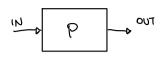
<u>COMPUTABILITY</u> (12/12/2023)

Rice - Shapizo's Theorem

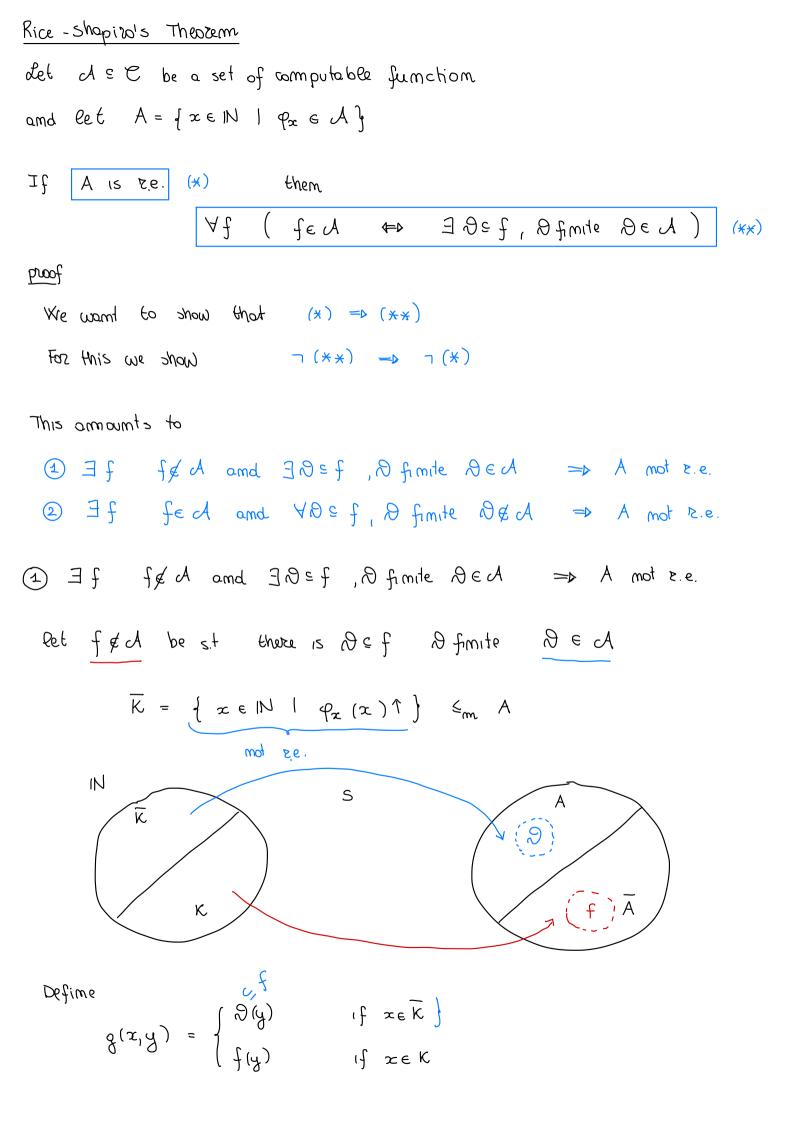


properties of I/O behavior

dual view

semidecidable only when it is finitary

(behaviour of the program on a finite amount of imputs)



$$= \begin{cases} 9(y) = \frac{9(y)}{1} & \text{if } x \in \overline{k} \text{ and } y \in \text{dorm}(\overline{k}) \\ 1 & \text{if } x \in \overline{k} \text{ and } y \notin \text{dorm}(\overline{k}) \\ 1 & \text{if } x \in \overline{k} \\ \end{bmatrix}$$

$$= \begin{cases} f(y) & \text{if } x \in \overline{k} \\ 1 & \text{otherwise} \\ \end{cases}$$

$$Q(x,y) = \begin{cases} x \in \overline{k} \text{ oz } y \in \text{dorm}(\overline{k}) \\ \frac{1}{2} & \text{otherwise} \\ \end{cases}$$

$$Q(x,y) = \begin{cases} 1 & \text{if } Q(x,y) \\ \frac{1}{2} & \text{otherwise} \\ \end{cases}$$

computable

=
$$f(y) \cdot sc_q(x,y)$$
 computable by composition
By simm theorem there is $S: IN \rightarrow IN$ total computable s.t. $\forall x, y$
 $q_{S(x)}(y) = q(x, y) = \begin{cases} \vartheta(y) & \text{if } x \in K \\ f(y) & \text{if } x \in K \end{cases}$

١N

We show that s is the Zeducham function for $K \leq A$

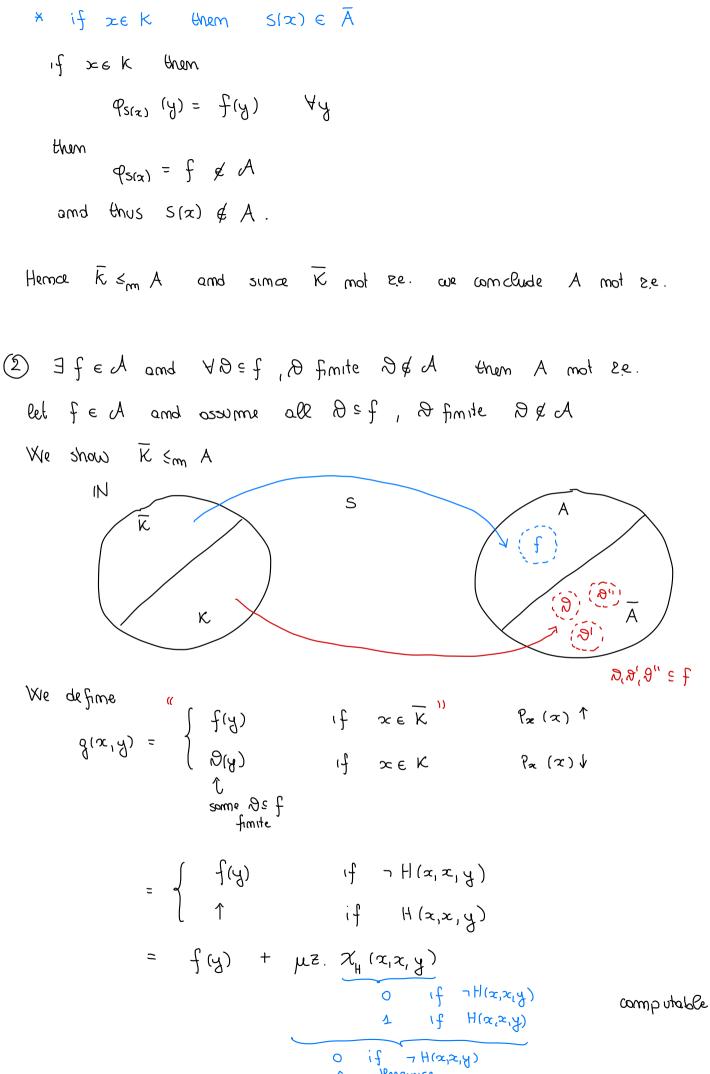
x if
$$x \in \overline{K}$$
 then $S(x) \in A$
let $x \in \overline{K}$. Then
 $\varphi_{S(x)}(y) = \Im(y)$ $\forall y$

A (3) S ĸ 7 (f)A κ

This means

$$P_{S(x)} = \vartheta \in \mathcal{A}$$

hemce $S(x) \in \mathcal{A}$

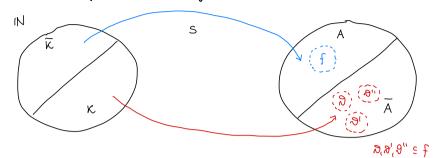


1 otherwise

By smm theorem thur s: IN -> IN total computable st. Vx, y

$$\varphi_{S(x)}(y) = g(x,y) = \begin{cases} f(y) & \text{if } \neg H(x,x,y) \\ \uparrow & \text{if } H(x,x,y) \end{cases}$$

We show that s is a reduction function for $\overline{K} \leq_m A$



* if
$$x \in \overline{K}$$
 then $S(x) \in A$
if $x \in \overline{K}$ then $\varphi_{x}(x) \uparrow$ i.e. $P_{x}(x) \uparrow$.
Then $\forall y = \tau H(x, x, y)$. Thus $\forall y = f(y)$.
Thurefore $\varphi_{S(x)} = f \in A$ and thus $S(x) \in A$.

× if x e K Kum s(x) e Ã

if
$$x \in K$$
 then $q_{x}(x) \downarrow$ i.e. $P_{x}(x) \downarrow$
Then $\exists y_0 \in \mathbb{N}$ s.t. $\forall y < y_0 = \neg H(x, x, y)$
 $\forall y > y_0 = H(x, x, y)$

thus

$$P_{S(x)}(y) = \begin{cases} f(y) & \text{if } y < y = \\ \uparrow & \text{otherwise} \end{cases}$$

Then $P_{S(x)} \subseteq f$ down $(P_{S(x)}) \subseteq [O, y_0)$ fimite i.e. $P_{S(x)}$ is a fimite subfunction of f, hence $P_{S(x)} \in \widetilde{A}$ Hence $S(x) \in \widetilde{A}$.

Typical use of Rice-shapize: Prove that A = IN mot re. by showing either (1) or (2) A 3 G and ∃D≤f, J = G E Dma A ≥ J 7 E D 2 ∃f fed and VDSf, Dfinite D&d Exercise: Totality C={feC|fistotal} $T = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{T}\}$ X T is mot ze. $Id \in \mathbb{C}$ dom(Id) = INYA⊆ id. A fimite dom (A) fimite ≠ N => D€ Z = T is not ze. by Rice - Shapizo * T is mot ze. id∉ ⊂ and D=¢ ≤ id DE ⊂ Ø (ᠽ)↑ ∀æ => T is mot s.e. * <u>Exercise</u> : ONE = $f \propto 1 q_{x} = 1$) q2 e {1} * ONE is mot ze. IE {II} and YDE I, & finite D& {II} hence by Rice-Shapizo ONE mot Be. * ONE 15 mot be. $1 \notin \{1\}$ and $\vartheta = \varphi \in 1$ $\vartheta \in \{1\}$ then $\overline{\partial \mathcal{P}} = \mathcal{P}$ the $\overline{\partial \mathcal{P}} = \mathcal{P}$ and $\vartheta = \varphi \in [1, \mathcal{P}]$ the $\overline{\partial \mathcal{P}} = \mathcal{P}$ of z_e . OBSERVATION : The converse implication of Rice-shapizo is false

counter example:

A
$$\in \mathcal{C}$$
 \odot $\forall f$ (f $\in \mathcal{A}$ iff $\exists \partial s f, \partial f$ inite $\partial \in \mathcal{A}$)
 \bigcirc $A = \{ \alpha \mid q_{\alpha} \in \mathcal{A} \}$ mot e.

We chaim
$$A = \{f \mid dom(f) \cap \overline{K} \neq \phi\}$$

satisfies (a) and (b)

(a) let f be a function
* f e d
$$\sim a$$
 dom(f) $\cap \overline{K} \neq \emptyset$
i.e. $\exists z_0 \in dom(f) \cap \overline{K}$
if we define
 $\vartheta(z) = \begin{cases} f(z) & z = z_0 \\ \uparrow & otherwise \\ \vartheta s f finite & dom(\vartheta) = \{z_0\} \\ & & \delta dom(\vartheta) \cap \overline{K} = \{z_0\} \neq \emptyset \end{cases}$
* if there is $\vartheta c f$, ϑ finite $\vartheta c A$
 $dom(\vartheta) \cap \overline{K} \neq \emptyset$
 $dom(f)$
 $\sim dom(f) \cap \overline{K} \neq \emptyset$
 $\sim dom(f) \cap \overline{K} \neq \emptyset$
 $\sim dom(f) \cap \overline{K} \neq \emptyset$
 $\sim f c A$.

(b)
$$A = \{x\} q_{x} \in A \} = \{x \mid dom(q_{x}) \cap \overline{K} \neq g\}$$
 not 22.
assume that you can semidecide if $x \in A$
in order to check if $x \in \overline{K}$ areate
 $def P(y):$
if $y = x$
iedure 0
 $dx \quad dxq$
 $dx \quad dxq$
 $dx \quad dxq$
 $define g(x,y) = \mu z \cdot |x-y| = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}$ computable
 $\int_{\mathcal{F}} = P_{S(x)}(y)$
by simm
thus is $S: |N \rightarrow |N|$ total computable
 $S = Hu$ reduction function for $\overline{K} \leq m A$
 $x \in \overline{K} \quad d \Rightarrow \quad dom(Q_{S(x)}) \cap \overline{K} \neq g \quad d \Rightarrow \quad S(x) \in A$

hence A is not z.e.