CYP2D6 GENOTYPE AND INHIBITION (SSRI)

Borges S et al. Clin Pharmacol Ther 2006

DRUG METABOLISM

Phase 1 reactions

OXIDATIONS REDUCTIONS HYDROLYSIS

Phase 2 reactions CONJUGATIONS glucuronidation acetylations methylations sulfatations

Cytochromes P-450 (CYPs)

CYPs are a superfamily of microsomal enzymes relevant in the biosynthesis and degradation of endogenous compounds such as steroids, lipids and vitamins.

CYPs metabolize many chemicals present in the diet, in the environment or taken as drugs.

They mainly catalyze the oxidation of their substrates.

CYPs: site of action

The metabolism of cytochromes takes place mainly in the liver, but also in the enterocytes of the small intestine epithelium.

CYP3A, in particular, is present in enterocytes.

Following the oral administration of a drug, CYPs, in the intestine and in the liver, can reduce the amount of drug that reaches the systemic circulation, thus influencing its effect. This is known as first pass metabolism.

CYPs are polymorphic

To date, more than 57 active CYP450 genes and 58 pseudogenes are known in humans.

Most of these genes are polymorphic.

- More than 434 different alleles of the genes coding for CYP450 have been described, moreover numerous functional SNPs have been identified for which the corresponding allele has not yet been defined.
- http://www.imm.ki.se/cypalleles/

CYPs: nomenclature

- CYP abbreviation for cytochrome P450
- Number family (sequence homology $\geq 40\%$)
- Letter subfamily (sequence homology $\geq 55\%$)
- Number specific gene / specific enzyme
 - within the subfamily
- Asterisk followed by a number and a letterallele of the gene
- Example : CYP2D6*1A allele *1A of CYP2D6 gene

*CYP 2D6*1a*

CYPs: role in drug metabolism

Enzyme	% of metabolised drugs	Main polymorphisms	
СҮРЗА4	40 – 45%	Rari	
CYP2D6	20 – 30%	*2xn, *4, *10, *17, *41	
CYP2C9	10%	*2, *3	
CYP2C19	5%	*2, *3	
CYP1A2	5%	*1K	
CYP2B6	2 – 4%	-	
CYP2E1	2 – 4%	-	
CYP2A6	2%	*4,*9	
CYP2C8	1%	*3	
СҮРЗА5	<1%	*3	

CYPs: two classes of enzymes

Class I

- Well conserved.
- Without important
- functional polymorphisms.
- Active in the metabolism of procarcinogens and drugs.

CYP1A1, CYP1A2, CYP2E1, CYP3A4

Class II

- Highly polymorphic.
- Active in the metabolism of drugs but not of procarcinogens.

CYP2B6, CYP2C9, CYP2C19, CYP2D6

Enzyme activity

subjects

Enzyme activity

CYP2D6

- It is part of the superfamily of CYPs: microsomal enzymes relevant in the biosynthesis and degradation of endogenous compounds and in the metabolism of many xenobiotics
- Although CYP2D6 constitutes only between 2% and 5% of the total content of CYPs, approximately 20% of drugs are metabolized by CYP2D6.
- CYP2D6 has the largest number of genetic variants identified.

CYP2D6: alleles

CYP2D6 activity: genetic basis of phenotypic variability

Dose effect of the number of CYP2D6 alleles

Inter-ethnic variability of CYP2D6 phenotypes

Phenotypes	Caucasians	East Asians	African Americans	North Africa and Middle East	Mexican Americans
CYP2D6 PM	5-10	1	1-2	2	3
CYP2D6 UM	1-10	0-2	2	10-29	1
CYP2D6 Others	80-94	>90	96-97	69-88	96

PM and UM: effect on drug metabolism and number of such subjects in Europe

- Reduced drug metabolism
- Circulating drug levels outside the standard dose therapeutic window
- Increased risk of adverse effects
- Failure to respond in case of pro-drug administration (e.g. codeine)

- Accelerated drug metabolism
- Failure to respond to drug after administration of standard dosages (nonresponders)

PERSONALIZED MEDICINE: THE ROLE OF PHARMACOGENETICS

REVIEW

Frontiers in cardiovascular medicine

Personalized medicine: hope or hype?

Keyan Salari¹, Hugh Watkins², and Euan A. Ashley^{3*}

¹Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; ²Department of Cardiovascular Medicine, University of Oxford, Oxford, UK; and ³Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Falk Cardiovascular Research Building, 300 Pasteur Drive, Stanford, CA 94305, USA

FROM BENCH TO BEDSIDE: TRANSLATIONAL GAP

A DROP IN THE OCEAN

Few of the numerous biomarkers so far discovered have made it to the clinic.

Poste G et al., Nature 2011,469:156-157

ohamed M. Clin Pharmacol Ther. 2010 Dec;88(6):862-6

Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels Therein, a valid biomarker is described as a "biomarker that:

• is measured in an analytical test system with well

established performance characteristics

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharma cogenetics/ucm083378.htm

Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels Therein, a valid biomarker is described as a "biomarker that:

• is measured in an analytical test system with well

established performance characteristics

• for which there is an established scientific framework or

body of evidence that elucidates the physiologic,

toxicologic, pharmacologic, or clinical significance of the test

results."

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharma cogenetics/ucm083378.htm

ANALYTIC VALIDITY CLINICAL VALIDITY CLINICAL UTILITY ECONOMIC ASSESMENT

How accurately and reliably the test measures the genotype of interest

How consistently and strongly the genetic variants relate to the outcome of interest

ANALYTIC VALIDITY **CLINICAL** VALIDITY **CLINICAL** UTILITY **ECONOMIC ASSESMENT**

How likely the test is to significantly improve patient outcomes

Pharmacogenomics can play an important role in identifying responders and non-responders to medications, avoiding adverse events, and optimizing drug dose.

Drug labeling may contain information on genomic biomarkers and can describe:

- •Drug exposure and clinical response variability
- •Risk for adverse events
- •Genotype-specific dosing
- •Mechanisms of drug action
- •Polymorphic drug target and disposition genes

The table below lists FDA-approved drugs with pharmacogenomic information in their labeling. The labeling for some, but not all, of the products includes specific actions to be taken based on the biomarker information.

Biomarkers in the table include but are not limited to germ-line or somatic gene variants, functional deficiencies, expression changes, and chromosomal abnormalities; selected protein biomarkers that are used to select patients for treatment are also included.

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm0833 78.htm

Pharmacogenomics can play an important role in identifying responders and non-responders to medications, avoiding adverse events, and optimizing drug dose.

Drug labeling may contain information on genomic biomarkers and can describe:

- •Drug exposure and clinical response variability
- Risk for adverse events
- •Genotype-specific dosing
- •Mechanisms of drug action
- •Polymorphic drug target and disposition genes

The table below lists FDA-approved drugs with pharmacogenomic information in their labeling. The labeling for some, but not all, of the products includes specific actions to be taken based on the biomarker information.

Biomarkers in the table include but are not limited to germ-line or somatic gene variants, functional deficiencies, expression changes, and chromosomal abnormalities; selected protein biomarkers that are used to select patients for treatment are also included.

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm0833 78.htm

Pharmacogenomics can play an important role in identifying responders and non-responders to medications, avoiding adverse events, and optimizing drug dose.

Drug labeling may contain information on genomic biomarkers and can describe:

- •Drug exposure and clinical response variability
- •Risk for adverse events
- •Genotype-specific dosing
- •Mechanisms of drug action
- •Polymorphic drug target and disposition genes

The table below lists FDA-approved drugs with pharmacogenomic information in their labeling. The labeling for some, but not all, of the products includes specific actions to be taken based on the biomarker information.

Biomarkers in the table include but are not limited to germ-line or somatic gene variants, functional deficiencies, expression changes, and chromosomal abnormalities; selected protein biomarkers that are used to select patients for treatment are also included.

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm0833 78.htm

Pharmacogenomic Biomarkers in Drug Labeling

Drug 🗢	Therapeutic Area* ≑	Biomarker† ¢	Referenced Subgroup‡ 🗢	Labeling Sections 🖨
Azathioprine	Rheumatology	TPMT	TPMT intermediate or poor metabolizers	Clinical Pharmacology, Warnings, Precautions, Drug Interactions, Adverse Reactions, Dosage and Administration
Mercaptopurine	Oncology	ТРМТ	TPMT intermediate or poor metabolizers	Clinical Pharmacology, Warnings, Precautions, Adverse Reactions, Dosage and Administration
Warfarin (1)	Hematology	CYP2C9	CYP2C9 intermediate or poor metabolizers	Dosage and Administration, Drug Interactions, Clinical Pharmacology
Warfarin (2)	Hematology	VKORC1	VKORC1 rs9923231 A allele carriers	Dosage and Administration, Clinical Pharmacology

Application of a pharmacogenetic test adoption model to six oncology biomarkers

Personalized Medicine (2010) 7(4), 441-450

E D. Green et al. Nature 470, 204-213 (2011) doi:10.1038/nature09764

CONCLUSIONS

The translation from bench to bedside of PGX tests to become a routine part of clinical practice will depend on:

the mandated incorporation of pharmacogenomics information in drug labeling (FDA and EMA) and the development of national and international guidelines.

Equally important is the integration of knowledge and common effort of clinicians, pharmacologists and clinical pathologists to reexamine pharmacological management programs.