CORSO DI TECNICA DELLE COSTRUZIONI

IL CALCESTRUZZO ARMATO: Gli Stati Limite di Esercizio.

Prof. Carlo Pellegrino

Dipartimento di Ingegneria Civile, Edile e Ambientale ICEA, Università degli Studi di Padova

4.1.2.2 STATI LIMITE DI ESERCIZIO

4.1.2.2.1 Generalità

Si deve verificare il rispetto dei seguenti stati limite:

- deformazione,
- vibrazione,
- fessurazione,
- tensioni di esercizio,
- fatica per quanto riguarda eventuali danni che possano compromettere la durabilità, per la quale sono definite regole specifiche nei punti seguenti.

4.1.2.2.2 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

I valori limite devono essere commisurati a specifiche esigenze e possono essere dedotti da documentazione tecnica di comprovata validità.

4.1.2.2.3 Stato limite per vibrazioni

Quando richiesto, devono essere individuati limiti per vibrazioni:

- al fine di assicurare accettabili livelli di benessere (dal punto di vista delle sensazioni percepite dagli utenti),
- al fine di prevenire possibili danni negli elementi secondari e nei componenti non strutturali,
- al fine di evitare possibili danni che compromettano il funzionamento di macchine e apparecchiature.

4.1.2.2.4 Stato limite di fessurazione

In ordine di severità decrescente, per la combinazione di azioni prescelta, si distinguono i seguenti stati limite:

- a) stato limite di decompressione, nel quale la tensione normale è ovunque di compressione ed al più uguale a 0;
- b) stato limite di formazione delle fessure, nel quale la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{t} = \frac{f_{ctm}}{1.2}$$

dove f_{ctm} è definito nel § 11.2.10.2;

c) <u>stato limite di apertura delle fessure</u>, nel quale il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

[4.1.13]

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione, come descritto nel seguito.

4.1.2.2.4.1 Combinazioni di azioni

Si prendono in considerazione le seguenti combinazioni:

- combinazioni quasi permanenti;
- combinazioni frequenti.

4.1.2.2.4.2 Condizioni ambientali

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, le condizioni ambientali possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella Tab. 4.1.III con riferimento alle classi di esposizione definite nelle *Linee Guida per il calcestruzzo strutturale* emesse dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici nonché nella UNI EN 206:2016.

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1		Esempio	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)			
1 Assenza	1 Assenza di rischio di corrosione o attacco								
1	XO	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo/disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici:in ambiente molto asciutto.	Interno di edifici con umidità relativa molto bassa. Calcestruzzo non armato all'interno di edifici. Calcestruzzo non armato immerso in suolo non aggressivo o in acqua non aggressiva. Calcestruzzo non armato soggetto a cicli di bagnato asciutto ma non soggetto ad abrasione, gelo o attacco chimico.	-	C 12/15				
		a carbonatazione							
Nota - Le cond	lizioni di umidità si rit	leriscono a quelle presenti nel copr	iferro o nel ricoprimento di inserti metallici, ma in r lassificazione dell'ambiente circostante può esser	nolti casi su	può considera	are che tali			
		nente circostante.in questi casi la c estruzzo e il suo ambiente.	iassinsazione dell'ambiente dicostante può esser	e aueguata.	Guesio puo no	ni essere ii			
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30				
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi,fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30				
5 a	хсз	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35				
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40				
3 Corrosi	one indotta d	a cloruri esclusi quelli į	provenenti dall'acqua di mare						
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35				
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40				
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente cloruri e l'altra esposta all'aria. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45				

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esempio	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)		
4 Corrosione indotta da cloruri presenti nell'acqua di mare								
4 a 5 b	XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare .	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40			
	XS2 Permanentemente Calcestruzzo armato ordinario o precompresso di strutture marine		precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45			
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45			
5 Attacco	dei cicli di q	elo/disgelo con o senza	disgelanti *					
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40			
3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0		
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali in edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0		
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0		
6 Attacco	chimico**							
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35			
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40			
5 c	ХАЗ	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contenitori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45			

^{*)} Il grado di saturazione della seconda colonna riflette la relativa frequenza con cui si verifica il gelo in condizioni di saturazione:

moderato: occasionalmente gelato in condizione di saturazione;
 elevato: alta frequenza di gelo in condizioni di saturazione.

^{**)} Da parte di acque del terreno e acque fluenti.

4.1.2.2.4.3 Sensibilità delle armature alla corrosione

Le armature si distinguono in due gruppi:

- armature sensibili;
- armature poco sensibili.

Appartengono al primo gruppo gli acciai da precompresso.

Appartengono al secondo gruppo gli acciai ordinari.

Per gli acciai zincati e per quelli inossidabili, si può tener conto della loro minor sensibilità alla corrosione sulla base di documenti di comprovata validità.

4.1.2.2.4.4 Scelta degli stati limite di fessurazione

Nella Tab. 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ize	Condizioni	Combinazione di	Armatura			
Gruppi di Ssigenze	ambientali	azioni	Sensibile		Poco sensibile	_
Gı			Stato limite	w _k	Stato limite	w _k
Δ	Oudinouio	frequente	apertura fessure	≤ w ₂	apertura fessure	$\leq w_3$
Α	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
D	Λ	frequente	apertura fessure	≤ w ₁	apertura fessure	$\leq w_2$
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

 w_1 , w_2 , w_3 sono definiti al § 4.1.2.2.4, il valore w_k è definito al § 4.1.2.2.4.5.

4.1.2.2.4.5 Verifica dello stato limite di fessurazione

Stato limite di decompressione e di formazione delle fessure

Le tensioni sono calcolate in base alle caratteristiche geometriche e meccaniche della sezione omogeneizzata non fessurata.

Stato limite di apertura delle fessure

Il valore caratteristico di apertura delle fessure (w_k) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tab. 4.1.IV.

L'ampiezza caratteristica delle fessure w_k è calcolata come 1,7 volte il prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_k = 1.7 \, \varepsilon_{\rm sm} \, \Delta_{\rm sm} \tag{4.1.14}$$

Per il calcolo di ϵ_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati in documenti di comprovata validità.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

C4.1.6.1.3 Copriferro e interferro

Con riferimento al § 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato in Tabella C4.1.IV, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.IV delle NTC. I valori sono espressi in mm e sono distinti in funzione dell'armatura, barre da c.a. o cavi aderenti da c.a.p. (fili, trecce e trefoli), e del tipo di elemento, a piastra (solette, pareti,...) o monodimensionale (travi, pilastri,...).

A tali valori di tabella vanno aggiunte le tolleranze di posa, pari a 10 mm o minore, secondo indicazioni di norme di comprovata validità.

I valori della Tabella C4.1.IV si riferiscono a costruzioni con vita nominale di 50 anni (Tipo 2 secondo la Tabella 2.4.I delle NTC). Per costruzioni con vita nominale di 100 anni (Tipo 3 secondo la citata Tabella 2.4.I) i valori della Tabella C4.1.IV vanno aumentati di 10 mm. Per classi di resistenza inferiori a C_{\min} i valori della tabella sono da aumentare di 5 mm. Per produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di 5 mm.

Per acciai inossidabili o in caso di adozione di altre misure protettive contro la corrosione e verso i vani interni chiusi di solai alleggeriti (alveolari, predalles, ecc.), i copriferri potranno essere ridotti in base a documentazioni di comprovata validità.

Tabella C4.1.IV - Copriferri minimi in mm

			barre da c.a. barre da c.a. cavi da c.a.p. lementi a piastra altri elementi elementi a piastra		barre da c.a. elementi a piastra			ri da c.a.p. ri elementi		
C _{min}	Co	ambiente	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

La classe di resistenza minima C_{min} indicata in tabella deve comunque intendersi riferita alla pertinente classe di esposizione di cui alla UNI EN 206:2016 richiamata nella Tabella 4.1.III delle NTC.

4.1.2.2.5 Stato limite di limitazione delle tensioni

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$, deve rispettare la limitazione seguente:

 $\sigma_{c,max} \le 0.60 f_{ck} \text{ per } \underline{\text{combinazione caratteristica}}$ [4.1.15]

 $\sigma_{c,max} \le 0.45 f_{ck}$ per combinazione quasi permanente. [4.1.16]

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra prescritti vanno ridotti del 20%.

4.1.2.2.5.2 Tensione massima dell'acciaio in condizioni di esercizio

La tensione massima, $\sigma_{s,max}$, per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

 $\sigma_{s,max} \le 0.8 \ f_{vk}$ [4.1.17]

C4.1.2.2 STATI LIMITE DI ESERCIZIO

C4.1.2.2.2 Stato limite di deformazione

Il calcolo della deformazione flessionale di solai e travi si effettua, in genere, mediante integrazione delle curvature, tenendo conto della viscosità del calcestruzzo e, se del caso, degli effetti del ritiro. Si considera lo stato non fessurato (sezione interamente reagente) per tutte le parti della struttura per le quali, nelle condizioni di carico considerate, le tensioni di trazione nel calcestruzzo non superano la sua resistenza media f_{ctm} a trazione. Per le altre parti si fa riferimento allo stato fessurato, potendosi considerare l'effetto irrigidente del calcestruzzo teso fra le fessure.

Al riguardo, detto p_i il valore assunto dal parametro di deformazione nella membratura interamente fessurata e p il valore assunto da detto parametro nella membratura interamente reagente, il valore di calcolo p^* del parametro è dato da

$$p^* = \xi p_f + (1 - \xi)p$$
 [C4.1.2]

in cui

$$\xi = 1 - c\beta^2 \tag{C4.1.3}$$

Nella [C4.1.3] si assume $\beta = M_f / M$ (rapporto tra il momento di fessurazione M_f e il momento flettente effettivo) o $\beta = N_f / N$ (rapporto tra la forza normale di fessurazione N_f e la forza normale effettiva), a seconda che la membratura sia soggetta a flessione o a trazione, e il coefficiente c assume il valore 1, nel caso di applicazione di un singolo carico di breve durata, o il valore 0,50, nel caso di carichi permanenti o per cicli di carico ripetuti.

Per quanto riguarda la salvaguardia dell'aspetto e della funzionalità dell'opera, <u>le frecce a lungo termine di travi e solai, calcolate</u> sotto la condizione quasi permanente dei carichi, non dovrebbero superare il limite di 1/250 della luce.

In relazione all'integrità delle pareti portate divisorie e di tamponamento, le frecce di travi e solai, sotto la condizione quasi permanente dei carichi, non dovrebbero superare il limite di 1/500 della luce. In tale verifica la freccia totale calcolata può essere depurata della parte presente prima dell'esecuzione delle pareti. Detto valore si riferisce al caso di pareti divisorie in muratura. Per altri tipi di pareti si dovranno valutare specificatamente i limiti di inflessione ammissibili.

Per travi e solai con luci non superiori a 10 m è possibile omettere la verifica delle inflessioni come sopra riportata, ritenendola implicitamente soddisfatta, se il rapporto l/h tra luce e altezza rispetta la limitazione

$$\frac{l}{h} \le K \left[11 + \frac{0.015 \, f_{ck}}{\rho + \rho'} \right] \left[\frac{500 \, A_{s,eff}}{f_{vk} A_{s,calc}} \right] \tag{C4.1.4}$$

Per travi e solai con luci non superiori a 10 m è possibile omettere la verifica delle inflessioni come sopra riportata, ritenendola implicitamente soddisfatta, se il rapporto l/h tra luce e altezza rispetta la limitazione

$$\frac{l}{h} \le K \left[11 + \frac{0.015 \, f_{ck}}{\rho + \rho'} \right] \left[\frac{500 \, A_{s,eff}}{f_{vk} A_{s,calc}} \right] \tag{C4.1.4}$$

dove f_{ck} e f_{yk} sono espressi in MPa, ρ e ρ' sono i rapporti tra armatura tesa e compressa, rispettivamente, $A_{s,eff}$ ed $A_{s,calc}$ sono, rispettivamente, l'armatura tesa effettivamente presente nella sezione più sollecitata e l'armatura di progetto nella stessa sezione, e K è un coefficiente correttivo, che dipende dallo schema strutturale.

Per sezioni a T aventi larghezza dell'ala almeno tre volte maggiore dello spessore dell'anima, i valori dati dalla [C4.1.4] devono essere ridotti del 20%.

Per travi e piastre nervate caricate da tramezzi che possano subire danni a causa di inflessioni eccessive, i valori dati dalla [C4.1.4] devono essere moltiplicati per il rapporto 7/l essendo l la luce di progetto in m.

Per piastre non nervate la cui luce maggiore l'ecceda 8,5 m, caricate da tramezzi che possano subire danni a causa di inflessioni eccessive, i valori dati dalla [C4.1.4] devono essere moltiplicati per il rapporto 8,5/l, con l in m.

I valori da attribuire a K nel caso di calcestruzzo molto sollecitato (ρ =1,5%) o poco sollecitato (ρ =0,5%) sono riportati in Tabella

C4.1.I, insieme con i valori limite di l/h calcolati assumendo
$$f_{ck}$$
=30 MPa e $\left[\frac{500A_{s,eff.}}{f_{yk}A_{s,calc.}}\right]$ =1.

Tabella C4.1.I- Valori di K e snellezze l/h limite per elementi inflessi di c.a. in assenza di compressione assiale

Sistema strutturale	K	Calcestruzzo molto sollecitato ρ=1,5%	Calcestruzzo poco sollecitato ρ=0,5%
Travi semplicemente appoggiate, piastre incernierate mono o bidirezionali	1,0	14	20
Campate terminali di travi continue o piastre continue monodirezionali o bidirezionali continue sul lato maggiore	1,3	18	26
Campate intermedie di travi o piastre continue mono o bidirezionali	1,5	20	30
Piastre non nervate sostenute da pilastri (snellezza relativa alla luce maggiore)	1,2	17	24
Mensole	0,4	6	8

C4.1.2.2.4 Stato limite di fessurazione

C4.1.2.2.4.5 Verifica dello stato limite di fessurazione

Calcolo dell'ampiezza delle fessure

L'ampiezza caratteristica di verifica delle fessure, w_k può essere calcolata con l'espressione:

$$w_{\rm k}$$
 = 1,7 $\varepsilon_{\rm sm} \Delta_{\rm sm}$

[C4.1.5 e 4.1.14]

dove:

 ε_{sm} è la deformazione unitaria media delle barre d'armatura;

 $\Delta_{\rm sm}$ è la distanza media tra le fessure.

La deformazione unitaria media delle barre ε_{sm} può essere calcolata con l'espressione:

$$\epsilon_{sm} = \frac{\sigma_s - k_t \frac{f_{ctm}}{\rho_{eff}} (1 + \alpha_e \rho_{eff})}{E_s} \ge 0, 6 \frac{\sigma_s}{E_s}$$
[C4.1.6]

in cui:

 σ_s è la tensione nell'armatura tesa considerando la sezione fessurata;

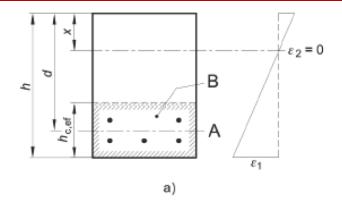
 α_e è il rapporto *Es/Ecm*;

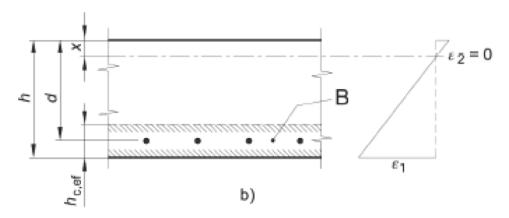
 ρ_{eff} è pari a $A_s/A_{c,eff}$

 $A_{C,eff}$ è l'area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{C,ef}$, dove $h_{C,ef}$ è il valore minore tra 2,5 (h–d), (h–x)/3 o h/2 (vedere Figura C4.1.10); nel caso di elementi in trazione, in cui esistono due aree efficaci, l'una all'estradosso e l'altra all'intradosso, entrambe le aree vanno considerate separatamente;

k_t è un fattore dipendente dalla durata del carico e vale:

 $k_t = 0.6$ per carichi di breve durata,


 $k_t = 0.4$ per carichi di lunga durata.


Legenda

- a) Trave
- A Livello del baricentro dell'acciaio
- B Area tesa efficace, A_{c,eff}

- b) Piastra
- B Area tesa efficace, A_{c,eff}

- c) Elemento in trazione
- B Area tesa efficace di estradosso, A_{ct,eff}
- C Area tesa efficace di intradosso, A_{cb.eff}

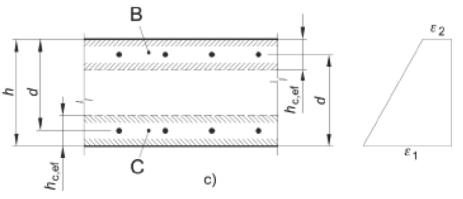


Figura C4.1.10- Area tesa efficace. Casi tipici

Nei casi in cui l'armatura sia disposta con una spaziatura non superiore a $5(c + \phi/2)$ (vedi Figura C4.1.11), la distanza media tra le fessure, Δ_{Sm} , può essere valutata con l'espressione:

$$\Delta_{\rm sm} = (k_3 c + k_1 k_2 k_4 \frac{\phi}{\rho_{\rm eff}})/1.7$$
 [C4.1.7]

in cui:

è il diametro delle barre. Se nella sezione considerata sono impiegate barre di diametro diverso, si raccomanda di adottare un opportuno diametro equivalente, ϕ_{eq} . Se n_1 è il numero di barre di diametro ϕ_1 ed n_2 è il numero di barre di diametro ϕ_2 , si raccomanda di utilizzare l'espressione seguente:

$$\phi_{\text{eq}} = \frac{\mathbf{n}_1 \phi_1^2 + \mathbf{n}_2 \phi_2^2}{\mathbf{n}_1 \phi_1 + \mathbf{n}_2 \phi_2}$$
 [C4.1.8]

è il ricoprimento dell'armatura;

 $k_1 = 0.8$ per barre ad aderenza migliorata,

= 1,6 per barre lisce;

 $k_2 = 0.5$ nel caso di flessione,

= 1,0 nel caso di trazione semplice.

In caso di trazione eccentrica, o per singole parti di sezione, si raccomanda di utilizzare valori intermedi di k_2 , che possono essere calcolati con la relazione:

$$\mathbf{k}_2 = (\varepsilon_1 + \varepsilon_2)/2\varepsilon_1 \tag{C4.1.9}$$

in cui ϵ_1 ed ϵ_2 sono rispettivamente la più grande e la più piccola deformazione di trazione alle estremità della sezione considerata, calcolate considerando la sezione fessurata.

$$k_3 = 3.4$$

$$k_4 = 0.425.$$

Nelle zone in cui l'armatura è disposta con una spaziatura superiore a $5(c + \phi/2)$ (vedi Figura C4.1.11), per la parte di estensione $5(c + \phi/2)$ nell'intorno delle barre la distanza media tra le fessure, $\Delta_{sm'}$ può essere valutata ancora con l'espressione C4.1.7:

Nella parte rimanente la distanza media tra le fessure, Δ_{sm} , può, invece, essere valutata con l'espressione:

$$\Delta \sigma \mu = 0.75 (h - x)$$
 [C4.1.10]

in cui:

h ed x sono definite in Figura C4.1.10;

(h-x) è la distanza tra l'asse neutro ed il lembo teso della membratura.

Legenda:

- A Asse neutro
- B Superficie del calcestruzzo teso
- C Zona in cui si applica la formula [C.4.1.9]
- D Zona in cui si applica la formula [C.4.1.12]

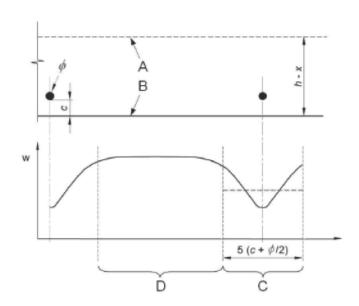


Figura C4.1.11- Ampiezza delle fessure, w, in funzione della posizione rispetto alle barre di armatura

Verifica della fessurazione senza calcolo diretto

La verifica dell'ampiezza di fessurazione per via indiretta può riferirsi ai limiti di tensione nell'acciaio d'armatura definiti nelle Tabelle C4.1.II e C4.1.III. La tensione σ_s è quella nell'acciaio d'armatura prossimo al lembo teso della sezione calcolata nella sezione parzializzata per la combinazione di carico pertinente (v. Tabella 4.1.IV delle NTC). Per le armature di pretensione aderenti la tensione σ_s si riferisce all'escursione oltre la decompressione del calcestruzzo. Per le sezioni precompresse a cavi posttesi si fa riferimento all'armatura ordinaria aggiuntiva.

Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo φ delle barre (mm)					
σ _s [MPa]	w3 = 0,4 mm	$w_2 = 0.3 \text{ mm}$	w ₁ = 0,2 mm			
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	-			

Tabella C4.1.III -Spaziatura massima delle barre per il controllo di fessurazione

Tensione nell'acciaio	Spaziatura massima s delle barre (mm)					
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	$w_2 = 0.3 \text{ mm}$	w ₁ = 0,2 mm			
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100	-			
360	100	50	-			

C4.1.2.2.5 Stato Limite di limitazione delle tensioni

La verifica delle tensioni in esercizio si può effettuare nelle usuali ipotesi di comportamento lineare dei materiali, trascurando la resistenza a trazione del calcestruzzo teso.

- Nei calcoli per azioni di breve durata può assumersi il valore del modulo di elasticità del calcestruzzo E_c dato dalla [11.2.5] delle NTC, ed un modulo di elasticità dell'acciaio E_s pari a 210.000 N/mm². Tale valore può essere opportunamente ridotto nel caso di fili, trecce e trefoli da calcestruzzo armato precompresso.
- Nel caso di azioni di lunga durata, gli effetti della viscosità del calcestruzzo si possono tenere in conto riducendo opportunamente il modulo di elasticità E_c mediante l'introduzione del coefficiente di viscosità ϕ definito nel § 11.2.10.7 delle NTC.
- Nei casi in cui si ritenga possibile effettuare un'unica verifica indipendente dal tempo, si può assumere un coefficiente di omogeneizzazione n fra i moduli di elasticità di acciaio e calcestruzzo, pari a n = 15.