CaLcuLus 2 — FinaL Exam

Exercise 1. Consider the Cauchy problem

y(1) =0.
1) Determine the solution.

ii) Determine the domain of definition ]a, b[ of the solution and the limits of y(z) when t — a and
t — b.

Exercise 2. Let
D = {(x,y,z) eR’ : xX>+y*+= 1+xy}.
i) Show that D # () is the zero set of a submersion.
ii) Is D compact?
iii) Determine, if any, points of D at min/max distance to 0.

Exercise 3. Let
D = {(x,y,z) eR’ : (+y) <z <242 —yz}.

i) Draw D N {x = 0} and deduce a figure for D.
ii) Compute the volume of D.

Exercise 4. Let
v(x,y) :=e (ycosx +xsinx), (x,y) € R>.
i) Determine all possible u = u(x,y) in such a way that f(x +iy) := u(x,y) + iv(x,y) be
C—differentiable on R?.
ii) Express the f found at i) as function of complex number z, that is f = f(z).

Exercise 5. State the Green formula. Let f € € (R?) with 9; f, 0;(0;f) € € (R?), forall i, j = 1,2.
Prove that

fVf=0.

oD
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Exercise 6. Consider the equation
, e’ =1
y =
i) Determine the constant solutions.
ii) Determine the solution of the Cauchy problem y(1) = —1.
iii) Determine in particular the domain of definition ]a, b[ of the solution and its limits when t — a+

and t — b—.

, t#0.

Exercise 7. Let
D:={(x,y,2) €eR> : X>+y? -2 =1, y?+z=1}.
i) Show that D # @ is the zero set of a submersion (g, g2).
ii) Is D compact?
iii) Determine, if any, points of D at min/max distance to 0.

Exercise 8. Let
D:={(x,y,2) eR® : ¥ +y? <z<1-y?}.
i) Draw D N {x = 0} and D N {y = 0}. Is D invariant by some rotation? Justify your answer. Draw
D as best as you can.
ii) Compute the volume of D.

Exercise 9. Let
> ax* + by? Xy
T (x2 + y2)2’ (x2 +y2)2
on D = R?\{(0,0)}. Here a, b € R are constants.
i) Determine all possible values for a, b in such a way F be irrotational on D.
ii) Determine values of a, b, ¢ in such a way F be conservative on D, in this case determining also
all the possible potentials.

Exercise 10. What are the Cauchy—Riemann equations (or conditions)? State precisely. Then, let
f=u+iv(u=Refandv=1Im f) be a C differentiable function on the entire plane C. Assume that
also f =u —iv = u +i(—v) is C differentiable on C. What conclusion can you draw on f?
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Exercise 11. Consider the second order equation
y// _ 2y1 +y= 621.
i) Determine the general integral.

ii) Solve the Cauchy problem y(0) = 1, y’(0) = 0.
iii) For which a € R there exists a solution such that y(0) = 0 and y(1) = a?

Exercise 12. Let
fy) = (P +yD)7 x4y (xy) e R
i) Compute, if it exists, imy y) e, f (X, ).
ii) Discuss existence of min/max of f on R? and find the eventual min/max points of f. What about

f(R?)?

Exercise 13. Let D := {(x,y,2) € R?® : 22 +2y? < z<4-3(x*>+2y?)}.
i) Draw the set D. Someone says: D is a rotation volume with respect to the z—axis”. Is it true or
false?
ii) Compute the volume of D.

Exercise 14. Let
u(x,y) == x> +y>.
i) Determine, if any, v = v(x, y) in such a way that f(x+iy) := u(x, y)+iv(x, y) be C—differentiable
on C.
ii) For the f you found at i), write f = f(z) as function of z € C.

Exercise 15. State the Lagrange multipliers theorem. Then, consider a curve y = f(x) defined by a
function f = f(x) : R — R, f € €!'(R). Let P = (a, b) a point in the cartesian plane not belonging to
the curve y = f(x). Prove that if Q is a point of the curve y = f(x) where the distance to P is minimum,
then the segment P — Q is perpendicular to the tangent to f.



Jury 2023

Exercise 16. Consider the differential equation
’r _ r—1 y 2
oAy
i) Show that it is a separable variables equation and determine all possible constant solutions.
ii) Determine the solution of the Cauchy Problem with passage condition y(0) = 2.

Exercise 17. Let I' ¢ R3 the set described by equations

x2+y2:1,
I :

2 2

x“+z-=xz+1.

1) Show that I" # 0 is the zero set of a submersion on I'.
ii) Is I" compact? Justify your answer.
iii) Determine points of I" at minimum/maximum distance to (0, 0, 0) (if any).

Exercise 18. Let D := {(x,y,z) € R? : 1 - (x?2+y?) <z <1 - (x2+y?)}.
i) Draw D N {y = 0} and deduce a figure for D.
ii) Compute the volume of D.

Exercise 19. Let f = u + iv where
u(x,y) = ax’ + bxy +cy*, v(x,y):=xy, x+iy€C.
(a, b, c are real constant)

i) Determine all possible a, b, ¢ such that f be holomorphic on C.
ii) For values found at i), determine the analytical expression for f = f(z) in terms of variable
z€C.

Exercise 20. Let dj,...,dn € R? be N fixed vectors, d; # djfori # j. Define

N
F&E =D 1% -l
i=1

J

Discuss the problem of determining, if any, points of min/max for f on R¢. Justify carefully, state all
general facts you use.
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Exercise 21. Consider the equation
y' =ylogy.
i) Determine, if any, all constant solutions.
ii) Solve the Cauchy problem with y(0) = a.
iii) Determine, if any, values of a such that lim; .., y(#) = 0.

Exercise 22. Let D := {(x,y,z) e R®: x?=y>+7%, x?+y>=xy+1}.
1) Show that D is the zero set of a submersion on D itself.
ii) Is D compact? Justify your answer.
iii) Determine, if any, the points of D at the min / max distance to the origin.

Exercise 23. Consider the vector field

F(x,y) :=(

ax+by cx+dy
TR ey
1) Find all possible values of a, b, ¢, d € R such that F is irrotational.

ii) Find all possible values for a, b, ¢, d such that F is conservative. For such values, determine the
potentials of F.

, (x,y) € RA\{(0,0)}.

Exercise 24. Let D := {(x,y,z) € R? : x> +4y> - 7> < 1, 0 < z < 1}. Draw D and calculate its
volume.

Exercise 25. Let f = u + iv be holomorphic on D c C. Define
8(z2):=f(2),zeD:={weC : we D}

i) Express real and imaginary part of g in terms of real and imaginary parts «# and v of f.
ii) Use i) to discuss whether g is holomorphic on D or not.
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Exercise 26. Consider the differential equation
Y +2y +y=r+1.
i) Determine the general integral of the equation.

ii) Solve the Cauchy problem y(0) = 0, y’(0) = 1.
iii) Discuss the boundary value problem y(0) =0, y(1) = 0.

Exercise 27. Let
D = {(x,y,z) eR? X242 =2 v +(z-2)% = 1}.
i) Show that D # () and it is the zero set of a submersion.
ii) Is D compact? Prove or disprove.
iii) Find points of D at min/max distance to 0.

Exercise 28. Let D := {(x,y) e R? : x> 1, x> < y < 3}.
1) Draw D.

ii) By using the change of variables u = y — x*

3

, vV =y +x’, compute the integral

I x2(y —x3)ey+x3 dxdy.
D

Exercise 29. Let v(x,y) := y®> — 3x%y + 4xy — x, (x,y) € R%. Determine all possible u = u(x, y) such
that

fx+iy) =ulx,y) +iv(x,y),
be holomorphic on C. What is f(z) as a function of z?

Exercise 30. What does it mean that a set C ¢ R is closed? What is the Cantor characterization of
closed sets?
Given a generic set S € R?, we define the frontier of S as the set

3S:={¥eR? : Vr>0, BFrInS+o, BFrIns +a}.

Is 0S always closed? Justify your answer providing a proof if yes, a counterexample if no.
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Exercise 31. Solve the following equation in the unknown z € C:

1
sinh — = 0.
Z

Exercise 32. Consider the set (surface)
D= {32 €R) s = 2uy+y? —x+y =0}

Determine, if any, points of D at min/max distance to the point (1,2, —3). Justify carefully the method
you use.

Exercise 33. Let

1
D = ,V,2) € R : 0<z< ——1.
{(X y:2) ¢ cosh(x? + yz)}

i) Draw D N {x = 0} and deduce the figure of D. Is D closed? Open? Bounded? Compact? Justify
your answer.
ii) Determine the volume of D.
iii) Determine for which values of « the following integral has a finite value:

J @) dxdydz.
D

Exercise 34. Let
u(x,y) = x> +axy?, v(x,y):=bx*y -y, (x,y) e R
i) Determine a, b € R in such a way that f(x +iy) := u(x, y) +iv(x, y) be holomorphic on C.
ii) For values of a, b found at i), express f as a function of the complex variable z.

Exercise 35. Consider a Newton equation of type

my” = F(y).
Suppose that force F' admits a potential, that is F(y) = f’(y). Define the potential energy

E(v) = 3m = ().

i) Prove that E(y,y’) = E(y(2), y’(¢)) is a constant function of ¢. Deduce that y solves a first order
separable variables equation.

ii) Assume m = 1 and let F(y) = =2y — 3y? (elastic force plus viscosity). Determine the motion of
the mass with y(0) = -2, y'(0) = V8.
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Exercise 36. Consider the equation
y" = -9y + 65sin(31).
This equation represents the motion of a unitary mass particle subject to an elastic force (constant of
elasticity kK = —9) and to an external force F(7) = 6 sin(3¢).
i) Determine the general solution of the equation.
ii) Solve the Cauchy problem y(0) = y’(0) = 0.
iii) Describe the long time (that is # — +o0) of the general solution. In particular: are there solutions
for which 31im,_,,, y(¢)? are there solutions which are bounded, that is |y(¢)| < M forallr > 0
for some constant M ? Justify carefully.

Exercise 37. Let
Flxy) =3xy+x2y+xy%, (x,y)eD:={(x,y) eR? : x>0,0<y<1-x}

i) Draw D. Is D closed? open? bounded? compact? Justify carefully.
ii) Discuss the problem of determining min/max (if any) of f on D.

Exercise 38. Leta,b,c,d € R and
- ax+by cx+dy
Fooy) = Ss toroan
()7 (2 y?)
i) Determine a, b, ¢, d € R in such a way that F be irrotational on D.
ii) Determine a, b, ¢, d such that D be conservative on D. For these values (if any), determine all

possible potentials of FonD.
iii) Lety = y(¢) € D be the segment joining (1, 0) to (0, 2). For (a, b, c,d) = (2,0,0,2) compute

jﬁ.
Y

Exercise 39. Let D = {(x,y,2) €R? : 1 = (x> +7>) <y <+l -(x2+22)}.
1) Draw D. Is D a rotation solid?
ii) Compute the volume of D.

) , (x,y)eD := Rz\{(O, 0)}.

Exercise 40. Let f = u +iv : C — C be a C—differentiable function. What are the Cauchy-Riemann
equations? How are these equations relatived to C—differentiability of f? Write a precise statement.
Discuss the following questions:
i) Assume that Re f or Im f is constant. What can be drawn on f?
ii) Assume that | f| is constant. What can be drawn on f? (hint: |f|> = u®> +v> = k...)
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Exercise 41. Consider the equation
Y =y +1).
i) Determine the general integral of the equation.
ii) Determine the solution of the Cauchy problem y(0) = 1.

Exercise 42. Let D = {(x,y,z) €R? : x> +y> =1, x+y+z=1}.
1) Show that D is the zero set of a submersion.
ii) Is D compact?
iii) Determine, if any, min/max points for f(x,y,z) = x> —x+y>+yx+yz—yon D.

D = {(x,y)e]R2 : x2+y2<2x—1/x2+y2}.

i) Is D closed? open? bounded? compact? Justify carefully.
ii) Compute the area of D.

Exercise 43. Let

Exercise 44. Let
u(x,y) == x> — 10x3y? + 5xy*.
i) Determine all possible v = v(x, y) in such a way that f(x+iy) := u(x, y)+iv(x, y) be holomorphic
on C.
ii) For the f found at i), determine the analytical expression of f(z) as function of z € C.

Exercise 45. What does it mean that a set S ¢ R is open? Let f : R4 — R™ be a continuous function
on R4, Prove that the following property holds:

f‘l (S) is open, VS c R™ open.
(recall that f‘l (S) ={¥ eR? : f()_c’) € S}). Hint: suppose that for some S open, f‘l (S) is not open. . .



SoLuTIONS

Exercise 1. i) We have a separable vars eqn, ¥ = a () f(y) where f(y) = y?> —4 and a(t) = % Since
a € € and f € €'. According to a general result, solutions of the differential equation are either constant
or not, in this last case can be determined by separation of variables. Constant solutions are y = C iff
y=0= # iff C% = 4, iff C = +2. Since the solution of CP is y(1) = 0, certainly y is not constant
(otherwise y = +£2). Thus, the solution of proposed CP can be determined by separation of vars:

2 -4 ’ 1 ’ 1
y,:y , & Y =-, & J Y dt=J—dt+C:log|t|+C.
t y2—-4 ¢ y2 -4 t
Now,
y u=y’(t) 1 1 1 1 1 u-20 1 y(t) -2
dt = —du=| - - du = -1 =—1 .
Jy2—4 Ju2—4 " J4(u—2 w2 T A2 T 1 %) 2
In this way, we have the implicit form for the solution
1 y(t) -2
— =log|t| + C.
318 |y 2| = el
Imposing the initial/passage condition we have
1
Zlogl:log|1|+C, — C=0.
Thus, for the solution of the CP we have
1 t)—-2 1) -2 t)—2
Dog (1) ~ log 1], YO -2 4 YO -2 _ a4
4 y(t) +2 y(t)+2 y(t) +2
Since y(1) = 0 we have —1 = +1* = +1, thus the appropriate sign is —, and

y(t) -2 4 4 4 4 1- t4
=1, = t)—2=—t H+2), — H(1+t7) =2(1-¢"), t)y=2 .
SIS ¥(0) (r(0+2) YO (14 =2(1-) Y1) =20
ii) The formula found at i) for y is defined for every ¢t € R. However, since the equation does not make
any sense at ¢ = 0, the solution must be defined either on | — oo, O[ or ]0, +co[. Since y is defined at ¢t = 1
we conclude that the domain of the solution is ]0, +oo[. About limits,

limy(r) =2, lim y(r)=-2. O
t—0 t—+00

Exercise 2. i) For instance (0,0, z) € D iff 72 =1, thus (0,0,+1) e Dand D # 0. D is also the zero
set of g(x,y,z) :=x*+y?>+z> —xy — 1. This is a submersion on D iff

Vg ¢6, onD.
We have
. 2x -y =0,
Vg=0, 2y -x=0, & (x,v,2)=(0,0,0)¢D,
2z =0,

from which it follows that g is a submersion on D.
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i) Certainly, D = {g = 0} is closed (g € €). Is it also bounded? We may see this by using spherical
coordinates:
X = pcos @ sin g,
y=psinfsing, p’=x>+y"+2" =|(x.y.2)|"
Z = pCos .

Then, if (x,y,z) € D we have

1 2
p?=1+p?cosOsinf(sing)® =1+ Epz sin(20) (sin ) < 1+ %
from which

2 2
7 <L o= =yl <2
Thus, D is bounded, hence compact.
iii) We have to minimize/maximize f(x, y, z) = yYx? + y> + z2 or, which is equivalent (same min/max
points), f(x,v,z) = x> + y> + z%. According to i), we are in condition to apply Lagrange multipliers
theorem. According to this result, at min/max points (x, y,z) € D we have

Vix,y,2) 2x 2y 2z
Vf=AVg, — 1k =rk < 2.
Vg(x,y,2) 2x—y 2y—-x 2z

This happens iff all 2 X 2 subdeterminats equal O:
2x(2y —x) = 2y(2x - y) =0,

y2 _ x2 — 0,
2x2z7 —2z(2x —y) =0, = yz =0,
xz=0

2y2z7 —2z(2y —x) =0,
The first leads to y = +x, the second y = 0 (then x = 0) or z = 0. That is we have points (0,0, z) and
(x, £x,0). Now
e (0,0,7) € Diff z2 = 1, that is (0,0, +1).
o (x,+x,0) € D iff 2x2 = 1 £ x2. If +, 2x> = 1 + x%, we get x = =*1, that is points (1, 1,0) and
(-1,-1,0). It —, x2 = %, thus points ( 1 —%,O) and ( L1 O).

\/_5’ _\/_57 Tgs
Prom these we see that (1, 1,0) and (-1, -1, 0) are points at max distance to 0 while (\/%, —‘/%, O) and
11 . L >
(_\/_g’ A’ 0) are points of D at min distance to 0. O

Exercise 3. i) D N {x =0} = {(0,y,2) : +/|y| <z <2-y?}. Thus, in the plane yz, D N {x = 0} is
the plane region between z = +/|y| and the parabola z = 2 — y? (see figure). Since (x, y, z) € D depends
on (x, y) through x? + y2, D is invariant by rotations around the z—axis.



ii) We have

_ _ RF 2—(x2+y?)
/13(D) = JD 1 dxdydz = fm<z<2—(x2+y2) 1 dxdydz = IW<2—(X2+)72) IW 1dz dxdy

o (2 07 2~ )

CcVv
= [ per-pt. 0ct020) (VP = (2= 07)) p dpds.

Now, \/o < 2- p? might be hard to solve. However, here p > 0; 4/p is increasing while 2 — p? decreases.
Since at p = 1 they are equal, we conclude that /p < 2 — p? iff 0 < p < 1. We can continue previous
chain by the RF:

RF 1 2 -1 4 10=1 5,2 10=1
= L)0”(m>—p3—;9”)d9@>=2n(—uﬁﬁ;o—[%} [%5] )

p=0
_ 7
==,

Exercise 4. i) f = u+iv is C—differentiable on C iff u, v are R—differentiable on R? and u, v fulfill the
CR conditions. Clearly v is differentiable. Thus we have to look at u = u(x, y) R—differentiable such that

]

v

O

A=
(=]

:2n(1—

Oxu =0yv=-e"Y(ycosx+xsinx)+e Y cosux,

Oyu =—0xv =—e Y (—ysinx+sinx +xcosx) .
From the first equation,
u(x,y) = J Oxu(x,y) dx+c(y) =—e ” (ysinx — xcosx) +c(y).
We have
dyu = e (ysinx —xcosx) —e Vsinx +¢’(y) =e ¥ (ysinx —xcosx +sinx) + ¢’ (y)
thus dyu = —0,v iff ¢’(y) = 0, that is c(y) is constant. We conclude that
u(x,y)=—e Y (ysinx —xcosx) +c+e” (ycosx +xsinx) .

ii) We have
f =u+iv=—eY (ysinx —xcosx)+ie > (ycosx +xsinx)

=e Y (y(—sinx +icosx)+x (cosx +isinx))
= e (iye™ +xe'™)

= e V(iy+x) = ei(x+iY)(x +iy)=e'?z. O



Exercise 5. Let F := fVf=(foxf, fOyf) =: (F1,F2). According to Green formula,

3§ fVf=¢ F= J (3yF1 — 0y F>) dxdy.
oD oD D
Now, since
ayFl = ay(faxf) = ayfaxf + fayxf, 8xF2 = 8x(f6yf) = axfayf + faxyf
we easily deduce that 8, F — 8, F, = 0 being f € €2(R?). o

Exercise 6. i) We have a separable variables equation y’ = a(t) f(y) where a(t) = % and f(y) =e’-1.
y = Cis asolutioniff 0 = %(ec —1),iff e€ = 1 thatis, C = 0. There is a unique constant solution, y = 0.

ii) Since y(1) = —1, y is not constant. Furthermore, since ¢ € € and f € %!, the solution can be
found by separating vars:
, e’ -1 vy 1 v (1) 1
y = PR — ey—l_;’ — Jey(t)——]dt_ ;dl+C—10g|l|+C.
On the lhs
v () u=l(t) du v=e', u=logv, du=dv|v 1 _ 1 1
.[ey(t)_l dr - e”zl - f v(v-1) dv = I_; + v—1 dv
=log|v—1|-log|v| = log|e';;1|

= log

eY(®) 1
ey (1)

Thus,
ey _ 1

o ’ = log ‘1 T oW
By imposing the initial condition, we find

log =log|t| +c.

c =log(e - 1),
and
1

1
—m =(€—1)|t|, — 1——=i(€—1)l.

ey (1)
A check with the initial condition shows that the sign is —, thus

1
ey(t)

—)t, & l+(e-1i= =eVV — y)=-log(1+(e—1)).

EETGIG

iii) The domain of definition for the solution is

l+(e-1Dt>0, = >- T
e_

However, since at t = 0 the solution cannot be defined (because the equation does not make sense at
t = 0), and the solution is defined on an interval, we conclude that the domain is |0, +oo[. We have

lim y(z) =log1 =0, lim y(f) =—oco. O
t—0+ t—+o0



Exercise 7. i) Point (0,y,0) € D iff y> = 1 and y> = 1, thatis y = 1, so (0,£1,0) € D. D is the
zero set of (g1, 82) = (x> +y> — 22 — 1,y% + 7 — 1). According to the Definition,

Vg | | 2x 2y -2z
Vo | | 0 2y 1

Since this is a 2 X 3 matrix, its rank is < 2 iff all 2 X 2 sub determinant equal 0, or

(g1,g2) is asubmersionon D <= 1k l ] —20onD.

{ *=0, — (0,0,z2),

4xy =0, x=0, y=0,

2x =0, — — =0

2y(-1+2z) =0, 1+22)=0. R

( ) ¥( ) (0, y.~1).
_ 1
Z__§7

Now,

e (0,0,2) € Diff —zZ=landz=1, impossible;

e (0,y,-%) e Diffy* = % and y? = %, impossible.
Vg1

Vg } is less than 2, thus (g1, g2) is a submersion
2

Conclusion: at no point of D the rank of the matrix [

on D.
ii) D is certainly closed being defined by equations involving continuous functions. Is it also bounded?
From the second equation y? = 1 — z, thus y = +/1 — z for z < 1. Plugging this into the first equation

= -(1-2)+1=+z=z2(z+1), = x=xV2+zforz<0V z> 1.

In particular, for z < 0 points

(£Vz2+2z,+V1—2z,z) € D, ¥z < 0.

These points are unbounded because

N(EV2+ 2,2V -z, )P =22 +z2+ (1 —2) + 22 =222+ 1 —> 400, 7 —> —00.

We conclude that D is unbounded.

iii) By ii) D is closed and unbounded. We have to min/max +/x2 + y2 + z2 or, equivalently, f :=
x? + y? + z2, which is continuous on D and such that lime, f = +c0. We conclude f has no max point
on D while it has min points. By i) and according to the Lagrange multipliers theorem, at min point we
must have

Vf 2x 2y 2z
Vf = /llVgl +/12Vg2, — 1k Vgl =| 2x 2y -2z < 3.
Vg 0 2y 1

This happens iff the determinant of the previous jacobian matrix equals 0, that is
8xy(x+72)=0, & x=0,Vv y=0, vV z=—-x.
This leads to points (0, y, z), (x,0, z) and (x, y, —x). Now,

e (0,y,2) eDiffyz—ZQ: 1 andy2+z: 1. From these, z2 + z = 0 that is, z = 0 or z = —1, thus
we have points (0, +1,0) and (0, +12, -1);



e (x,0,2) e Diffx?—z2=1and z = 1, thatis (£V2,0, 1).
e (x,y,—x) € Diff x> +y?> —x?> =1 and y?> — x = 1, that is y> = 1 and x = 0, from which we have
points (0, =1, 0).

Conclusion: min points are among (0, =1, 0), (0, 1\5, -1), (t\/i, 0, 1), and clearly thos at min distance
to 0 are (0, +1,0). O

Exercise 8. 1) Figures are straightforward. D is not invariant by any rotation because one part of the
inequality (z > x? + y?) is invariant by rotations around z—axis while the second part (z < 1 — y?) is not.
ii) We have

l—y2
(D) = J 1 dedydz J J | dz dxdy = J (1 e yz)) dxdy
D X24+y2<1-y? Jx2+y? x242y%<1

- J (1 ~ (2t 2y2)) dxdy
x24+2y2<1

cv x:pcosﬂ:, \/Ey:psiné)J‘ (l—pZ)idp do
0<p<l, 0<0<27 V2

=1 p:l
rRF 21 (! 3 p2° o* \2n
= — p—p dp= \/in [— - |— = —,
‘/5 0 ( 2 p=0 4 p=0 4

Exercise 9. 1) F is irrotational on D iff
ax® + by? _ Xy
y (xz + yz)z - (xz + y2)2

By computing derivatives, the previous is equivalent to

onD.

2by(x% +y?) — (ax® + by?)4y 3 y(x% +y?) —4x?y
(x% +y2)3 S (2P

that is, iff
(2b — 4a)yx* = 2by’ = =332y +y’, & 2b=-1, -1-4a=-3, — b=-

ii) To be conservative, F must be irrotational, hence, necessarily, a = 5 = —b. Thus,

2 2

8f:% =

(xZy2)2°

- 1 x2—y? Xy
= |- . = V 5 —
o o) =¥
yf x2+y2)2
Looking at the second equation,
(x +y)~!

fxy) = J<22ﬂ@““) 3 | et dyew = 35

+c(x) = — +c(x).

1
2(x2 +y?)
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Now, by imposing also the first equation we get
¢’(x) =0, & c¢(x) = constant.

Thus, all the potentials of F are

O

f(x,))) ==

—— +c.
2(x2 +y?) ¢

Exercise 10. About the CR equations see the course notes. Assume that f = u + iv is C differentiable
on C. Then, u, v are R differentiable and the CR eqns hold,

Oxut = 0yv,

Oyu = —0yv.
If also f = u — iv = u + i(-v) is C differentiable, u, —v fulfill the CR eqns,
Oxu = 0y(—v) = =0yv,

Oyu = =0x(—v) = +0yv.
But then, combining the two CR eqns, we get
Oxut = —0yv = —0xu, = 20,u =0,
and, similarly, dyu = 0. From this Vu = 0 hence u is constant. Similar conclusion holds for v. We
conclude that both # and v must be constant, hence also f must be constant.

Alternative solution: you may remind that we have seen that if a C differentiable function is real (or
imaginary) valued, then, necessarily, the function must be constant (this is again a consequence of the
CR eqns). Now, if both f and f are C differentiable, also f + f = 2u is C differentiable. But since 2u is
real valued, f + f (hence u) must be constant. Same conclusion for f — f = i2v, hence v is constant. O

Exercise 11. i) The general integral is
y(#) = ciwi (1) + cowa (1) + u(2),

where (w1, wy) is a fundamental system of solutions for the homogeneous equation y”’ — 2y’ +y = 0 and
u is a particular solution of the equation. The characteristic equation is

P-21+41=0, &= 1-1)*=0, = ,=1.

Therefore, the fundamental system of solutions is w; = e’, wy = te’. To compute the particular solution
u we apply the Lagrange formula

u(t)z(—J%fd:)wl+(J %fdt)wz,

w1 wr e te
W = det = det = (r+ 1)e? —te* = &%,

wi W) el (t+1)e’

where W is the wronskian



and f = f(1) = ¢*. Thus

t t t
u(t) = (—J %62’ dt) e’ + (J %62’ dt) (te') = - (te’ - j e’ dt) e +e'te! = e
e e

Conclusion: the general integral is
y(t) = cre’ + cate’ + e, ci,cr €R.

ii) To solve the Cauchy problem we impose the initial conditions y(0) = 1 and y’(0) = O to the general
integral. First notice that
V' =cre' +ca(r+1)e’ + 2%,

thus
y(0)=1, C1+1=1, Cl=0,
cir+c+2=0
' (0) =0, P ’ ¢ =-2,
and the solution is y(¢) = —2te’ + e*.
iii) Again, we impose the passage conditions
c)+ 1=0, 1 _1,
— CcHh = a—62+€
cie+cre+e?=a, 2 e
We conclude that: for every a € R there exists a unique solution to the proposed problem. O

Exercise 12. i) Clearly f(x,0) = x6 —x* — +c0 for |x| — +0c0. So, if a limit exists it must be = +co.
We check this changing coordinates and using polar coords:

F6y) = p° = (pcos8)* + (psin)* > p° = 2p* — 400, if p = [|(x, )| — +oo.

ii) By i) and a consequence of Weierstrass theorem, f has global minimum on R? but not any
global maximum. Since every point of R? lies in its interior, according to Fermat theorem (clearly
Ocf = 6x(x? + %)% — 4x> and oyf = 6y(x% + y?)2 + 4y are both continucius on R?, hence f is
differentiable on R? according to the differentiability test), at min we have V f = 0. Now,

R ox(x2+y%)? —4x3 =0, x (6(x2 +y%)? —4x?) =0,
V=0, < —
6y(x>+y3)2+4y3 =0 y (6(x2 +y%)2 +4y?) =0,
Now, looking at second equation, we see that either y = 0 or 6(x? + y?)> + 4y?> = 0. In the second case
we obtain trivially x = 0 and y = 0, thus the point (0, 0). Plugging y = 0 into the first equation we get

2
x(6x4—4x2)20, — x3(3x2—2):0, — x:O,Vx:J_r\/;

Thus we have again (0, 0) and two more points (i\/g , 0). Since f(0,0) = 0 while

2 8 4 28
f(i\/;,()) :ﬁ_§ :—E <f(0,0) =0,
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we conclude that (i\/g , 0) are global minimums. Finally, since R? is connected,

28
R?) = |-=.,+c0|. O
£ = |22, o0
Exercise 13. ii)
A43(D) = fx2+2y2<z<4—3(x2+2y2) 1 dxdydz
RF 4-3(x242y?)

1 dz dxdy

x24+2y2<4-3(x2+2y?) Jx2+2y2

— 2 2
= [ancsieimn 4 (1= (2 +2y%) dxdy.

Noticed that x? + 2y? < 4 — 3(x? +2y?) iff x> + 2y% < 1, we have

o) = |

x24+2y2<1

4 (1 g +2y2)) dxdy.
Changing variables to adapted polar coordinates

X =pcosb, \/Ey = psiné,
we have

A3(D) :J

0<p<l, 0<0<2n

1
4(1=p2) L dpao ¥ B2 —3d=8—"(1—1)=4—”.
(p)\/ip ﬁjo(pp)p\/izél N

Exercise 14. i) Let u = x> + y>. From CR equations, v = v(x,y) is such that f = u + iv is
C—differentiable iff u, v are R—differentiable and CR equations hold,

Oxut = 0yv,

Oyu = —0xv.
Clearly u is R—differentiable. Thus we seek for v R—differentiable such that
Oxv = —0yu = =2y,

Oyv = Oxu = 2x.

From the first equation v(x, y) = — f 2y dx +c(y) = —2xy + ¢(y). Plugging this into the second equation
we have d,v = —=2x + ¢’(y) = 2x, that is ¢’(y) = 4x, which is impossible since ¢ does not depend on y.
We conclude that such v does not exist.

ii) Since there is no v such that f = u + iv is C—differentiable, there is no f to be found. ]

Exercise 15. See notes for the statement. We may formally set the optimization problem in the
following way. The set y = f(x) is also f(x) —y = 0. Setting g(x,y) := f(x) —y we see that g is a
submersion on {g = 0}. Indeed Vg = (0,8, 0y8) = (f'(x),—1) # 0, whatever is x. Let now

d(x,y) = (x —a)* + (y — b)%,
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the square of distance from (a, ») to (x, y). At minimum (x, y) on the curve, thatis y = f(x), according
to Lagrange theorem we have
Vd =aVg = A(f'(x),-1).
Since
Vd=(2(x-a),2(y-b)) =2(x-a,y-b) =20 - P,
we have A
Q -P= E(f/(x)’ _1)
Now, since the tangent direction to y = f(x) at point (x, f(x)) is (1, f'(x)), and clearly (f’(x),—1) L
(1, f’(x)), we have that
Q-PI (f'(x),-1) L (1, f'(x)) || tangentto f,
we obtain the conclusion. O

Exercise 16. i) The equation can be written as

’ t 1_y2
= = a(t ,
Y = a(n /()
with obvious definition of @ and f. y = C is a solution iff
t 1-C?
0=y = . 1-C*=0, & C=x=l.
YT1ve C

i) Since y(0) = 2, y cannot be constant (otherwise: y = %1 thus, in particular, y(0) = =1 but y(0) = 2).
Therefore, y can be determined by separation of variables:

y ! y ! 1 2
= , = dt = dt+c==1log(l1+¢) +c.
-2 T 142 Jl—y2y J1+t2 5 log(1+17)

Now,

Yy , u=y(t), d_u:y’(t)dt u _ 1 2 1 )
Jl—yzy dt = Jl_uzdu——ilogll—u|——§10g|1—y(t) l,

hence
Lol =y = & 2 ] = — 2
210g|1 y()| = 210g(1+t Y+c, = log|l-y()°|=—-log(l+¢t")+c.
(we relabeled 2c¢ by ¢). Imposing y(0) = 2,

log3=—-logl+c, < c=1log3.

Therefore 3
1—y()? = ,
1=y =
that is
1-y()?=+ :
y(®) 1+
When ¢ = 0 lhs is —3, thus sign is — and
3 3
2
N =l+ ——, =141+ ——,
Y0 14172 y(0) 14172
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and, again by imposing y(0) = 2, we see that sign is +. O
Exercise 17. i) We have (x,y,0) € T'iff x> + y> = 1 and x*> = 1, thus x = +1 and y? = 0, hence

(x1,0,0) e T. Now, " = {g; = 0, g2 = 0}, where g| = x>+ y> — 1, and g5 = x> + z2 — xz — 1. Clearly
81,82 € €' and (g1, g») is a submersion on I iff

Vgi 2x 2y 0
rank = rank =2, V(x,y,z) €T.
Vgo 2x—-z 0 2z—x
This is false iff all 2 X 2 submatrices have determinant =0, that is
2y(2x —z) =0,
2x(2z —x) =0,
2y(2z—x) =0.

Working on the first equation, we have the alternatives y = 0 or 2x — z = 0. In the first case, the system
reduces to x(2z — x) = 0 that is x = 0 (points (0,0, z)) or x = 2z (points (2z,0, z)). In the second case,
the system reduces to

z=2x,
3x2=0, < (0,y,0).
3yx =0,

Thus, rank is less than 2 at points (0,0, z), (2z,0, z) and (0, y,0). Now:

e (0,0,7) e I'iff 0 = 1 (first condition), impossible;
e (22,0,7) € Tiff 422 = 1 and 5z% = 2z + 1, that is z* = ;lt and 7% = % which are impossible
together.
e (0,y,0) e Tiff y> = 1 and 0 = 1, which is, again, impossible.
Conclusion: none of points where rank is ;2 belong to I, this meaning that rank =2 on I', hence (g1, g2)
is a submersion on I'.
ii) Clearly I is closed because defined by equations involving continuous functions. Boundedness:

. . . 2.2
from first equation we deduce x?, y?> < 1. From second equation, recalling that ab < £ ;b we have

x2+72 x2+ 72
+1, =

2 2

from which, in particular, z2 < 2. Therefore ||(x,y,z)|| = Vx2+y2+22 < VI+1+2 = V4 = 2, for
every (x,vy,z) € I'. Conclusion: I' is bounded, hence compact.

iii) We have to minimize/maximize f(x,y, z) = Vx2 + y2 + z2 or, equivalently, f(x, y,z) = x> +y?+z°.
By ii), I' is compact and obviously f € &, thus existence of min and max for f is ensured by Weierstrass’
theorem. To determine min/max points we apply Lagrange’s thm. According to i), this thm can be applied
on I'. We deduce that, at min/max points (x, y,z) € T,

Vf 2x 2y 2z

Vf=A4Vg +A,Vgy, & rank| Vg | = 2x 2y 0
Vg, 2x—-z 0 2z-x

W+t =xz+1<

<1,

Il
»



21

or, equivalently, the determinant of this last matrix equals 0. We obtain
2z (-2y(2x—2)) =0, < yz(2x-2)=0, < y=0,vz=0, Vz=2x.

Thus possible min/max points are among points (x, 0, z), (x, y,0) and (x, y, 2x). Now,

e (x,0,z) € Tiffx?> = 1 and x> + z> = xz + 1, or, equivalently, x> = 1 and z> = xz+ 1. Forx = 1 we
1£V5 l+\f

getz> = z+ 1, thatis z = ==, namely points (1,0, 2). Forx = —1 we get z2 = —z + 1, that is
z= l+‘f , namely pomts( 1,0, _1;().
. (x,y,O) e T'iff x> + y2 = 1 and x> = 1, that is x = =1 and y*> = 0, namely points (+1 0,0).
o (x.3.2x) € Tiffx* +y? = 1 and x? + 4x* = 247 + 1, from which x* = 3, x = £ = and y* = 3,
= 2 2 2 _2 i
y= J_r\/7 thus we get points (\f, _\/;, \5) and ( \f’i\/; \/5) (4 points).
We have

2 2
o £1,0,558) = 14 (155) = 0y 0, 1585 = 14 (55) 2 102 i4e1,0,0) = 1

f(\f,i\/z,\%):%+%+‘3—‘:%andf(—%,i\/g,—%)—%+

From this we see that (1,0, 1+2\F5 ) and (-1,0, _1;‘5) are maximum points while (+1,0,0) are min
points. O

7

3

SS[\S]

+

Wl

Exercise 18. ii) D is closed (because defined by large inequalities involving continuous functions) and

bounded (the root imposes x? + y? < 1 and, consequently, 0 < 1 — (x> +y?) < z < /1 — (x2 +y?) < < VI,
that is O < Z 1). Thus D is compact, hence 1p is integrable on D. Furthermore, noticed that, calling

p*=x*+y2,
1-p<yfl-p2, = 4Jl-p2<1,

which is always true, thus 1 — (x? +y?) < 4/1 — (x2 + y2) always when defined. Then

RF VI-(x2+y?)
Vol D = [, 1dxdydz = fx2+y2<1 Il—(x2+y2) 1 dz dxdy

= [y (VT= G730 = (1= (2 +%) ) dady

pol. coords

[0<os2m, 0<pat ( I=p>=1+p )p dpdd

I

ISEN

4= - 5]+ [

F 1
= 2r [, p(0=pH'2—p+p*dp=2n o
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Exercise 19. i) In order f = u + iv is holomorphic on C we need that u,v € €' (true, u and v are
polynomials) and they fulfill the CR equations:

Oxut = 0yv, 2ax + by = x, 2a=1, b =0,
= V(x,y) eR%,
Oyu = —0yv, bx +2cy = -y, b=0, 2¢c = -1.
Thus,
1 1
u = E)Cz — Eyz, vV =XY,

and f = u +iv is holomorphic on C.
i1) Notice that
1, 2

1 1 1
f:u+iv:§x —§y2+ixy:§(x2—y2+i2xy):E(x+iy)25%, zeC. O

Exercise 20. Clearly f € €(R¢) and moreover f > O (trivial) and

ldim f(X) = +co.

X—004

Just notice that f(X) > ||X — @,]|> — +oco when ¥ — ooy. Thus f cannot have a maximum but it has a
minimum according to Weierstrass’ thm. Now, f is differentiable on R<,

N
Vf=) VIE-a;l?
j=1
and
VIE =17 = (11 - @11 allE - @11
S0, writing
d d
IE-a;l? =) (e —aj0? = Gl =a17 =6 ) (v —aj)? =20xi - a;.),
k=1 k=1
we deduce
VIE—a;lI* = (201 —a;1), 2002 — ajo, ..., 2(xq — aj.q)) = 2(% - ;).
Therefore, Vf € € and f is differentiable. According to Fermat thm, at min point we must have
. N N _ | N
Vi=0, Zz(f—zzj) =0, Nz—zcij =0, & ¥i= NZZ’J" O
J=1 J=1 j=1

Exercise 21. i) y = C is a solution iff 0 = Clog C, from which C > 0 (to be log C well defined), thus
logC =0, thatis C = 1.

i) If y(0) = 1, then y(¢#) = 1 (constant solution. For a # 1 (but a > 0 because of the equation),
solution is non constant and it can be determined by separation of variables:

y=ylogy, Y 1, J Y dr=1+c.

ylogy ylogy
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Since

’ - - 1 1 ’
J Y dr" v, du y(t)dt‘[ du:J (log u) du =log|logu| =log |log y(¢)|.
ylogy ulogu logu

Therefore,
log|logy(?)| =t +c.

By imposing y(0) = a we have ¢ = log|logal, hence
|logy(2)| = |logale’, & logy(t) =+(loga)e’.
Because of the initial condition we have log y(¢) = (log a)e’, hence
y(1) = eoea)e’
iii) We have lim,_,, y(f) = O iff loga < 0, thatis a < 1. O

Exercise 22. i) Let g, :=x>—y?>—z>and g» := x>+ y> —xy — 1. Then, g = (g1, g2) is a submersion
on D iff rkg’(x, y,z) =2 for all (x,y,z) € D. Now,

Vgi 2x -2y -2z 2x(2y —x) +2y(2x - y) =0,
kg’ (x,y,2) =tk =rk <2, &= 4 22(2x-y) =0,
Vgo 2x—-y 2y-x 0 2z(2y —x) =0.

Simplifying, we get the system

x?+y% —4xy =0,

z(2x - y) =0,

z(2y —x) =0.
Choosing the second equation, we have the alternative z = 0 or 2x — y = 0. In the first case the system
reduces to

These points belong to D iff

x°=y°, y ==xx,

4xy =xy + 1, 3xy =1.

However, since x” + y*> = 4xy implies that, for y = +x, that x = 0 = y, it is impossible that 3xy = 1, thus
no solutions are in D.
In the second case, namely, z # 0 and 2x — y = 0 or y = 2x, condition rkg’ (x, y, z) < 2 reduces to

y —2x,
x(2y —x) =0,
2y —x =0,
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we easily get x = y = 0, that is a point of type (0, 0, z). Now,

(0,0,z) e D, =
0=1,

clearly impossible. Conclusion: rank of g’ (x, y, z) is never less than 2 on D, that is g is a submersion on
D.

ii) D is clearly closed being defined by equalities involving continuous functions. To determine whether
D is bounded or less, we look first at constraint x> + y> = xy + 1. Writing x = pcos6 and y = psin#,
this reads as

P’ p*
p? =p*cosfsind+1 = 7sin(29)+1,< 7+1, —

|3,

<1, = x*+y*°<2,V(x,y,2) € D.

But then, by the first equation,

2 2

=X —y2<x2

<x2+y? <2, = P+y’+2 <4, = ||(x,y,2)] <2, V(x,y,2) € D.
This means that D is bounded, hence compact.

iii) We have to miunimize/maximize f(x,y,z) = ||(x,y,z)|| or, which is the same, f(x,y,z) =
l(x,y,2)||*> = x> + y? + z>. The existence of min and max is ensured by the Weierstrass theorem being D
compact by ii).

To determine min/max points, we apply Lagrange multipliers theorem. By i), assumptions of this
theorem are verified. Thus, at min/max point (x, y,z) € D we must have

Vf Vf
Vf=A4Vg1+A, Vg, < 1k| Vg | <3, < det| Vg | =0.
Vg Vg2
Now,
Vf 2x 2y 2z
O=det| Vg, | =det 2x =2y 2z | =—-Q2y-2)(-8xz) = 8xz(2y — 2),
Veo 2x—-y 2y-x O

iff x =0, 0or z=0o0r2y -z =0. Thus, we have points (0, y, z), (x,y,0) and (x, y,2y). Now:

e (0,y,z) € Diff 0= y> +z% and y? = 1, and of course this is impossible.
e (x,v,0) € D iff x* = y?> and x> + y*> = xy + 1. From the first we have y = +x. For y = x, second
condition becomes 2x2 = x2 = 1, thus x2 = 1, so x = +1 and we have points (1, +1,0) (same

sign). For y = —x, second condition becomes 2x2 = —x2+ 1, thatis x2 = %, thatis x = i\/%, from

which we have points (i%, i%, 0) (opposite sign).

o (x,y,2y) € Diffx? = y?2+4y? = 592 and x> + y? = xy + 1. From first equation we get x = +V5y.
In the case x = V5y, from second eqn we have 5y2 + y2 = V5y2 + 1, that is (6 — V5)y? = 1, that

this yielding to points (i VS —

v Vos

i
6-V5

isy=+ ,0) (same sign). In the case x = —V5y,
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second condition yields to 5y + y? = —V5y!, thatis y2 = ——, ory = +

from which we
5+\/§ ’ 5+ ’

S

V5 1

,+

,0] (opposite sign).
Previous analysis figured out possible min/max points. To decide which are min and which max it suffices
to compute f at these points. We have:

o f(x1,£1,0) =2;

get points (TL

1 -1 _2_QnF
° i7§7 +_37 ) - 3 - 09 67
V5 1 6
. + ,* ,0] = ~ 1,59
/ ( 6-v5 Vo5 ) 6-V5
— 5 1 6
° F ,+ ,0] = ~ 0,83
/ ( 5+V5 5+V5 ) 5+V5
From this it is clear that (+1, +1, 0) are points of D at max distance to 6, while (i\%, TL\/%, 0) are poitns
of D at min distance to 0. |

Exercise 23. i) To be irrotational, the field must verify

ax+by

_5 cx +dy

V(x,y) € D = R*\{0}.

‘We have

b2 +v2 — b 2y
ax+by ¥yt (axt y)2 4y? b(x* +y?) — y(ax + by) _ bx* — axy
VxZ +y? - (x2+y?) - (x2 + y2)3/2 S (2 +y2)32

and, similarly

0y

cx+dy cy? —dxy

i G

Ox

Thus, the field is irrotational iff

bx* —axy cy? — dxy

= 2 gy 2 2\ (G
G242 T eyt bx” —axy = cy” —dxy, V(x,y) € R\{0}.

Since the identity is trivally verified at (x,y) = 0, we may say that the field is irrotational iff
bx*> —axy=cy*—dxy, & b=c=0, a=d.

ii) By i), to be conservative F must have the form

P ax ay
ViZ 432 il +y2
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Now, such a F is conservative iff F = V f, thatis

_ ax
axf - /_x2+y2 s

-
0f = 2=

From first equation,

fley) = dx+k(y) = 5 f<x2 +37)712(20) dx + k() = a(® +5%) P+ k().

J ax
VX2 + y?
Plugging this into the second equation we have

ay

\/x2+y2’
fx,y) =ax2+y2+k, k €R,

are all the potentials for F. O

1 - ) ’
Oyf=az(+y) P2y + K (y) = = K=0

Thus, we deduce that

Exercise 24. For the volume, we may notice that

1
/13(D):J 1 dxdydz & J (J dxdy) dz.
D 0 \JxZ+4y2<1+22

By using adapted polar coordinates, x = pcosé, y = % psin 6, in such a way that x> + 4y? = p2, we have

2 ]p:\/ 1+z2

_r 2
> —2(1+z).

1 RF 1+22
dxdy:J —p dpdb =7rJ pdo=m
Jx2+4yz<l+z2 0<p<V1+z2, 0<6<2n 2 0
Z3:|Z:l 2 .
— = —7.
31,20 3

Therefore
Exercise 25. i) If u(x,y) =Re f(x +iy) and v(x,y) = Im f(x +1iy), then

p=0

1
A3(D) = L g(l +2) dz = g (1 +

glx+iy) = f(x—iy) = u(x,-y) +iv(x,-y) = u(x,-y) —iv(x,-y),
from which we see that
U(x,y) =Re g(x +iy) =u(x,—y), V(x,y) =Img(x+iy) =-v(x,-y).

ii) g is holomorphic iff U,V are R—differentiable and they verify CR equations. Clearly, sunce f is
holomorphic, u,v are R—differentiable, hence also U,V are R—differentiable. Therefore, we have to
verify if U, V fulfil also the CR equations, that is

0U =0,V,

0yU = -0,V.
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We have,
axl] = aX(’/t(-x’ _y)) = axu(-x’ _y)’ ayV = ay (—V(.X, _y)) = _ayv(x’ _y)(_l) = 6yV(X, _y)

And since dyu = dyv we deduce that also d,U = 0,V. Similarly, ,U = -0,V and the check is
completed. O

Exercise 26. i) We have a second order equation. The homogeneous equation is y”’ +2y" +y = 0,
whoose characteristic equation is 22 + 21+ 1 = 0, or (1 + 1)? = 0. The fundamental system of solutions
for the homogeneous equation is w; = e, w, = te~", whoose wronskian is

w1 Wi e’! te”

W (t) = det = det = e—lt(l -1 tre M =2

wi W) —e ' e '(1-1)

t

The general solution of the original equation is then

y(t) = (cl - J‘ %(t+ 1) dl‘) wi + (02+J %(l+ 1) dt) wo

‘We have

[@+Ddt =[@+1)di=[e(P+1)dt=e'(P+1)— [ (2+1)dt

=el (P +t—-2—1)+[2e" di=e' (> —1+]1),

and

e
Therefore, the general integral is

-t
J%(Z-ﬂ)dt:‘[ e2z(f+1)dl=fet(l+1)dt:et(t+1)—Je’dt:te’.

y(t) = (c1 - et(t2 —t+ 1)) e '+ (cz + tet) te ' =cie " +cate "+t -1, c1,c0 €R.
i) Imposing y(0) =0 we getc; — 1 =0, thatis c; = 1, so
y(t)=e T +cote "+t 1.
To determine also ¢y, we impose y’(0) = 1, that is, since
Y(t)=—=e"+ce ' (1-1)+1, = —l+c+1=1, & c¢;=1.
The solution of the Cauchy problem is then,
yt)=e T +te"+t—1, c1,c0 €R.
iii) From y(0) = 0 we get
y(t)=e T +cate 11,
and imposing also y(1) = 0 we get

0=¢"! +cze_1, — c=1.

The solution is the same of that one found at ii). O
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Exercise 27. i) For D # @ we consider a point of type (x, y,2). Then (x, y,2) € D iff x> + y> = 4 and
y2 =1, thus y = +1 and x2 = 3, that is x = +V3. We conclude that points (+V3, 1, 2) (four points, all
possible combinations of sign) belong to D.

We have that D = {g; =0, g, = 0} where g; = x> + y> — 2%, and g» = y*> + (z — 2)> — 1. Clearly, both
g1 and g, are differentiable functions (they are polynomials). In order g = (g1, g2) be a submersion on D
we need to verify that

Vgi 2x 2y -2z
tk g’ =1k =1k =2, VY(x,y,z) € D.
Vg2 0 2y 2(z-2)
Now, this is false iff all 2 x 2 sub-determinants of the Jacobian matrix g’ vanish, that is iff
4xy =0, x=0, y =0,
4x(z-2)=0, v
8y(z—-1) =0. y(z-1)=0, x(z-2)=0,

The first subsystem has solutions (0,0, z) and (0,y,1) (x,y € R); the second, (0,0, z) and (x,0,2),
(x,z € R). Now:
e (0,0,7) € Diff z2 =0and (z — 2)? = 1, impossible;
e (0,y,1) € Diff y> =1 and y? + 1 = 1, again impossible;
e (x,0,2) € Diff x> =4 and 0 = 1, impossible.
Cocnlusion: there is no point on D at which rank of g’ is less than 2, therefore rank of g’ (x, y, z) is 2 for
every (x,y,z) € D, that is g is a submersion on D.
ii) D is defined by equalities involving continuous functions, it is therefore closed. From the second
equation
V+(z=-22=1, = y*<1, (z-2%< 1.
In particular, -1 < z —2 < 1, thatis 1 < z < 3, thus z? < 9. Plugging this into the first equation,
X2+ y2 = z2, 2+ y29, = x%9.
In conclusion x? + y> + 229 + 1 + 9 = 19, for every (x, y,z) € D, from which we see that D is bounded.
We conclude that D is compact.
iii) Points at min/max distance to 0 minimize/maximize the function f = x? + y> + z2. Since f is
continuous and D is compact, according to the Weierstrass theorem, f has both min and max on D.

To determine these points, we apply the Lagrange multipliers’ theorem. By i), hypotheses of the
theorem are fulfilled. Thus, at every (x, y, z) € D min/max point for f in D we must have

2

Vf Vf 2 2y 2z
Vf=A4Vg +A, Vg, < 1k | Vg | <3, < det| Vg, |=det| 2x 2y -2z =0.
Vg2 Ver 0 2y 2(z-2)

By computing the determinant we get
0=2x-4y(z—2+z) —2x-4y(z -2 -27) = l6xY2Z,

whose solutions are points (0, y, z), (x,0, z) and (x, y,0). Now,
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e (0,y,2) € Diff y> = z2 and y*> + (z — 2)? = 1, from which z2 + (z = 2)> = 1, 0r 2z - 27+ 3 = 0,
and since A < 0 there are no solutions to this equation;
e (x,0,z) € D iff x> = 22 and (z — 2)? = 1, from which z = 1,3 and x> = 1 (that is x = +1), or
x? =9 (that is x = +3). We obtain points (1,0, 1) and (3,0, 3);
e (x,9,0) € Diff x>+ y2 =0, y?> + 4 = 1 which is impossible.
Since f(%1,0,1) =2 and f(£3,0,3) = 18 we deduce that (+1,0, 1) are points of D at min distance to
6, (3,0, 3) are points of D at max distance to 0. O

Exercise 28 ii) The change or variable is given in the form (u,v) = ®(x,y) = (y — x>,y + x°).
According to the change of variable formula,

I f(x,y) dxdy = J F(@ Y (u,v))| det(®") (u,v)| dudv.
D ®(D)

We need to determine ®~!. Notice that

u=y-+. wrv=2y, y= y=
= = =
_ 3 i — 943 3_ v-u v—un1/3
v=y+x’, Vv—u=2x>, X7 =5H, x‘(T) ,
Therefore
_ v—u\/3 u+v
O u,v) = ( ) , .
2 2
Moreover,
x> 1, (554)"° > 1, v—u>2,
(x,y) e D, — —
x3<y<3, %<%<3 v—u<v+u<o
that is

®(D)={(u,v) : 2<v-u<v+u<o6}

Now,tobev—u < v+uitmustbeu > 0,andfrom2 < v-u<v+u<bweget2+u<v<6—-u
provided 2 + u < 6 — u, that is u < 2. In conclusion

O(D)={(u,v) : 0<u<2,2+u<v<6-u}

About f, in coordinates (u, v) we have

F@ ) = (58 e,

while

det(®™")’ = det =—



30

In conclusion

.[D f dXdy = .[0<u<2, 24+u<v<6-u (‘)E_M)Z/S ue"% (VEM)_2/3 dudv = § <u< <v<6-u ue” dudy

RF | (2 r6-u

= v -1 2 6-u 1 2 v1v=6—u
= 510 Jouy, ue dvdu—6fu . ea’vdu—6fu[e]_ du

=3 foz u (e84 — e*) du =1 (66 I()Z ue™ du — e? foz uet du)

Il
N—
—_
Q

(@)}
—_
T
<
Q
e
i
[«=3\8)
+
S
Q
|
<
Y
<
N —
|
Q
[\S)
—_
—
<
Q
<
.
NN
IRl
o
|
o
Q
<
U
<
N —
S—

= % (-2e*+e*-1). O
Exercise 29. In order f = u + iv be holomorphic, we need that u, v are both R—differentiable (and
certainly v it is), and they verify the CR equations,
Oxut = 0yv,
Oyu = —0xv.
Thus we have to look for an R—differentiable u such that
Ayu = 3y — 3x% + 4x,
Oyu = —(—6bxy +4y —1).

From the first equation we get,
— 2 2 _ 2.2 3 2
u(x,y) = j(3y = 3x“+4x) dx+ k(y) =3y“x —x7 +2x“ + k(y).

Plugging this into the second equation we have
6xy+k'(y) =6bxy—4y+1, & k'(y)=-4y+1, = k(y)=-2y>+y+k, keR.
Thus, all the possible u that verify the CR eqns together with v are
u(x,y) =3y*x — x> +2x> = 2y* + y + k.

Since such u are clearly R—differentiable, f = u + iv is C—differentiable (holomorphic) on R
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To determine the analytical expression for f as a function of complex variable z = x + iy, we may

notice that
f :u+iv:3y2x—x3+2x2—2y2+y+k+i(y3—3x2y+4xy—x)

= —i (x +iy)+2 (x? — y? +i2xy) — (x3 —iy? =3y’ x + i3x2y) +k
——— [ —
z zz

23

=242 -iz+k. O

Exercise 30. See notes for definitions and characterizations.

Let’s focus on the resuire property. We first notice that is 95 = @, 95 is closed. We assume then that
S # @. To verify that S is closed, we use the Cantor characterization. Let (X,,) C dS be such that
¥, — ¥ € RY. We prove that ¥ € 5. Fix r > 0. Since ¥,, — ¥, we have that forn > N ||X, — ¥|| < 5.
Now, since X,, € 98,

B(X,,r/2] NS+ @, AB(X,,r/2] NS¢ + @.
Since [|X, — X|| < %, we have that
B(%,,r/2] c B(,r],

therefore
B(X,r] NS 2> B(X,,r/2]NS + @,
and, similarly, B(X,r] N S¢ # @. We conclude that X € 95, thus 45 is closed. O
Exercise 31. First of all let z # 0. Setting w = %, we have to solve
) eV —e™" 2w . .
sinhw =0, > =0, & =1, & 2w=log|l|+i(0+k2n)=ik2n, k € Z.
Thus
! ik = ! ! ‘ kezZ\{0}. O
— =W = 1K, ===, .
b4 “Tikn kn kx

Exercise 32. The problem asks to determine

min/ ma - 12+ (y-2)2+ (z+3)%
max =12 (=224 (2 +3)

Previous problem has the same min/max points (if any) of

min/ max ((x -2+ (y -2+ (z+ 3)2) ,
(x,y,2)eD
which is the problem we solve here.

We start discussing existence. D is certainly a closed set (defined by an equality of a continuous
function). Let’s see if D is also bounded. Since no condition on z is given, it means that if (x, y, z9) € D
then (x,y,z) € D for every z € R. In paricular (x,x,z) € D for every x,z € R. We deduce that D
is unbounded. Thus, D is not compact. The function f(x,y,z) = ||[(x = 1,y — 2,z + 3)||? is clearly
continuous, and since

lim  f =+oo,
(x,y,2)—003
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we conclude that f has no maximum on D but it has global minimum on D.

To determine the minimum, we wish to apply the Lagrange multipliers’ theorem. To this aim, we need
first to check if D is the zero set of a submersion on D itself. Now, D = {g = 0} where g = (x—y)?>+(x-y),
and g is a submersion on D iff Vg # 0 on D. We have
1

5
However, if x —y = % we easily see that the condition characterizing D is not fulfilled. Thus, Vg # 0

always. Thus, in particular, g is a submersion on D. Therefore, according to Lagrange multipliers’
theorem, at (x, y,z) € D min point for f,

Vf 2(x—1) 2(y-2) 2(z+3)
Vf=4Vg, < 1k =1k < 2.
Vg 2c-y) -1 2(x-y)+1 0

Ve=(02x-y)-1,2x-y+1,00=0, & 2(x-y)-1=0, & x-y=

This happens iff all 2 X 2 sub-determinants vanish, that is

(I-2(x=-y))(x+y-3)=0,
2(z+3)2(x-y) - 1) =0,
2(z+3)(1-2(x-y))=0.

The first equation yields to the alternative x — y = %, and plugging this into the other two equations we
get identities 0 = 0. Thus, we get points (x,x — %, 7). Now these points belong to D iff % - % = 0, which
is false.

In the second case, x + y = 3, and plugging this into the other two equations we get z = —3, thus points
(x,3 —x,-3). Now,

3
(x,3-x,-3) e D, = (2x-3)>-(2x-3)=0, & (2x-3)(2x-4) =0, x=§,Vx:2.

We get points (%, %, —-3) and (2, 1,-3). Since f(%, %,—3) = }T+ }t = % and f(2,1,-3)=1+1=2, we

see that the points od D at minimum distance to (1,2, -3) is (%, %, -3). O

Exercise 33. i) D is closed because it is defined by large inequalities. It is not open because D # @, R3.
It is unbounded since (n, n, mh(sz)) € D for every n € N, therefore it is not compact.

ii) We have
RF 1/cosh(x2+y?) 1
A3(D) = J 1 dxdydz = J J dz| dxdy = J ———— dxdy.
D RrR2 \Jo R

2 cosh(x2 + y?)

By introducing polar coordinates,

A3(D) = J

p>0, 0<6<2x Cosh p

+00

o
dpdf =2
2P P FJO cosh p?2

Notice that

2 2pe”’
A > p = = P = =0, arctan(epz),
coshp?  eP’ +eP* 1+e2
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thus
p=too
A3(D) =2n [arctan(e”z)] , = (E _ f) _
p:
iii) Proceeding as in ii), we have

1/cosh(x2+y?) a(x2+y?)
Ia/ = J ed(x2+y2) dXdde R=F J‘ (J ea/(x2+y2) dZ) dxdy = J % dxdy
D R2 0 R2 cosn(x y
Changing vars to polar coords,

ap? +00 o (a+)p?
IQ:J € o dpdgzzﬂj pe—zdp.
00, 0<9<2x Coshp 0 1+ e

Notice that
2}06(%1),02 elat)p?

— ~ieo 20 = Zpe(o‘_l)p2

142 e20’

and

+00
EJJ pe @V gy = g-1<0, &= a<l. O
0

Exercise 34. i) In order f = u + iv be C—differentiable on C we need 1. that u, v are R differentiable
on R? (which is true, being u, v polynomials) and 2. u, v fulfil the CR equations, namely
Oxu = Oy, 3x2 + ay? = bx? - 3y?,
— — b=3,a=-3.
Oyu = —0xv, 2axy = —2bxy,
ii) We have
= =3xy)+i(Bx%y - y) = (x+iy)’ =2°. O
Exercise 35. i) To prove that ¢(1) := E(y(¢), y’(t)) is constant we show that the derivative of ¢ w.r.t.
t vanishes. According to the total derivative formula, we have

’ d /7 ’ /’ /7 144
' (1) = EE(y,y ) =0yE(y,y")y +0,E(y,y")y".

Now,
1 ,
E(y’ V) = Emvz - f(y)’ == 8yE = _f (y) = _F(y)7 aVE =my,
thus
¢’ (1) = =F(y)y +my’y” =y (my” = F(y)) = 0.
————
=0 by egn
Therefore

EGy) =k e gmP=f0) 2k e= (0P = 2 (FOH), e o =2 2 () + ).

The last one is a separable variables equation.
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ii) If m = 1 and F(y) = =2y - 3y?, then f(y) = [ F(y)'dy = [(-2y - 3y?) = —=y* — y*. Therefore
Y = £4/2(k - y2 - yY),
where E(y, y’) = k. In particular, E(y(0),y’(0)) = k, and since y(0) = -2, y’(0) = V8 we have
E(-2,V8) = 3 (V) = (~(-2 = (-2)*) =4~ (-4 +8) =0
Thus k£ = 0 and y solves the equation
¥ = £=200% +3%) = £4/-252(y + 1) = £V2yy oy~ 1.

Since at t = 0 we have y’(0) = V8 > 0, y(0) = -2 < 0 the previous equation is

Y = V2y -y - 1.

We can now solve this by separation of variables once we notice that y is not a constant solution. We have

Jy—dt:—J\/Edt:—\/iHc.
yy-y-1

‘We have

v’ u=y(t),d£=y’(t) dt 1 v=V-u-1, u——l v2, du=-2v dv
J'y\/—y—l di - J'u\/—u—l du I( 1-v2)v ( ZV) dv

= 2J # dv =2arctanv = 2 arctan y/—y — 1.
2arctany/—-y — 1 = V2t +ec.

Therefore

For ¢t = 0 we have
2 arctan V1 = c, &< c¢c=

STE

‘We conclude that

t
2arctany/-y — 1 = —\/§t+%, & +-y-1=tan (_T + 4) & y(r) = —1-tan’ (—— + z) .

Exercise 36. i) We have a second order linear equation
v +9y = 6sin(31).

The homogeneous equation associated to this is y”’+9y = 0, whose characteristic equation is 12+9 = 0, that
is A = +i3. The fundamental system of solutions for the homogeneous equation is then w (¢) = sin(3¢),
wy(t) = cos(3t), whose wronskian is

w1 wp sin(3¢) cos(31)
W (1) = det = det =-3 (sin2(3t) + 0082(30) ==

wi w) 3cos(3t) —3sin(3¢)
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Therefore, the general solution for the original equation is
(1) = (q - J %6 sin(37) dt) Wi+ (cz +J %6 sin(37) dt) Wwa.

We have
6 [ %2 sin(3r) dr = 6 [ <=3 sin(3r) dr = — [ sin(61) dr = L cos(61),
6 [ W sin(3r) dr = 6 [ 231 in(31) dr = -2 [ sin®(31) dt.
Now ,
[sin?(3r) dt = [(sin(31)) (__Cosgm) dr = —L sin(3r) cos(31) + [ cos?(31) dt
= —Lsin(6r) + [ 1 —sin®(31) di = —{ sin(61) +1 — [ sin®(31) d,

thus

J sin?(3¢) dt = % (r - Siné&)) .

In conclusion,

y(t) = (c1 - 0086(&)) sin(3¢) + (c2 -1+ siné6t)) cos(3t), ci,cp € R,
i1) Imposing y(0) = 0 we get
c2=0,
thus )
y(t) = (61 - cosé6t)) sin(3¢) — (t - smé6t)) cos(3t).

Computing y’(#) we have
in(6¢
%) 3 sin(31),

Y/ (1) = sin(6¢) sin(3t) + (01 - C°S6(6t )) 3cos(31) — (1 = cos(61)) cos(3t) + (t -

and, by imposing y’(0) = 0 we get
1
3 ( 6) = O, — (1=

A=

The solution of the CP is then
1 in(6¢
y(1) = 2 (1 = cos(61)) sin(31) - (t _ sin(61)

) cos(3t).

iii) We may write the general solution in the form
6t
cosé )) sin(37) + (02 +

Sin(6t)) cos(3t) — tcos(3t) ,
6 —

unbounded

y(t) = (61 -

bounded
and since the unbounded component is independent of ¢, co we deduce that all the solutions are un-
O

bounded for t — +o0.
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Exercise 37. i) D is closed being defined by large inequalities involving continuous functions of (x, y).
It is not open since D # @,R%. Tt is bounded because x > 0 and from 0 < y < 1 — x, in particular
1—x>0,thatisx < 1,500 < x < 1 and, at same time, 0 < y < 1 —x < 1. Thus 0 < x, y < 1 and this
implies that D is bounded. Since D is closed and bounded it is also compact.

ii) Since f is clearly continuous on D and D is compact, f admits both global min/max on D. To
determine min/max points, we may argue in the following way. If (x,y) € D is a min/max point for f
then

e cither (x,y) € Int D
e or (x,y) € D\Int D = 9D.
In the first case, since
Onf =3y +2xy + 2, oy f = 3x +x% +2xy
so 0y f,0yf € €(D), f is then differentiable on D, according to Fermat theorem, at min/max points

. 3y +2xy+y? =0, y(3+2x+y) =0,
Vf(x’ }’) = Oa — (=
3x+x2+2xy =0. x(3+2y+x)=0.
The first equation leads to the alternative y = 0 or 3 + 2x + y = 0. In the first case, the second equation
becomes x(3 + x) = 0. whose solutions are x = 0 and x = —3. This produces points (0,0) and (-3, 0).
In any case these do not belong to Int D. In the second case, y = —2x — 3, from the second equation we
obtain x(—3 — 3x) = 0, that is x = 0 or x = —1. This yields points (0, —-3), (—1,—1) ¢ D. In conclusion,
no stationary point for f is in the interior of D.
Thus, min/max points for f are on 9D = AU BU C where A = {(0,y) : 0<y <1}, B={(x,0) :
0 <x < 1}and, finally, C = {(x,1 —x) : 0 <x < 1}. On A we have

f(@0,y) =0,

thus every point is min/max point for f on A. On B, similarly, we have f(x,0) = 0, thus every point of
B is at same time min/max for f on B. Finally, on C

F,1=x)=3x(1—x)+x>(1 = x) +x(1 =x)? = 3x = 3x% +x? = x> +x = 202 + 1 = —4x + 4x = g(x).

Let’s determine min/max points for g with x € [0,1]. We have g’"(x) = -8x +4 > 0 iff x < % Thus

X = % is max point for g and x = 0, 1 are min points for g. This means that

. (% %) is max point for f on C

e (0,1), (1,0) are min points for f on C.
‘We can now draw the conclusion:

e for minimum, candidates are points (x,0), (0,y) with 0 < x,y < 1 where f = 0. All these are
min points for f on D;

e for maximum, candidates are points (%, %) (where f = 1) and (x,0) and (0, y) with0 < x,y < 1

(where f = 0). Thus, the max point is (%, %)
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Exercise 38. i) Let F = ( ¢, ). In order F be irrotational on D we need

Oy¢ = 0xy, on D.
We have
P _ b(x*+y?)2—(ax+by)2(x*+y*)2y _ b(x*+y?)-dy(ax+by) _ b)c2—4axy—3hy2
y¢ - (x2+y2)4 - (x2+y2)2 (x2+y2)2 ’
P _ (2422~ (ex+dy)2(x2+y1)2x _ c(x*+y?)—4x(cx+dy) _ —3cx2—4dxy+cy2
= (xZ4y2)4 = (x2+y2)2 (x2+y2)2
Hence,
b =-3c,
Oy =0y, = bx* — 4axy — 3by? = =3cx? — 4dxy + ¢y?, a=d,

-3b=c
from which b = c =0and a = d € R. Thus
> ax ay
(x2 +y2)2" (a2 +y2)?
ii) Necessary condition to be conservative is that F be irrotational, thus F is given as at the end of 1).
Now, such F is conservative iff F = V f, that is

a f (x2+y2)2’

a f (x2 +y2)2
From the first equation
ren = [ s Ty HrkO =3 3 [ om0t k() =56 k),
Plugging this into the second equation we have
ay ay ay /
of=—"—75, = ——= —, k =0, & . .k(y)=keR.
yf (xz + y2)2 (x2 + y2)2 (y) (xz 2)2 (y) (y)

Thus, F is conservative with potentials
flx,y) = —%(x2 + yz)_l +k, keR.
iii) By previous discussion, when (a, b, ¢, d) = (2,0, 0, 2), field F is conservative. Thus

o 1 3
F=700,2)-f(1,00=——-(-1)=-. O
| F=r@2-r00=-0=3

2 2

Exercise 39. 1) Since x + z~ is invariant by rotations around the y—axis, D is invariant by rotations
around such axis. We can draw any section containing the y axis, for instance D N {x = 0} (section of D
in plane yz). We have

Dn{x=0}={(0,y,2) : 1-2>>y<V1-22}.

Figure:
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ii) Notice that

RF Vi-(x2+22)
/13(D) = -[D 1 dxdydz = Il—(x2+zz)<\/m( 1—(X2+Z2) 1 dy) dde

- I1 (x2+22) V1= (x2422) (m—(l —(X +Z2))) dxdz
pol. c_oords
B L—pzs 1-p2, o<o<2x P (Vl -pr=-(- ) dpd6

R o L—pk\/ﬁp (\/1 -p2-(1 —pz)) dp.

Now, 1 — p? < /1 — p2 iff (being 1 — p> > 0 for the root), y/1 — p2 < 1 always true, the condition on p
isp? < 1,thatis0 < p < 1. In conclus10n

L(D) =2x ) p (\/1— 2_(1-p )dp 27 [ p(1 = p)V2 = p+ p* dp

< 2n ([ - ol - 5] 5] ) <2 (4

1) s
+:)=<. 0O
=0 p=0 4 6

W=
l\)l'—‘

Exercise 40. See notes for CR equations and connection with C—differentiability.
1) If f = u + iv with, for example, u constant, then, by the CR eqns,

0 =0yu =0y, O,v =0

0=0yu=-0yv, Oyv =0.

From this it follows that v is constant.
iii) Suppose now that f = u +iv be C—differentiable and such that | f| = Vu? + v2 = k or, equivalently,
u? +v? = k2. If k = 0 the conclusion is trivial. Assume k # 0. By computing d, we have

2u0u +2v0,v = 0,
and because of CR equations
udxu —voyu = 0.
Similarly, computing 9,
2udyu +2v0yv =0, & udyu+vou=0

Multiplying the first relation by d,u and the second by d,,u we obtain

u(dxu)? = VOyudyu = —u((')yu)z, — (((’3 u)? + (dyu) ) =0. < u ((8 u)? + (Oyu) )

Similarly,

((a V)2 + (3yv) ) =0
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By CR eqns, (0cu)? + (6yu)2 = (0,v)> + (6yv)2, thu summing up the two previous relations we get
(2 +1?) ((axu)2 + (3yu)2) =0, = &K ((axu)2 + ((')yu)z) =0, &= (du)+(Byu)* =0,

which means dyu = d,u = 0. Thus u is constant and we can now conclude by ii). |

Exercise 41. i) We have a separable variables equation. Solutions are either constant or obtained by
separation of variables. In the first case, y = C is a solution iff C(C? + 1) = 0, that is C = 0. Other
solution are obtained by separation of variables:

, 2 Y Y
YV =y(r+1), &= —m =1, = J‘—dt:t+k.
y(y?+1) y(y2+1)

y’ u=y (1), du=y' (1) dt 1
— - dt = ——— du.
Jy(y2+1) Ju(u2+1) !

According to Hermite decomposition,

Now,

1 _A N Bu+C
u@?+1) u u?+1
from which A = 1, B = —1 and C = 0. Therefore
|u

uz+1

1 1,
‘[ m du :10g|M| - Elog(u + 1) =log

Thus we have

that is

2 k 2t ke2t
bl =ke!, = 2y —ke¥, (k>0) e ="  — yZiﬂL.
N y2+1 1 — ke 1 — ke

ii) The solution for which y(0) = 1 cannot be a constant solution. Since y(0) = 1, we have

keZt
1) = _—,
y(t) =4/ T 7o%

and y(0) = lmeans,/ﬁ: 1,thatisk=%. ]

Exercise 42. i) Let (g1,82) == (x> +y> = 1L,x+y+z—1)insuchaway D = {g; =0, g, = 0}. To
check that (g1, g2) is a submersion on D we have to verify that

g1 2x 2y O
rk =rk =2, V(x,y,z) € D.
Vgo 1 1 1

Now, rank is < 2 iff the two gradients are linearly dependent. This is manifestly impossible because of
their third component.
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ii) D is closed being defined by equalities involving continuous functions. D is also bounded: indeed,
by first equation we have x2, y2 < 1,thus -1 €< x,y < 1, and by the secon

“12z=1-(x+y) <

thus z2 < 9 and x2 + y2 + 22 < 11.

iii) Function f is continuous on D compact: existence of min/max is ensured by Weierstrass thm. To
determine these points, we apply Lagrange multipliers thm. By i), D fulfils the assumption of the thm.
Thus, at (x, y, z) min/max point for f on D we must have

Vf 2x+y-1 2y+x+z-1 y
Vf=A4Vg +A4,Vg,, & 1k| Vg [=1k 2x 2y 0 <3,
Vg 1 1 1

that is iff the determinant of previous matrix vanishes. We get the condition
2y(x =) +2(y(2x+y—-1) —=x2y+x+z-1)) =0
from which, simplifying,
YO =)+ (P -y - +x-xz) =

Since we are looking for solutions (x,y,z) € D, we must have z = 1 —x — y, and plugging this into
previous equation yields,

1
y2y-1)=0, < y=0, \/yzz.

Thus we get pomts (x,0,1—-x) and (x, & 525 1 _x), to which we have still to impose the condition x?>+y% = 1.
In the first case x> + 0% = 1, thus x = +1, that is points (x1,0,F1) (two points). In the second case,

x2+4 =1, thus x> = 4andx—+‘f that is points (‘g él—f) and( v3 ; 1+‘f) We have
e f(1,0,-1)=0
e f(-1,0,1)=2

\/’

V31 1-v3
222 2

From this we see that (-1, 0, 1) is max point, ( ) is min point. |
Exercise 43. i) D is closed, being defined by large inequalities involving continuous functions. Let’s

check that D is bounded (hence compact). Denoting by p = y/x2 + y2 = ||(x, y)|| we have
(x,y) €D, = p*<2pcosf—p=p2cosf—-1), & p<2cosf—1x1.
Therefore, D is bounded. In particular, D cannot be be open: only @, R? are both open and closed, and
(0,0) € D (thus D # @), and D is bounded, thus D ¢ R?.
ii) The area of D is

(D) = J 1 dxdy = J 1 dudy P20 J o dpdo.
D X P

<2cos 0-1

24y2<2x =\ x2+y?
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Now, notice that since p > 0, this imposes 2cos 6 — 1 > 0, that is cos 0 > % In one period this means
—-% <6< %. Thus

In/fv 2cos 6-1

/3
w3 Jo p dp de_zj ,(2cos 60— 1)2 df

(D) p dp do ™

= fp<2c096) 1, -3<6<%

%( 4f7r/3 0050d0+4f */3 (cos¢9)2 d@)

=% - 2V3+2 1_7:/32 (cos 0)? d6.

About this last integral we have

n/3 /3 3 \/_
J (cos )% d6 = ‘[ (cos ) (sin 0)" d6 = [sin 6 cos 6] 0:7;2/3+J‘ (sin@)? df = —— (cos 6)? do,
-n/3 -n/3 = 0 2 _n/3
from which J:/r%(cos 0)? de = g. We conclude that 1,(D) = 5 — 3\75 O

Exercise 44. i) In order f = u‘ + iv be C—differentiable on C, we need u, v R—differentiable on R2
and fulfilling the CR equations. About u it is clear that, being du, dyu € € (Rz), u is R—differentiable
on R? by the differentiability test. Thus, we look for a v differentiable such that

Oxut = dyv, Oxv = —0yu = —(=20x3y + 20xy?),

Ayu = —0xv, Oyv = Oxu = 5x* — 30)62)72 + 5y4.

From first equation,
v(x,y) = j 20x3y — 20xy® dx + k(y) = 5x*y — 10x2y® + k(y),

and plugging this into the second equation we have
5x* = 30022+ K (y) = 5xt 30032 + 5y, = K'(y) =5y, = k(y) =) +k,
where k is now a constant. Thus, the v that fulfils CR eqns together with u is
v(x,y) = 5xy — 10x%y? + 5y* + k,

and since this is also differentiable (being d,v,d,v € % (R?)), we conclude that f = u + iv is
C—differentiable.
i1) We have

f= ( —10x3y? + 5xy ) +i (5x4y — 1022y + 5% + k)
Noticed that, for z = x + 1y,
2 = (x+iy)> =0 +i5x%y — 10x3y? — i10x%y? + 5xy* +iy?
thus f = 2> + ik, k € R. O

Exercise 45. See notes for definitions. We aim to prove that £~ (S) is open if S it is. Suppose this is
false. There exists then a point x € £~1(S) for which

BB(x,r]  f71(S).
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This means that:
Vr >0, Bx,r] N f ()¢ # @.
Taking r = %
VneN, n>1, 3x, € B(x,1/n] n f71(S)".
This means that ||x, — x|| < %, thus x, — x. By continuity, f(x,) — f(x). Furthermore, by
construction of (x,), we have that x,, € f~1(S)¢, thatis f(x,) ¢ S for every n. However, since f(x) € S

(recall that x € £~1(S)), and S is supposed to be open,
3B(f(x),p] € S.
And since f(x,) — f(x), we have that
N ¢ f(xa) € B(f(x),p] €S, ¥Vn >N,

which is in contradiction with the construction of (x,). We deduce that the initial assumption must be
false, that is £~1(S) is open. O



