
Calculus 2 — Final Exam

Exercise 1. Consider the Cauchy problem 
𝑦′ =

𝑦2 − 4
𝑡

,

𝑦(1) = 0.
i) Determine the solution.

ii) Determine the domain of definition ]𝑎, 𝑏[ of the solution and the limits of 𝑦(𝑡) when 𝑡 −→ 𝑎 and
𝑡 −→ 𝑏.

Exercise 2. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 1 + 𝑥𝑦

}
.

i) Show that 𝐷 ≠ ∅ is the zero set of a submersion.
ii) Is 𝐷 compact?

iii) Determine, if any, points of 𝐷 at min/max distance to ®0.

Exercise 3. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : (𝑥2 + 𝑦2)1/4 ⩽ 𝑧 ⩽ 2 − 𝑥2 − 𝑦2

}
.

i) Draw 𝐷 ∩ {𝑥 = 0} and deduce a figure for 𝐷.
ii) Compute the volume of 𝐷.

Exercise 4. Let
𝑣(𝑥, 𝑦) := 𝑒−𝑦 (𝑦 cos 𝑥 + 𝑥 sin 𝑥) , (𝑥, 𝑦) ∈ R2.

i) Determine all possible 𝑢 = 𝑢(𝑥, 𝑦) in such a way that 𝑓 (𝑥 + 𝑖𝑦) := 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) be
C−differentiable on R2.

ii) Express the 𝑓 found at i) as function of complex number 𝑧, that is 𝑓 = 𝑓 (𝑧).

Exercise 5. State the Green formula. Let 𝑓 ∈ 𝒞(R2) with 𝜕𝑖 𝑓 , 𝜕 𝑗 (𝜕𝑖 𝑓 ) ∈ 𝒞(R2), for all 𝑖, 𝑗 = 1, 2.
Prove that ∮

𝜕𝐷

𝑓∇ 𝑓 = 0.
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January 2023

Exercise 6. Consider the equation

𝑦′ =
𝑒𝑦 − 1

𝑡
, 𝑡 ≠ 0.

i) Determine the constant solutions.
ii) Determine the solution of the Cauchy problem 𝑦(1) = −1.

iii) Determine in particular the domain of definition ]𝑎, 𝑏[ of the solution and its limits when 𝑡 → 𝑎+
and 𝑡 → 𝑏−.

Exercise 7. Let
𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 − 𝑧2 = 1, 𝑦2 + 𝑧 = 1}.

i) Show that 𝐷 ≠ ∅ is the zero set of a submersion (𝑔1, 𝑔2).
ii) Is 𝐷 compact?

iii) Determine, if any, points of 𝐷 at min/max distance to ®0.

Exercise 8. Let
𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 ⩽ 𝑧 ⩽ 1 − 𝑦2}.

i) Draw 𝐷 ∩ {𝑥 = 0} and 𝐷 ∩ {𝑦 = 0}. Is 𝐷 invariant by some rotation? Justify your answer. Draw
𝐷 as best as you can.

ii) Compute the volume of 𝐷.

Exercise 9. Let
®𝐹 :=

(
𝑎𝑥2 + 𝑏𝑦2

(𝑥2 + 𝑦2)2 ,
𝑥𝑦

(𝑥2 + 𝑦2)2

)
on 𝐷 = R2\{(0, 0)}. Here 𝑎, 𝑏 ∈ R are constants.

i) Determine all possible values for 𝑎, 𝑏 in such a way ®𝐹 be irrotational on 𝐷.
ii) Determine values of 𝑎, 𝑏, 𝑐 in such a way ®𝐹 be conservative on 𝐷, in this case determining also

all the possible potentials.

Exercise 10. What are the Cauchy–Riemann equations (or conditions)? State precisely. Then, let
𝑓 = 𝑢 + 𝑖𝑣 (𝑢 = Re 𝑓 and 𝑣 = Im 𝑓 ) be a C differentiable function on the entire plane C. Assume that
also 𝑓 = 𝑢 − 𝑖𝑣 = 𝑢 + 𝑖(−𝑣) is C differentiable on C. What conclusion can you draw on 𝑓 ?
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Exercise 11. Consider the second order equation
𝑦′′ − 2𝑦′ + 𝑦 = 𝑒2𝑡 .

i) Determine the general integral.
ii) Solve the Cauchy problem 𝑦(0) = 1, 𝑦′(0) = 0.

iii) For which 𝑎 ∈ R there exists a solution such that 𝑦(0) = 0 and 𝑦(1) = 𝑎?

Exercise 12. Let
𝑓 (𝑥, 𝑦) := (𝑥2 + 𝑦2)3 − 𝑥4 + 𝑦4, (𝑥, 𝑦) ∈ R2.

i) Compute, if it exists, lim(𝑥,𝑦)→∞2 𝑓 (𝑥, 𝑦).
ii) Discuss existence of min/max of 𝑓 on R2 and find the eventual min/max points of 𝑓 . What about

𝑓 (R2)?

Exercise 13. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 2𝑦2 ⩽ 𝑧 ⩽ 4 − 3(𝑥2 + 2𝑦2)}.
i) Draw the set 𝐷. Someone says: ”𝐷 is a rotation volume with respect to the 𝑧−axis”. Is it true or

false?
ii) Compute the volume of 𝐷.

Exercise 14. Let
𝑢(𝑥, 𝑦) := 𝑥2 + 𝑦2.

i) Determine, if any, 𝑣 = 𝑣(𝑥, 𝑦) in such a way that 𝑓 (𝑥+𝑖𝑦) := 𝑢(𝑥, 𝑦)+𝑖𝑣(𝑥, 𝑦) beC−differentiable
on C.

ii) For the 𝑓 you found at i), write 𝑓 = 𝑓 (𝑧) as function of 𝑧 ∈ C.

Exercise 15. State the Lagrange multipliers theorem. Then, consider a curve 𝑦 = 𝑓 (𝑥) defined by a
function 𝑓 = 𝑓 (𝑥) : R −→ R, 𝑓 ∈ 𝒞

1(R). Let 𝑃 = (𝑎, 𝑏) a point in the cartesian plane not belonging to
the curve 𝑦 = 𝑓 (𝑥). Prove that if 𝑄 is a point of the curve 𝑦 = 𝑓 (𝑥) where the distance to 𝑃 is minimum,
then the segment 𝑃 −𝑄 is perpendicular to the tangent to 𝑓 .
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Exercise 16. Consider the differential equation

𝑦′ =
𝑡 − 𝑡𝑦2

𝑦 + 𝑡2𝑦
.

i) Show that it is a separable variables equation and determine all possible constant solutions.
ii) Determine the solution of the Cauchy Problem with passage condition 𝑦(0) = 2.

Exercise 17. Let Γ ⊂ R3 the set described by equations

Γ :


𝑥2 + 𝑦2 = 1,

𝑥2 + 𝑧2 = 𝑥𝑧 + 1.
i) Show that Γ ≠ ∅ is the zero set of a submersion on Γ.

ii) Is Γ compact? Justify your answer.
iii) Determine points of Γ at minimum/maximum distance to (0, 0, 0) (if any).

Exercise 18. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 1 − (𝑥2 + 𝑦2) ⩽ 𝑧 ⩽
√︁

1 − (𝑥2 + 𝑦2)}.
i) Draw 𝐷 ∩ {𝑦 = 0} and deduce a figure for 𝐷.

ii) Compute the volume of 𝐷.

Exercise 19. Let 𝑓 = 𝑢 + 𝑖𝑣 where
𝑢(𝑥, 𝑦) := 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2, 𝑣(𝑥, 𝑦) := 𝑥𝑦, 𝑥 + 𝑖𝑦 ∈ C.

(𝑎, 𝑏, 𝑐 are real constant)
i) Determine all possible 𝑎, 𝑏, 𝑐 such that 𝑓 be holomorphic on C.

ii) For values found at i), determine the analytical expression for 𝑓 = 𝑓 (𝑧) in terms of variable
𝑧 ∈ C.

Exercise 20. Let ®𝑎1, . . . , ®𝑎𝑁 ∈ R𝑑 be 𝑁 fixed vectors, ®𝑎𝑖 ≠ ®𝑎 𝑗 for 𝑖 ≠ 𝑗 . Define

𝑓 (®𝑥) :=
𝑁∑︁
𝑗=1

∥®𝑥 − 𝑎 𝑗 ∥2.

Discuss the problem of determining, if any, points of min/max for 𝑓 on R𝑑 . Justify carefully, state all
general facts you use.
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Exercise 21. Consider the equation
𝑦′ = 𝑦 log 𝑦.

i) Determine, if any, all constant solutions.
ii) Solve the Cauchy problem with 𝑦(0) = 𝑎.

iii) Determine, if any, values of 𝑎 such that lim𝑡→+∞ 𝑦(𝑡) = 0.

Exercise 22. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 = 𝑦2 + 𝑧2, 𝑥2 + 𝑦2 = 𝑥𝑦 + 1}.
i) Show that 𝐷 is the zero set of a submersion on 𝐷 itself.

ii) Is 𝐷 compact? Justify your answer.
iii) Determine, if any, the points of 𝐷 at the min / max distance to the origin.

Exercise 23. Consider the vector field

®𝐹 (𝑥, 𝑦) :=

(
𝑎𝑥 + 𝑏𝑦√︁
𝑥2 + 𝑦2

,
𝑐𝑥 + 𝑑𝑦√︁
𝑥2 + 𝑦2

)
, (𝑥, 𝑦) ∈ R2\{(0, 0)}.

i) Find all possible values of 𝑎, 𝑏, 𝑐, 𝑑 ∈ R such that ®𝐹 is irrotational.
ii) Find all possible values for 𝑎, 𝑏, 𝑐, 𝑑 such that ®𝐹 is conservative. For such values, determine the

potentials of ®𝐹.

Exercise 24. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 4𝑦2 − 𝑧2 ⩽ 1, 0 ⩽ 𝑧 ⩽ 1}. Draw 𝐷 and calculate its
volume.

Exercise 25. Let 𝑓 = 𝑢 + 𝑖𝑣 be holomorphic on 𝐷 ⊂ C. Define

𝑔(𝑧) := 𝑓 (𝑧), 𝑧 ∈ 𝐷 := {𝑤 ∈ C : 𝑤 ∈ 𝐷}
i) Express real and imaginary part of 𝑔 in terms of real and imaginary parts 𝑢 and 𝑣 of 𝑓 .

ii) Use i) to discuss whether 𝑔 is holomorphic on 𝐷 or not.
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AY 2023-24 —- Exam Simulation

Exercise 26. Consider the differential equation
𝑦” + 2𝑦′ + 𝑦 = 𝑡 + 1.

i) Determine the general integral of the equation.
ii) Solve the Cauchy problem 𝑦(0) = 0, 𝑦′(0) = 1.

iii) Discuss the boundary value problem 𝑦(0) = 0, 𝑦(1) = 0.

Exercise 27. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 = 𝑧2, 𝑦2 + (𝑧 − 2)2 = 1

}
.

i) Show that 𝐷 ≠ ∅ and it is the zero set of a submersion.
ii) Is 𝐷 compact? Prove or disprove.

iii) Find points of 𝐷 at min/max distance to ®0.

Exercise 28. Let 𝐷 := {(𝑥, 𝑦) ∈ R2 : 𝑥 ⩾ 1, 𝑥3 ⩽ 𝑦 ⩽ 3}.
i) Draw 𝐷.

ii) By using the change of variables 𝑢 = 𝑦 − 𝑥3, 𝑣 = 𝑦 + 𝑥3, compute the integral∫
𝐷

𝑥2(𝑦 − 𝑥3)𝑒𝑦+𝑥3
𝑑𝑥𝑑𝑦.

Exercise 29. Let 𝑣(𝑥, 𝑦) := 𝑦3 − 3𝑥2𝑦 + 4𝑥𝑦 − 𝑥, (𝑥, 𝑦) ∈ R2. Determine all possible 𝑢 = 𝑢(𝑥, 𝑦) such
that

𝑓 (𝑥 + 𝑖𝑦) := 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),
be holomorphic on C. What is 𝑓 (𝑧) as a function of 𝑧?

Exercise 30. What does it mean that a set 𝐶 ⊂ R𝑑 is closed? What is the Cantor characterization of
closed sets?

Given a generic set 𝑆 ⊂ R𝑑 , we define the frontier of 𝑆 as the set
𝜕𝑆 :=

{
®𝑥 ∈ R𝑑 : ∀𝑟 > 0, 𝐵(®𝑥, 𝑟] ∩ 𝑆 ≠ ∅, 𝐵(®𝑥, 𝑟] ∩ 𝑆𝑐 ≠ ∅

}
.

Is 𝜕𝑆 always closed? Justify your answer providing a proof if yes, a counterexample if no.
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Exam Simulation

Exercise 31. Solve the following equation in the unknown 𝑧 ∈ C:

sinh
1
𝑧
= 0.

Exercise 32. Consider the set (surface)
𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 − 2𝑥𝑦 + 𝑦2 − 𝑥 + 𝑦 = 0}.

Determine, if any, points of 𝐷 at min/max distance to the point (1, 2,−3). Justify carefully the method
you use.

Exercise 33. Let
𝐷 :=

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 0 ⩽ 𝑧 ⩽

1
cosh(𝑥2 + 𝑦2)

}
.

i) Draw 𝐷 ∩ {𝑥 = 0} and deduce the figure of 𝐷. Is 𝐷 closed? Open? Bounded? Compact? Justify
your answer.

ii) Determine the volume of 𝐷.
iii) Determine for which values of 𝛼 the following integral has a finite value:∫

𝐷

𝑒𝛼(𝑥2+𝑦2 ) 𝑑𝑥𝑑𝑦𝑑𝑧.

Exercise 34. Let
𝑢(𝑥, 𝑦) := 𝑥3 + 𝑎𝑥𝑦2, 𝑣(𝑥, 𝑦) := 𝑏𝑥2𝑦 − 𝑦3, (𝑥, 𝑦) ∈ R2.

i) Determine 𝑎, 𝑏 ∈ R in such a way that 𝑓 (𝑥 + 𝑖𝑦) := 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) be holomorphic on C.
ii) For values of 𝑎, 𝑏 found at i), express 𝑓 as a function of the complex variable 𝑧.

Exercise 35. Consider a Newton equation of type
𝑚𝑦′′ = 𝐹 (𝑦).

Suppose that force 𝐹 admits a potential, that is 𝐹 (𝑦) = 𝑓 ′(𝑦). Define the potential energy

𝐸 (𝑦, 𝑣) :=
1
2
𝑚𝑣2 − 𝑓 (𝑦).

i) Prove that 𝐸 (𝑦, 𝑦′) = 𝐸 (𝑦(𝑡), 𝑦′(𝑡)) is a constant function of 𝑡. Deduce that 𝑦 solves a first order
separable variables equation.

ii) Assume 𝑚 = 1 and let 𝐹 (𝑦) = −2𝑦 − 3𝑦2 (elastic force plus viscosity). Determine the motion of
the mass with 𝑦(0) = −2, 𝑦′(0) =

√
8.
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Exercise 36. Consider the equation
𝑦′′ = −9𝑦 + 6 sin(3𝑡).

This equation represents the motion of a unitary mass particle subject to an elastic force (constant of
elasticity 𝑘 = −9) and to an external force 𝐹 (𝑡) = 6 sin(3𝑡).

i) Determine the general solution of the equation.
ii) Solve the Cauchy problem 𝑦(0) = 𝑦′(0) = 0.

iii) Describe the long time (that is 𝑡 −→ +∞) of the general solution. In particular: are there solutions
for which ∃ lim𝑡→+∞ 𝑦(𝑡)? are there solutions which are bounded, that is |𝑦(𝑡) | ⩽ 𝑀 for all 𝑡 ⩾ 0
for some constant 𝑀? Justify carefully.

Exercise 37. Let
𝑓 (𝑥, 𝑦) := 3𝑥𝑦 + 𝑥2𝑦 + 𝑥𝑦2, (𝑥, 𝑦) ∈ 𝐷 := {(𝑥, 𝑦) ∈ R2 : 𝑥 ⩾ 0, 0 ⩽ 𝑦 ⩽ 1 − 𝑥}.

i) Draw 𝐷. Is 𝐷 closed? open? bounded? compact? Justify carefully.
ii) Discuss the problem of determining min/max (if any) of 𝑓 on 𝐷.

Exercise 38. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ R and

®𝐹 (𝑥, 𝑦) :=
(
𝑎𝑥 + 𝑏𝑦

(𝑥2 + 𝑦2)2 ,
𝑐𝑥 + 𝑑𝑦

(𝑥2 + 𝑦2)2

)
, (𝑥, 𝑦) ∈ 𝐷 := R2\{(0, 0)}.

i) Determine 𝑎, 𝑏, 𝑐, 𝑑 ∈ R in such a way that ®𝐹 be irrotational on 𝐷.
ii) Determine 𝑎, 𝑏, 𝑐, 𝑑 such that ®𝐷 be conservative on 𝐷. For these values (if any), determine all

possible potentials of ®𝐹 on 𝐷.
iii) Let 𝛾 = 𝛾(𝑡) ⊂ 𝐷 be the segment joining (1, 0) to (0, 2). For (𝑎, 𝑏, 𝑐, 𝑑) = (2, 0, 0, 2) compute∫

𝛾

®𝐹.

Exercise 39. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 1 − (𝑥2 + 𝑧2) ⩽ 𝑦 ⩽
√︁

1 − (𝑥2 + 𝑧2)}.
i) Draw 𝐷. Is 𝐷 a rotation solid?

ii) Compute the volume of 𝐷.

Exercise 40. Let 𝑓 = 𝑢 + 𝑖𝑣 : C −→ C be a C−differentiable function. What are the Cauchy-Riemann
equations? How are these equations relatived to C−differentiability of 𝑓 ? Write a precise statement.

Discuss the following questions:
i) Assume that Re 𝑓 or Im 𝑓 is constant. What can be drawn on 𝑓 ?

ii) Assume that | 𝑓 | is constant. What can be drawn on 𝑓 ? (hint: | 𝑓 |2 = 𝑢2 + 𝑣2 ≡ 𝑘 . . . )
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Exercise 41. Consider the equation
𝑦′ = 𝑦(𝑦2 + 1).

i) Determine the general integral of the equation.
ii) Determine the solution of the Cauchy problem 𝑦(0) = 1.

Exercise 42. Let 𝐷 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 = 1, 𝑥 + 𝑦 + 𝑧 = 1}.
i) Show that 𝐷 is the zero set of a submersion.

ii) Is 𝐷 compact?
iii) Determine, if any, min/max points for 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 − 𝑥 + 𝑦2 + 𝑦𝑥 + 𝑦𝑧 − 𝑦 on 𝐷.

Exercise 43. Let
𝐷 :=

{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 ⩽ 2𝑥 −

√︃
𝑥2 + 𝑦2

}
.

i) Is 𝐷 closed? open? bounded? compact? Justify carefully.
ii) Compute the area of 𝐷.

Exercise 44. Let
𝑢(𝑥, 𝑦) := 𝑥5 − 10𝑥3𝑦2 + 5𝑥𝑦4.

i) Determine all possible 𝑣 = 𝑣(𝑥, 𝑦) in such a way that 𝑓 (𝑥+𝑖𝑦) := 𝑢(𝑥, 𝑦)+𝑖𝑣(𝑥, 𝑦) be holomorphic
on C.

ii) For the 𝑓 found at i), determine the analytical expression of 𝑓 (𝑧) as function of 𝑧 ∈ C.

Exercise 45. What does it mean that a set 𝑆 ⊂ R𝑑 is open? Let ®𝑓 : R𝑑 −→ R𝑚 be a continuous function
on R𝑑 . Prove that the following property holds:

®𝑓 −1(𝑆) is open, ∀𝑆 ⊂ R𝑚 open.

(recall that ®𝑓 −1(𝑆) = {®𝑥 ∈ R𝑑 : ®𝑓 (®𝑥) ∈ 𝑆}). Hint: suppose that for some 𝑆 open, ®𝑓 −1(𝑆) is not open. . .



10

Solutions

Exercise 1. i) We have a separable vars eqn, 𝑦′ = 𝑎(𝑡) 𝑓 (𝑦) where 𝑓 (𝑦) = 𝑦2 − 4 and 𝑎(𝑡) = 1
𝑡
. Since

𝑎 ∈ 𝒞 and 𝑓 ∈ 𝒞
1. According to a general result, solutions of the differential equation are either constant

or not, in this last case can be determined by separation of variables. Constant solutions are 𝑦 ≡ 𝐶 iff
𝑦′ ≡ 0 = 𝐶2−4

𝑡
iff 𝐶2 = 4, iff 𝐶 = ±2. Since the solution of CP is 𝑦(1) = 0, certainly 𝑦 is not constant

(otherwise 𝑦 ≡ ±2). Thus, the solution of proposed CP can be determined by separation of vars:

𝑦′ =
𝑦2 − 4

𝑡
, ⇐⇒ 𝑦′

𝑦2 − 4
=

1
𝑡
, ⇐⇒

∫
𝑦′

𝑦2 − 4
𝑑𝑡 =

∫
1
𝑡
𝑑𝑡 + 𝐶 = log |𝑡 | + 𝐶.

Now,∫
𝑦′

𝑦2 − 4
𝑑𝑡

𝑢=𝑦′ (𝑡 )
=

∫
1

𝑢2 − 4
𝑑𝑢 =

∫
1
4

(
1

𝑢 − 2
− 1
𝑢 + 2

)
𝑑𝑢 =

1
4

log
����𝑢 − 2
𝑢 + 2

���� = 1
4

log
���� 𝑦(𝑡) − 2
𝑦(𝑡) + 2

���� .
In this way, we have the implicit form for the solution

1
4

log
���� 𝑦(𝑡) − 2
𝑦(𝑡) + 2

���� = log |𝑡 | + 𝐶.

Imposing the initial/passage condition we have
1
4

log 1 = log |1| + 𝐶, ⇐⇒ 𝐶 = 0.

Thus, for the solution of the CP we have
1
4

log
���� 𝑦(𝑡) − 2
𝑦(𝑡) + 2

���� = log |𝑡 |, ⇐⇒
���� 𝑦(𝑡) − 2
𝑦(𝑡) + 2

���� = 𝑡4, ⇐⇒ 𝑦(𝑡) − 2
𝑦(𝑡) + 2

= ±𝑡4.

Since 𝑦(1) = 0 we have −1 = ±14 = ±1, thus the appropriate sign is −, and

𝑦(𝑡) − 2
𝑦(𝑡) + 2

= −𝑡4, ⇐⇒ 𝑦(𝑡)−2 = −𝑡4(𝑦(𝑡)+2), ⇐⇒ 𝑦(𝑡) (1+𝑡4) = 2(1−𝑡4), ⇐⇒ 𝑦(𝑡) = 2
1 − 𝑡4

1 + 𝑡4
.

ii) The formula found at i) for 𝑦 is defined for every 𝑡 ∈ R. However, since the equation does not make
any sense at 𝑡 = 0, the solution must be defined either on ] −∞, 0[ or ]0, +∞[. Since 𝑦 is defined at 𝑡 = 1
we conclude that the domain of the solution is ]0, +∞[. About limits,

lim
𝑡→0

𝑦(𝑡) = 2, lim
𝑡→+∞

𝑦(𝑡) = −2. □

Exercise 2. i) For instance (0, 0, 𝑧) ∈ 𝐷 iff 𝑧2 = 1, thus (0, 0,±1) ∈ 𝐷 and 𝐷 ≠ ∅. 𝐷 is also the zero
set of 𝑔(𝑥, 𝑦, 𝑧) := 𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 1. This is a submersion on 𝐷 iff

∇𝑔 ≠ ®0, on 𝐷.

We have

∇𝑔 = ®0, ⇐⇒


2𝑥 − 𝑦 = 0,
2𝑦 − 𝑥 = 0,
2𝑧 = 0,

⇐⇒ (𝑥, 𝑦, 𝑧) = (0, 0, 0) ∉ 𝐷,

from which it follows that 𝑔 is a submersion on 𝐷.
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ii) Certainly, 𝐷 = {𝑔 = 0} is closed (𝑔 ∈ 𝒞). Is it also bounded? We may see this by using spherical
coordinates: 

𝑥 = 𝜌 cos 𝜃 sin 𝜑,

𝑦 = 𝜌 sin 𝜃 sin 𝜑,

𝑧 = 𝜌 cos 𝜑.
𝜌2 = 𝑥2 + 𝑦2 + 𝑧2 = ∥(𝑥, 𝑦, 𝑧)∥2.

Then, if (𝑥, 𝑦, 𝑧) ∈ 𝐷 we have

𝜌2 = 1 + 𝜌2 cos 𝜃 sin 𝜃 (sin 𝜑)2 = 1 + 1
2
𝜌2 sin(2𝜃) (sin 𝜑)2 ⩽ 1 + 𝜌2

2
,

from which
𝜌2

2
⩽ 1, ⇐⇒ 𝜌2 = ∥(𝑥, 𝑦, 𝑧)∥2 ⩽ 2.

Thus, 𝐷 is bounded, hence compact.
iii) We have to minimize/maximize 𝑓 (𝑥, 𝑦, 𝑧) =

√︁
𝑥2 + 𝑦2 + 𝑧2 or, which is equivalent (same min/max

points), 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2. According to i), we are in condition to apply Lagrange multipliers
theorem. According to this result, at min/max points (𝑥, 𝑦, 𝑧) ∈ 𝐷 we have

∇ 𝑓 = 𝜆∇𝑔, ⇐⇒ rk

∇ 𝑓 (𝑥, 𝑦, 𝑧)

∇𝑔(𝑥, 𝑦, 𝑧)

 = rk


2𝑥 2𝑦 2𝑧

2𝑥 − 𝑦 2𝑦 − 𝑥 2𝑧

 < 2.

This happens iff all 2 × 2 subdeterminats equal 0:
2𝑥(2𝑦 − 𝑥) − 2𝑦(2𝑥 − 𝑦) = 0,

2𝑥2𝑧 − 2𝑧(2𝑥 − 𝑦) = 0,

2𝑦2𝑧 − 2𝑧(2𝑦 − 𝑥) = 0,

⇐⇒


𝑦2 − 𝑥2 = 0,
𝑦𝑧 = 0,
𝑥𝑧 = 0.

The first leads to 𝑦 = ±𝑥, the second 𝑦 = 0 (then 𝑥 = 0) or 𝑧 = 0. That is we have points (0, 0, 𝑧) and
(𝑥,±𝑥, 0). Now

• (0, 0, 𝑧) ∈ 𝐷 iff 𝑧2 = 1, that is (0, 0,±1).
• (𝑥,±𝑥, 0) ∈ 𝐷 iff 2𝑥2 = 1 ± 𝑥2. If +, 2𝑥2 = 1 + 𝑥2, we get 𝑥 = ±1, that is points (1, 1, 0) and

(−1,−1, 0). It −, 𝑥2 = 1
3 , thus points

(
1√
3
,− 1√

3
, 0

)
and

(
− 1√

3
, 1√

3
, 0

)
.

Prom these we see that (1, 1, 0) and (−1,−1, 0) are points at max distance to ®0 while
(

1√
3
,− 1√

3
, 0

)
and(

− 1√
3
, 1√

3
, 0

)
are points of 𝐷 at min distance to ®0. □

Exercise 3. i) 𝐷 ∩ {𝑥 = 0} = {(0, 𝑦, 𝑧) :
√︁
|𝑦 | ⩽ 𝑧 ⩽ 2 − 𝑦2}. Thus, in the plane 𝑦𝑧, 𝐷 ∩ {𝑥 = 0} is

the plane region between 𝑧 =
√︁
|𝑦 | and the parabola 𝑧 = 2 − 𝑦2 (see figure). Since (𝑥, 𝑦, 𝑧) ∈ 𝐷 depends

on (𝑥, 𝑦) through 𝑥2 + 𝑦2, 𝐷 is invariant by rotations around the 𝑧−axis.
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ii) We have

𝜆3(𝐷) =
∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧 =
∫

4√
𝑥2+𝑦2⩽𝑧⩽2−(𝑥2+𝑦2 ) 1 𝑑𝑥𝑑𝑦𝑑𝑧

𝑅𝐹
=

∫
4√
𝑥2+𝑦2⩽2−(𝑥2+𝑦2 )

∫ 2−(𝑥2+𝑦2 )
4√
𝑥2+𝑦2

1 𝑑𝑧 𝑑𝑥𝑑𝑦

=
∫

4√
𝑥2+𝑦2⩽2−(𝑥2+𝑦2 )

(
2 − (𝑥2 + 𝑦2) − 4

√︁
𝑥2 + 𝑦2

)
𝑑𝑥𝑑𝑦

𝐶𝑉
=

∫
√
𝜌⩽2−𝜌2, 𝜃∈[0,2𝜋 ]

(√
𝜌 −

(
2 − 𝜌2) ) 𝜌 𝑑𝜌𝑑𝜃.

Now, √𝜌 ⩽ 2− 𝜌2 might be hard to solve. However, here 𝜌 ⩾ 0; √𝜌 is increasing while 2− 𝜌2 decreases.
Since at 𝜌 = 1 they are equal, we conclude that √𝜌 ⩽ 2 − 𝜌2 iff 0 ⩽ 𝜌 ⩽ 1. We can continue previous
chain by the RF:

𝑅𝐹
=

∫ 1
0

∫ 2𝜋
0

(
2𝜌 − 𝜌3 − 𝜌3/2) 𝑑𝜃 𝑑𝜌 = 2𝜋

(
−[𝜌2]𝜌=1

𝜌=0 −
[
𝜌4

4

]𝜌=1

𝜌=0
−

[
𝜌5/2

5/2

]𝜌=1

𝜌=0

)
= 2𝜋

(
1 − 1

4 − 2
5

)
= 7𝜋

10 . □

Exercise 4. i) 𝑓 = 𝑢 + 𝑖𝑣 is C−differentiable on C iff 𝑢, 𝑣 are R−differentiable on R2 and 𝑢, 𝑣 fulfill the
CR conditions. Clearly 𝑣 is differentiable. Thus we have to look at 𝑢 = 𝑢(𝑥, 𝑦) R−differentiable such that

𝜕𝑥𝑢 = 𝜕𝑦𝑣 = −𝑒−𝑦 (𝑦 cos 𝑥 + 𝑥 sin 𝑥) + 𝑒−𝑦 cos 𝑥,

𝜕𝑦𝑢 = −𝜕𝑥𝑣 = −𝑒−𝑦 (−𝑦 sin 𝑥 + sin 𝑥 + 𝑥 cos 𝑥) .

From the first equation,

𝑢(𝑥, 𝑦) =
∫
𝜕𝑥𝑢(𝑥, 𝑦) 𝑑𝑥 + 𝑐(𝑦) = −𝑒−𝑦 (𝑦 sin 𝑥 − 𝑥 cos 𝑥) + 𝑐(𝑦).

We have

𝜕𝑦𝑢 = 𝑒−𝑦 (𝑦 sin 𝑥 − 𝑥 cos 𝑥) − 𝑒−𝑦 sin 𝑥 + 𝑐′(𝑦) = 𝑒−𝑦 (𝑦 sin 𝑥 − 𝑥 cos 𝑥 + sin 𝑥) + 𝑐′(𝑦)

thus 𝜕𝑦𝑢 = −𝜕𝑥𝑣 iff 𝑐′(𝑦) = 0, that is 𝑐(𝑦) is constant. We conclude that

𝑢(𝑥, 𝑦) = −𝑒−𝑦 (𝑦 sin 𝑥 − 𝑥 cos 𝑥) + 𝑐 + 𝑒−𝑦 (𝑦 cos 𝑥 + 𝑥 sin 𝑥) .

ii) We have
𝑓 = 𝑢 + 𝑖𝑣 = −𝑒−𝑦 (𝑦 sin 𝑥 − 𝑥 cos 𝑥) + 𝑖𝑒−𝑦 (𝑦 cos 𝑥 + 𝑥 sin 𝑥)

= 𝑒−𝑦 (𝑦 (− sin 𝑥 + 𝑖 cos 𝑥) + 𝑥 (cos 𝑥 + 𝑖 sin 𝑥))

= 𝑒−𝑦
(
𝑖𝑦𝑒𝑖𝑥 + 𝑥𝑒𝑖𝑥

)
= 𝑒𝑖𝑥−𝑦 (𝑖𝑦 + 𝑥) = 𝑒𝑖 (𝑥+𝑖𝑦) (𝑥 + 𝑖𝑦) = 𝑒𝑖𝑧𝑧. □
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Exercise 5. Let ®𝐹 := 𝑓∇ 𝑓 = ( 𝑓 𝜕𝑥 𝑓 , 𝑓 𝜕𝑦 𝑓 ) =: (𝐹1, 𝐹2). According to Green formula,∮
𝜕𝐷

𝑓∇ 𝑓 =

∮
𝜕𝐷

®𝐹 =

∫
𝐷

(
𝜕𝑦𝐹1 − 𝜕𝑥𝐹2

)
𝑑𝑥𝑑𝑦.

Now, since

𝜕𝑦𝐹1 = 𝜕𝑦 ( 𝑓 𝜕𝑥 𝑓 ) = 𝜕𝑦 𝑓 𝜕𝑥 𝑓 + 𝑓 𝜕𝑦𝑥 𝑓 , 𝜕𝑥𝐹2 = 𝜕𝑥 ( 𝑓 𝜕𝑦 𝑓 ) = 𝜕𝑥 𝑓 𝜕𝑦 𝑓 + 𝑓 𝜕𝑥𝑦 𝑓

we easily deduce that 𝜕𝑦𝐹1 − 𝜕𝑥𝐹2 ≡ 0 being 𝑓 ∈ 𝒞
2(R2). □

Exercise 6. i) We have a separable variables equation 𝑦′ = 𝑎(𝑡) 𝑓 (𝑦) where 𝑎(𝑡) = 1
𝑡

and 𝑓 (𝑦) = 𝑒𝑦−1.
𝑦 ≡ 𝐶 is a solution iff 0 = 1

𝑡
(𝑒𝐶 − 1), iff 𝑒𝐶 = 1 that is, 𝐶 = 0. There is a unique constant solution, 𝑦 ≡ 0.

ii) Since 𝑦(1) = −1, 𝑦 is not constant. Furthermore, since 𝑎 ∈ 𝒞 and 𝑓 ∈ 𝒞
1, the solution can be

found by separating vars:

𝑦′ =
𝑒𝑦 − 1

𝑡
, ⇐⇒ 𝑦′

𝑒𝑦 − 1
=

1
𝑡
, ⇐⇒

∫
𝑦′(𝑡)

𝑒𝑦 (𝑡 ) − 1
𝑑𝑡 =

∫
1
𝑡
𝑑𝑡 + 𝑐 = log |𝑡 | + 𝑐.

On the lhs ∫
𝑦′ (𝑡 )

𝑒𝑦 (𝑡 )−1 𝑑𝑡
𝑢=𝑦 (𝑡 )
=

∫
𝑑𝑢

𝑒𝑢−1
𝑣=𝑒𝑢 , 𝑢=log 𝑣, 𝑑𝑢=𝑑𝑣/𝑣

=
∫

1
𝑣 (𝑣−1) 𝑑𝑣 =

∫
− 1

𝑣
+ 1

𝑣−1 𝑑𝑣

= log |𝑣 − 1| − log |𝑣 | = log
�� 𝑒𝑢−1

𝑒𝑢

��
= log

��� 𝑒𝑦 (𝑡 )−1
𝑒𝑦 (𝑡 )

��� .
Thus,

log
����𝑒𝑦 (𝑡 ) − 1

𝑒𝑦 (𝑡 )

���� = log
����1 − 1

𝑒𝑦 (𝑡 )

���� = log |𝑡 | + 𝑐.

By imposing the initial condition, we find

𝑐 = log(𝑒 − 1),
and ����1 − 1

𝑒𝑦 (𝑡 )

���� = (𝑒 − 1) |𝑡 |, ⇐⇒ 1 − 1
𝑒𝑦 (𝑡 )

= ±(𝑒 − 1)𝑡.

A check with the initial condition shows that the sign is −, thus

1 − 1
𝑒𝑦 (𝑡 )

= −(𝑒 − 1)𝑡, ⇐⇒ 1 + (𝑒 − 1)𝑡 = 1
𝑒𝑦 (𝑡 )

= 𝑒−𝑦 (𝑡 ) , ⇐⇒ 𝑦(𝑡) = − log (1 + (𝑒 − 1)𝑡) .

iii) The domain of definition for the solution is

1 + (𝑒 − 1)𝑡 > 0, ⇐⇒ 𝑡 > − 1
𝑒 − 1

.

However, since at 𝑡 = 0 the solution cannot be defined (because the equation does not make sense at
𝑡 = 0), and the solution is defined on an interval, we conclude that the domain is ]0, +∞[. We have

lim
𝑡→0+

𝑦(𝑡) = log 1 = 0, lim
𝑡→+∞

𝑦(𝑡) = −∞. □
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Exercise 7. i) Point (0, 𝑦, 0) ∈ 𝐷 iff 𝑦2 = 1 and 𝑦2 = 1, that is 𝑦 = ±1, so (0,±1, 0) ∈ 𝐷. 𝐷 is the
zero set of (𝑔1, 𝑔2) = (𝑥2 + 𝑦2 − 𝑧2 − 1, 𝑦2 + 𝑧 − 1). According to the Definition,

(𝑔1, 𝑔2) is a submersion on 𝐷 ⇐⇒ rk
[
∇𝑔1
∇𝑔2

]
=

[
2𝑥 2𝑦 −2𝑧
0 2𝑦 1

]
= 2 on 𝐷.

Since this is a 2 × 3 matrix, its rank is < 2 iff all 2 × 2 sub determinant equal 0, or


4𝑥𝑦 = 0,
2𝑥 = 0,
2𝑦(−1 + 2𝑧) = 0,

⇐⇒


𝑥 = 0,

𝑦(1 + 2𝑧) = 0.
⇐⇒

{
𝑥 = 0,
𝑦 = 0, ⇐⇒ (0, 0, 𝑧),


𝑥 = 0,

𝑧 = −1
2 ,

⇐⇒ (0, 𝑦,− 1
2 ).

Now,
• (0, 0, 𝑧) ∈ 𝐷 iff −𝑧2 = 1 and 𝑧 = 1, impossible;
• (0, 𝑦,− 1

2 ) ∈ 𝐷 iff 𝑦2 = 5
4 and 𝑦2 = 3

2 , impossible.

Conclusion: at no point of 𝐷 the rank of the matrix
[
∇𝑔1
∇𝑔2

]
is less than 2, thus (𝑔1, 𝑔2) is a submersion

on 𝐷.
ii) 𝐷 is certainly closed being defined by equations involving continuous functions. Is it also bounded?

From the second equation 𝑦2 = 1 − 𝑧, thus 𝑦 = ±
√

1 − 𝑧 for 𝑧 ⩽ 1. Plugging this into the first equation

𝑥2 = 𝑧2 − (1 − 𝑧) + 1 = 𝑧2 + 𝑧 = 𝑧(𝑧 + 1), =⇒ 𝑥 = ±
√︁
𝑧2 + 𝑧 for 𝑧 ⩽ 0 ∨ 𝑧 ⩾ 1.

In particular, for 𝑧 ⩽ 0 points

(±
√︁
𝑧2 + 𝑧,±

√
1 − 𝑧, 𝑧) ∈ 𝐷, ∀𝑧 ⩽ 0.

These points are unbounded because

∥(±
√︁
𝑧2 + 𝑧,±

√
1 − 𝑧, 𝑧)∥2 = 𝑧2 + 𝑧 + (1 − 𝑧) + 𝑧2 = 2𝑧2 + 1 −→ +∞, 𝑧 −→ −∞.

We conclude that 𝐷 is unbounded.
iii) By ii) 𝐷 is closed and unbounded. We have to min/max

√︁
𝑥2 + 𝑦2 + 𝑧2 or, equivalently, 𝑓 :=

𝑥2 + 𝑦2 + 𝑧2, which is continuous on 𝐷 and such that lim∞3 𝑓 = +∞. We conclude 𝑓 has no max point
on 𝐷 while it has min points. By i) and according to the Lagrange multipliers theorem, at min point we
must have

∇ 𝑓 = 𝜆1∇𝑔1 + 𝜆2∇𝑔2, ⇐⇒ rk

∇ 𝑓

∇𝑔1
∇𝑔2

 =


2𝑥 2𝑦 2𝑧
2𝑥 2𝑦 −2𝑧
0 2𝑦 1

 < 3.

This happens iff the determinant of the previous jacobian matrix equals 0, that is
8𝑥𝑦(𝑥 + 𝑧) = 0, ⇐⇒ 𝑥 = 0, ∨ 𝑦 = 0, ∨ 𝑧 = −𝑥.

This leads to points (0, 𝑦, 𝑧), (𝑥, 0, 𝑧) and (𝑥, 𝑦,−𝑥). Now,
• (0, 𝑦, 𝑧) ∈ 𝐷 iff 𝑦2 − 𝑧2 = 1 and 𝑦2 + 𝑧 = 1. From these, 𝑧2 + 𝑧 = 0 that is, 𝑧 = 0 or 𝑧 = −1, thus

we have points (0,±1, 0) and (0,±
√

2,−1);
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• (𝑥, 0, 𝑧) ∈ 𝐷 iff 𝑥2 − 𝑧2 = 1 and 𝑧 = 1, that is (±
√

2, 0, 1).
• (𝑥, 𝑦,−𝑥) ∈ 𝐷 iff 𝑥2 + 𝑦2 − 𝑥2 = 1 and 𝑦2 − 𝑥 = 1, that is 𝑦2 = 1 and 𝑥 = 0, from which we have

points (0,±1, 0).
Conclusion: min points are among (0,±1, 0), (0,±

√
2,−1), (±

√
2, 0, 1), and clearly thos at min distance

to ®0 are (0,±1, 0). □

Exercise 8. i) Figures are straightforward. 𝐷 is not invariant by any rotation because one part of the
inequality (𝑧 ⩾ 𝑥2 + 𝑦2) is invariant by rotations around 𝑧−axis while the second part (𝑧 ⩽ 1 − 𝑦2) is not.

ii) We have

𝜆3(𝐷) =

∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧
𝑅𝐹
=

∫
𝑥2+𝑦2⩽1−𝑦2

∫ 1−𝑦2

𝑥2+𝑦2
1 𝑑𝑧 𝑑𝑥𝑑𝑦 =

∫
𝑥2+2𝑦2⩽1

(
1 − 𝑦2 − (𝑥2 + 𝑦2)

)
𝑑𝑥𝑑𝑦

=

∫
𝑥2+2𝑦2⩽1

(
1 − (𝑥2 + 2𝑦2)

)
𝑑𝑥𝑑𝑦

𝐶𝑉 𝑥=𝜌 cos 𝜃,
√

2𝑦=𝜌 sin 𝜃
=

∫
0⩽𝜌⩽1, 0⩽𝜃⩽2𝜋

(
1 − 𝜌2

) 𝜌
√

2
𝑑𝜌 𝑑𝜃

𝑅𝐹
=

2𝜋
√

2

∫ 1

0
𝜌 − 𝜌3 𝑑𝜌 =

√
2𝜋

([
𝜌2

2

]𝜌=1

𝜌=0
−

[
𝜌4

4

]𝜌=1

𝜌=0

)
=

√
2𝜋
4

. □

Exercise 9. i) ®𝐹 is irrotational on 𝐷 iff

𝜕𝑦
𝑎𝑥2 + 𝑏𝑦2

(𝑥2 + 𝑦2)2 ≡ 𝜕𝑥
𝑥𝑦

(𝑥2 + 𝑦2)2 on 𝐷.

By computing derivatives, the previous is equivalent to

2𝑏𝑦(𝑥2 + 𝑦2) − (𝑎𝑥2 + 𝑏𝑦2)4𝑦
(𝑥2 + 𝑦2)3 =

𝑦(𝑥2 + 𝑦2) − 4𝑥2𝑦

(𝑥2 + 𝑦2)3

that is, iff

(2𝑏 − 4𝑎)𝑦𝑥2 − 2𝑏𝑦3 = −3𝑥2𝑦 + 𝑦3, ⇐⇒ 2𝑏 = −1, −1 − 4𝑎 = −3, ⇐⇒ 𝑏 = −1
2
, 𝑎 =

1
2
.

ii) To be conservative, ®𝐹 must be irrotational, hence, necessarily, 𝑎 = 1
2 = −𝑏. Thus,

®𝐹 =

(
1
2

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 ,
𝑥𝑦

(𝑥2 + 𝑦2)2

)
= ∇ 𝑓 , ⇐⇒


𝜕𝑥 𝑓 =

1
2

𝑥2−𝑦2

(𝑥2+𝑦2 )2 ,

𝜕𝑦 𝑓 =
𝑥𝑦

(𝑥2+𝑦2 )2 .

Looking at the second equation,

𝑓 (𝑥, 𝑦) =
∫

𝑥𝑦

(𝑥2 + 𝑦2)2 𝑑𝑦+𝑐(𝑥) = 𝑥

2

∫
2𝑦(𝑥2+𝑦2)−2 𝑑𝑦+𝑐(𝑥) = 𝑥

2
(𝑥2 + 𝑦2)−1

−1
+𝑐(𝑥) = − 1

2(𝑥2 + 𝑦2)
+𝑐(𝑥).
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Now, by imposing also the first equation we get

𝑐′(𝑥) = 0, ⇐⇒ 𝑐(𝑥) ≡ constant.

Thus, all the potentials of ®𝐹 are

𝑓 (𝑥, 𝑦) = − 1
2(𝑥2 + 𝑦2)

+ 𝑐. □

Exercise 10. About the CR equations see the course notes. Assume that 𝑓 = 𝑢 + 𝑖𝑣 is C differentiable
on C. Then, 𝑢, 𝑣 are R differentiable and the CR eqns hold,

𝜕𝑥𝑢 = 𝜕𝑦𝑣,

𝜕𝑦𝑢 = −𝜕𝑥𝑣.

If also 𝑓 = 𝑢 − 𝑖𝑣 = 𝑢 + 𝑖(−𝑣) is C differentiable, 𝑢,−𝑣 fulfill the CR eqns,
𝜕𝑥𝑢 = 𝜕𝑦 (−𝑣) = −𝜕𝑦𝑣,

𝜕𝑦𝑢 = −𝜕𝑥 (−𝑣) = +𝜕𝑥𝑣.
But then, combining the two CR eqns, we get

𝜕𝑥𝑢 = −𝜕𝑦𝑣 = −𝜕𝑥𝑢, =⇒ 2𝜕𝑥𝑢 ≡ 0,

and, similarly, 𝜕𝑦𝑢 ≡ 0. From this ∇𝑢 ≡ 0 hence 𝑢 is constant. Similar conclusion holds for 𝑣. We
conclude that both 𝑢 and 𝑣 must be constant, hence also 𝑓 must be constant.

Alternative solution: you may remind that we have seen that if a C differentiable function is real (or
imaginary) valued, then, necessarily, the function must be constant (this is again a consequence of the
CR eqns). Now, if both 𝑓 and 𝑓 are C differentiable, also 𝑓 + 𝑓 = 2𝑢 is C differentiable. But since 2𝑢 is
real valued, 𝑓 + 𝑓 (hence 𝑢) must be constant. Same conclusion for 𝑓 − 𝑓 = 𝑖2𝑣, hence 𝑣 is constant. □

Exercise 11. i) The general integral is

𝑦(𝑡) = 𝑐1𝑤1(𝑡) + 𝑐2𝑤2(𝑡) + 𝑢(𝑡),
where (𝑤1, 𝑤2) is a fundamental system of solutions for the homogeneous equation 𝑦′′ − 2𝑦′ + 𝑦 = 0 and
𝑢 is a particular solution of the equation. The characteristic equation is

𝜆2 − 2𝜆 + 1 = 0, ⇐⇒ (𝜆 − 1)2 = 0, ⇐⇒ 𝜆1,2 = 1.

Therefore, the fundamental system of solutions is 𝑤1 = 𝑒𝑡 , 𝑤2 = 𝑡𝑒𝑡 . To compute the particular solution
𝑢 we apply the Lagrange formula

𝑢(𝑡) =
(
−

∫
𝑤2
𝑊

𝑓 𝑑𝑡

)
𝑤1 +

(∫
𝑤1
𝑊

𝑓 𝑑𝑡

)
𝑤2,

where 𝑊 is the wronskian

𝑊 = det

𝑤1 𝑤2

𝑤′
1 𝑤′

2

 = det

𝑒𝑡 𝑡𝑒𝑡

𝑒𝑡 (𝑡 + 1)𝑒𝑡

 = (𝑡 + 1)𝑒2𝑡 − 𝑡𝑒2𝑡 = 𝑒2𝑡 ,
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and 𝑓 = 𝑓 (𝑡) = 𝑒2𝑡 . Thus

𝑢(𝑡) =
(
−

∫
𝑡𝑒𝑡

𝑒2𝑡 𝑒
2𝑡 𝑑𝑡

)
𝑒𝑡 +

(∫
𝑒𝑡

𝑒2𝑡 𝑒
2𝑡 𝑑𝑡

)
(𝑡𝑒𝑡 ) = −

(
𝑡𝑒𝑡 −

∫
𝑒𝑡 𝑑𝑡

)
𝑒𝑡 + 𝑒𝑡 𝑡𝑒𝑡 = 𝑒2𝑡 .

Conclusion: the general integral is

𝑦(𝑡) = 𝑐1𝑒
𝑡 + 𝑐2𝑡𝑒

𝑡 + 𝑒2𝑡 , 𝑐1, 𝑐2 ∈ R.
ii) To solve the Cauchy problem we impose the initial conditions 𝑦(0) = 1 and 𝑦′(0) = 0 to the general

integral. First notice that
𝑦′ = 𝑐1𝑒

𝑡 + 𝑐2(𝑡 + 1)𝑒𝑡 + 2𝑒2𝑡 ,

thus 
𝑦(0) = 1,

𝑦′(0) = 0,
⇐⇒

{
𝑐1 + 1 = 1,
𝑐1 + 𝑐2 + 2 = 0, ⇐⇒


𝑐1 = 0,

𝑐2 = −2,
and the solution is 𝑦(𝑡) = −2𝑡𝑒𝑡 + 𝑒2𝑡 .

iii) Again, we impose the passage conditions
𝑐1 + 1 = 0,

𝑐1𝑒 + 𝑐2𝑒 + 𝑒2 = 𝑎,

⇐⇒
{
𝑐1 = −1,
𝑐2 = 𝑎−𝑒2+𝑒

𝑒
.

We conclude that: for every 𝑎 ∈ R there exists a unique solution to the proposed problem. □

Exercise 12. i) Clearly 𝑓 (𝑥, 0) = 𝑥6 − 𝑥4 −→ +∞ for |𝑥 | −→ +∞. So, if a limit exists it must be = +∞.
We check this changing coordinates and using polar coords:

𝑓 (𝑥, 𝑦) = 𝜌6 − (𝜌 cos 𝜃)4 + (𝜌 sin 𝜃)4 ⩾ 𝜌6 − 2𝜌4 −→ +∞, if 𝜌 = ∥(𝑥, 𝑦)∥ −→ +∞.

ii) By i) and a consequence of Weierstrass theorem, 𝑓 has global minimum on R2 but not any
global maximum. Since every point of R2 lies in its interior, according to Fermat theorem (clearly
𝜕𝑥 𝑓 = 6𝑥(𝑥2 + 𝑦2)2 − 4𝑥3 and 𝜕𝑦 𝑓 = 6𝑦(𝑥2 + 𝑦2)2 + 4𝑦3 are both continuous on R2, hence 𝑓 is
differentiable on R2 according to the differentiability test), at min we have ∇ 𝑓 = ®0. Now,

∇ 𝑓 = ®0, ⇐⇒


6𝑥(𝑥2 + 𝑦2)2 − 4𝑥3 = 0,

6𝑦(𝑥2 + 𝑦2)2 + 4𝑦3 = 0
⇐⇒


𝑥
(
6(𝑥2 + 𝑦2)2 − 4𝑥2) = 0,

𝑦
(
6(𝑥2 + 𝑦2)2 + 4𝑦2) = 0,

Now, looking at second equation, we see that either 𝑦 = 0 or 6(𝑥2 + 𝑦2)2 + 4𝑦2 = 0. In the second case
we obtain trivially 𝑥 = 0 and 𝑦 = 0, thus the point (0, 0). Plugging 𝑦 = 0 into the first equation we get

𝑥

(
6𝑥4 − 4𝑥2

)
= 0, ⇐⇒ 𝑥3(3𝑥2 − 2) = 0, ⇐⇒ 𝑥 = 0, ∨ 𝑥 = ±

√︂
2
3
.

Thus we have again (0, 0) and two more points
(
±
√︃

2
3 , 0

)
. Since 𝑓 (0, 0) = 0 while

𝑓

(
±
√︂

2
3
, 0

)
=

8
27

− 4
9
= −28

27
< 𝑓 (0, 0) = 0,
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we conclude that
(
±
√︃

2
3 , 0

)
are global minimums. Finally, since R2 is connected,

𝑓 (R2) =
[
−28

27
, +∞

[
. □

Exercise 13. ii)
𝜆3(𝐷) =

∫
𝑥2+2𝑦2⩽𝑧⩽4−3(𝑥2+2𝑦2 ) 1 𝑑𝑥𝑑𝑦𝑑𝑧

𝑅𝐹
=

∫
𝑥2+2𝑦2⩽4−3(𝑥2+2𝑦2 )

∫ 4−3(𝑥2+2𝑦2 )
𝑥2+2𝑦2 1 𝑑𝑧 𝑑𝑥𝑑𝑦

=
∫
𝑥2+2𝑦2⩽4−3(𝑥2+2𝑦2 ) 4

(
1 − (𝑥2 + 2𝑦2)

)
𝑑𝑥𝑑𝑦.

Noticed that 𝑥2 + 2𝑦2 ⩽ 4 − 3(𝑥2 + 2𝑦2) iff 𝑥2 + 2𝑦2 ⩽ 1, we have

𝜆3(𝐷) =
∫
𝑥2+2𝑦2⩽1

4
(
1 − (𝑥2 + 2𝑦2)

)
𝑑𝑥𝑑𝑦.

Changing variables to adapted polar coordinates

𝑥 = 𝜌 cos 𝜃,
√

2𝑦 = 𝜌 sin 𝜃,
we have

𝜆3(𝐷) =
∫

0⩽𝜌⩽1, 0⩽𝜃⩽2𝜋
4
(
1 − 𝜌2

) 𝜌
√

2
𝑑𝜌𝑑𝜃

𝑅𝐹
=

8𝜋
√

2

∫ 1

0
(𝜌 − 𝜌3) 𝑑𝜌 =

8𝜋
√

2

(
1
2
− 1

4

)
=

4𝜋
√

2
. □

Exercise 14. i) Let 𝑢 = 𝑥2 + 𝑦2. From CR equations, 𝑣 = 𝑣(𝑥, 𝑦) is such that 𝑓 = 𝑢 + 𝑖𝑣 is
C−differentiable iff 𝑢, 𝑣 are R−differentiable and CR equations hold,

𝜕𝑥𝑢 = 𝜕𝑦𝑣,

𝜕𝑦𝑢 = −𝜕𝑥𝑣.
Clearly 𝑢 is R−differentiable. Thus we seek for 𝑣 R−differentiable such that

𝜕𝑥𝑣 = −𝜕𝑦𝑢 = −2𝑦,

𝜕𝑦𝑣 = 𝜕𝑥𝑢 = 2𝑥.

From the first equation 𝑣(𝑥, 𝑦) = −
∫

2𝑦 𝑑𝑥 + 𝑐(𝑦) = −2𝑥𝑦 + 𝑐(𝑦). Plugging this into the second equation
we have 𝜕𝑦𝑣 = −2𝑥 + 𝑐′(𝑦) = 2𝑥, that is 𝑐′(𝑦) = 4𝑥, which is impossible since 𝑐 does not depend on 𝑦.
We conclude that such 𝑣 does not exist.

ii) Since there is no 𝑣 such that 𝑓 = 𝑢 + 𝑖𝑣 is C−differentiable, there is no 𝑓 to be found. □

Exercise 15. See notes for the statement. We may formally set the optimization problem in the
following way. The set 𝑦 = 𝑓 (𝑥) is also 𝑓 (𝑥) − 𝑦 = 0. Setting 𝑔(𝑥, 𝑦) := 𝑓 (𝑥) − 𝑦 we see that 𝑔 is a
submersion on {𝑔 = 0}. Indeed ∇𝑔 = (𝜕𝑥𝑔, 𝜕𝑦𝑔) = ( 𝑓 ′(𝑥),−1) ≠ 0, whatever is 𝑥. Let now

𝑑 (𝑥, 𝑦) := (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2,
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the square of distance from (𝑎, 𝑏) to (𝑥, 𝑦). At minimum (𝑥, 𝑦) on the curve, that is 𝑦 = 𝑓 (𝑥), according
to Lagrange theorem we have

∇𝑑 = 𝜆∇𝑔 = 𝜆( 𝑓 ′(𝑥),−1).
Since

∇𝑑 = (2(𝑥 − 𝑎), 2(𝑦 − 𝑏)) = 2(𝑥 − 𝑎, 𝑦 − 𝑏) = 2𝑄 − 𝑃,

we have
𝑄 − 𝑃 =

𝜆

2
( 𝑓 ′(𝑥),−1).

Now, since the tangent direction to 𝑦 = 𝑓 (𝑥) at point (𝑥, 𝑓 (𝑥)) is (1, 𝑓 ′(𝑥)), and clearly ( 𝑓 ′(𝑥),−1) ⊥
(1, 𝑓 ′(𝑥)), we have that

𝑄 − 𝑃 ∥ ( 𝑓 ′(𝑥),−1) ⊥ (1, 𝑓 ′(𝑥)) ∥ tangent to 𝑓 ,

we obtain the conclusion. □

Exercise 16. i) The equation can be written as

𝑦′ =
𝑡

1 + 𝑡2
1 − 𝑦2

𝑦
=: 𝑎(𝑡) 𝑓 (𝑦),

with obvious definition of 𝑎 and 𝑓 . 𝑦 ≡ 𝐶 is a solution iff

0 = 𝑦′ =
𝑡

1 + 𝑡2
1 − 𝐶2

𝐶
, ⇐⇒ 1 − 𝐶2 = 0, ⇐⇒ 𝐶 = ±1.

ii) Since 𝑦(0) = 2, 𝑦 cannot be constant (otherwise: 𝑦 ≡ ±1 thus, in particular, 𝑦(0) = ±1 but 𝑦(0) = 2).
Therefore, 𝑦 can be determined by separation of variables:

𝑦

1 − 𝑦2 𝑦
′ =

𝑡

1 + 𝑡2
, ⇐⇒

∫
𝑦

1 − 𝑦2 𝑦
′ 𝑑𝑡 =

∫
𝑡

1 + 𝑡2
𝑑𝑡 + 𝑐 =

1
2

log(1 + 𝑡2) + 𝑐.

Now, ∫
𝑦

1 − 𝑦2 𝑦
′ 𝑑𝑡

𝑢=𝑦 (𝑡 ) , 𝑑𝑢=𝑦′ (𝑡 )𝑑𝑡
=

∫
𝑢

1 − 𝑢2 𝑑𝑢 = −1
2

log |1 − 𝑢2 | = −1
2

log |1 − 𝑦(𝑡)2 |,

hence

−1
2

log |1 − 𝑦(𝑡)2 | = 1
2

log(1 + 𝑡2) + 𝑐, ⇐⇒ log |1 − 𝑦(𝑡)2 | = − log(1 + 𝑡2) + 𝑐.

(we relabeled 2𝑐 by 𝑐). Imposing 𝑦(0) = 2,
log 3 = − log 1 + 𝑐, ⇐⇒ 𝑐 = log 3.

Therefore
|1 − 𝑦(𝑡)2 | = 3

1 + 𝑡2
,

that is
1 − 𝑦(𝑡)2 = ± 3

1 + 𝑡2
.

When 𝑡 = 0 lhs is −3, thus sign is − and

𝑦(𝑡)2 = 1 + 3
1 + 𝑡2

, ⇐⇒ 𝑦(𝑡) = ±
√︂

1 + 3
1 + 𝑡2

,
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and, again by imposing 𝑦(0) = 2, we see that sign is +. □

Exercise 17. i) We have (𝑥, 𝑦, 0) ∈ Γ iff 𝑥2 + 𝑦2 = 1 and 𝑥2 = 1, thus 𝑥 = ±1 and 𝑦2 = 0, hence
(±1, 0, 0) ∈ Γ. Now, Γ = {𝑔1 = 0, 𝑔2 = 0}, where 𝑔1 = 𝑥2 + 𝑦2 − 1, and 𝑔2 = 𝑥2 + 𝑧2 − 𝑥𝑧 − 1. Clearly
𝑔1, 𝑔2 ∈ 𝒞

1 and (𝑔1, 𝑔2) is a submersion on Γ iff

rank

∇𝑔1

∇𝑔2

 = rank


2𝑥 2𝑦 0

2𝑥 − 𝑧 0 2𝑧 − 𝑥

 = 2, ∀(𝑥, 𝑦, 𝑧) ∈ Γ.

This is false iff all 2 × 2 submatrices have determinant =0, that is
2𝑦(2𝑥 − 𝑧) = 0,
2𝑥(2𝑧 − 𝑥) = 0,
2𝑦(2𝑧 − 𝑥) = 0.

Working on the first equation, we have the alternatives 𝑦 = 0 or 2𝑥 − 𝑧 = 0. In the first case, the system
reduces to 𝑥(2𝑧 − 𝑥) = 0 that is 𝑥 = 0 (points (0, 0, 𝑧)) or 𝑥 = 2𝑧 (points (2𝑧, 0, 𝑧)). In the second case,
the system reduces to 

𝑧 = 2𝑥,
3𝑥2 = 0,
3𝑦𝑥 = 0,

⇐⇒ (0, 𝑦, 0).

Thus, rank is less than 2 at points (0, 0, 𝑧), (2𝑧, 0, 𝑧) and (0, 𝑦, 0). Now:
• (0, 0, 𝑧) ∈ Γ iff 0 = 1 (first condition), impossible;
• (2𝑧, 0, 𝑧) ∈ Γ iff 4𝑧2 = 1 and 5𝑧2 = 2𝑧2 + 1, that is 𝑧2 = 1

4 and 𝑧2 = 1
3 which are impossible

together.
• (0, 𝑦, 0) ∈ Γ iff 𝑦2 = 1 and 0 = 1, which is, again, impossible.

Conclusion: none of points where rank is ¡2 belong to Γ, this meaning that rank =2 on Γ, hence (𝑔1, 𝑔2)
is a submersion on Γ.

ii) Clearly Γ is closed because defined by equations involving continuous functions. Boundedness:
from first equation we deduce 𝑥2, 𝑦2 ⩽ 1. From second equation, recalling that 𝑎𝑏 ⩽ 𝑎2+𝑏2

2 we have

𝑥2 + 𝑧2 = 𝑥𝑧 + 1 ⩽
𝑥2 + 𝑧2

2
+ 1, =⇒ 𝑥2 + 𝑧2

2
⩽ 1,

from which, in particular, 𝑧2 ⩽ 2. Therefore ∥(𝑥, 𝑦, 𝑧)∥ =
√︁
𝑥2 + 𝑦2 + 𝑧2 ⩽

√
1 + 1 + 2 =

√
4 = 2, for

every (𝑥, 𝑦, 𝑧) ∈ Γ. Conclusion: Γ is bounded, hence compact.
iii) We have to minimize/maximize 𝑓 (𝑥, 𝑦, 𝑧) =

√︁
𝑥2 + 𝑦2 + 𝑧2 or, equivalently, 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2+ 𝑦2+ 𝑧2.

By ii), Γ is compact and obviously 𝑓 ∈ 𝒞, thus existence of min and max for 𝑓 is ensured by Weierstrass’
theorem. To determine min/max points we apply Lagrange’s thm. According to i), this thm can be applied
on Γ. We deduce that, at min/max points (𝑥, 𝑦, 𝑧) ∈ Γ,

∇ 𝑓 = 𝜆1∇𝑔1 + 𝜆2∇𝑔2, ⇐⇒ rank

∇ 𝑓

∇𝑔1
∇𝑔2

 =


2𝑥 2𝑦 2𝑧
2𝑥 2𝑦 0

2𝑥 − 𝑧 0 2𝑧 − 𝑥

 = 2,
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or, equivalently, the determinant of this last matrix equals 0. We obtain

2𝑧 · (−2𝑦(2𝑥 − 𝑧)) = 0, ⇐⇒ 𝑦𝑧(2𝑥 − 𝑧) = 0, ⇐⇒ 𝑦 = 0, ∨ 𝑧 = 0, ∨ 𝑧 = 2𝑥.

Thus possible min/max points are among points (𝑥, 0, 𝑧), (𝑥, 𝑦, 0) and (𝑥, 𝑦, 2𝑥). Now,
• (𝑥, 0, 𝑧) ∈ Γ iff 𝑥2 = 1 and 𝑥2 + 𝑧2 = 𝑥𝑧 + 1, or, equivalently, 𝑥2 = 1 and 𝑧2 = 𝑥𝑧 + 1. For 𝑥 = 1 we

get 𝑧2 = 𝑧 + 1, that is 𝑧 = 1±
√

5
2 , namely points (1, 0, 1±

√
5

2 ). For 𝑥 = −1 we get 𝑧2 = −𝑧 + 1, that is
𝑧 = −1±

√
5

2 , namely points (−1, 0, −1±
√

5
2 ).

• (𝑥, 𝑦, 0) ∈ Γ iff 𝑥2 + 𝑦2 = 1 and 𝑥2 = 1, that is 𝑥 = ±1 and 𝑦2 = 0, namely points (±1, 0, 0).
• (𝑥, 𝑦, 2𝑥) ∈ Γ iff 𝑥2 + 𝑦2 = 1 and 𝑥2 + 4𝑥2 = 2𝑥2 + 1, from which 𝑥2 = 1

3 , 𝑥 = ± 1√
3

and 𝑦2 = 2
3 ,

𝑦 = ±
√︃

2
3 , thus we get points

(
1√
3
,±

√︃
2
3 ,

2√
3

)
and

(
− 1√

3
,±

√︃
2
3 ,−

2√
3

)
(4 points).

We have

• 𝑓 (1, 0, 1±
√

5
2 ) = 1+

(
1±

√
5

2

)2
= 10±2

√
5

4 , 𝑓 (−1, 0, −1±
√

5
2 ) = 1+

(
−1±

√
5

2

)2
= 10±2

√
5

4 ≈;f(±1, 0, 0) = 1;

•• 𝑓

(
1√
3
,±

√︃
2
3 ,

2√
3

)
= 1

3 + 2
3 + 4

3 = 7
3 and 𝑓

(
− 1√

3
,±

√︃
2
3 ,−

2√
3

)
= 1

3 + 2
3 + 4

3 = 7
3 .

From this we see that (1, 0, 1+
√

5
2 ) and (−1, 0, −1−

√
5

2 ) are maximum points while (±1, 0, 0) are min
points. □

Exercise 18. ii) 𝐷 is closed (because defined by large inequalities involving continuous functions) and
bounded (the root imposes 𝑥2 + 𝑦2 ⩽ 1 and, consequently, 0 ⩽ 1− (𝑥2 + 𝑦2) ⩽ 𝑧 ⩽

√︁
1 − (𝑥2 + 𝑦2) ⩽

√
1,

that is 0 ⩽ 𝑧 ⩽ 1). Thus 𝐷 is compact, hence 1𝐷 is integrable on 𝐷. Furthermore, noticed that, calling
𝜌2 = 𝑥2 + 𝑦2,

1 − 𝜌2 ⩽
√︃

1 − 𝜌2, ⇐⇒
√︃

1 − 𝜌2 ⩽ 1,

which is always true, thus 1 − (𝑥2 + 𝑦2) ⩽
√︁

1 − (𝑥2 + 𝑦2) always when defined. Then

Vol 𝐷 =
∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧
𝑅𝐹
=

∫
𝑥2+𝑦2⩽1

∫√1−(𝑥2+𝑦2 )
1−(𝑥2+𝑦2 ) 1 𝑑𝑧 𝑑𝑥𝑑𝑦

=
∫
𝑥2+𝑦2⩽1

(√︁
1 − (𝑥2 + 𝑦2) − (1 − (𝑥2 + 𝑦2))

)
𝑑𝑥𝑑𝑦

𝑝𝑜𝑙. 𝑐𝑜𝑜𝑟𝑑𝑠
=

∫
0⩽𝜃⩽2𝜋, 0⩽𝜌⩽1

(√︁
1 − 𝜌2 − 1 + 𝜌2

)
𝜌 𝑑𝜌𝑑𝜃

𝑅𝐹
= 2𝜋

∫ 1
0 𝜌(1 − 𝜌2)1/2 − 𝜌 + 𝜌3 𝑑𝜌 = 2𝜋

[ [
−1

3 (1 − 𝜌2)3/2]𝜌=1
𝜌=0 −

[
𝜌2

2

]𝜌=1

𝜌=0
+

[
𝜌4

4

]𝜌=1

𝜌=0

]
= 2𝜋

[
+1

3 − 1
2 + 1

4
]
= 𝜋

6 . □
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Exercise 19. i) In order 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic on C we need that 𝑢, 𝑣 ∈ 𝒞
1 (true, 𝑢 and 𝑣 are

polynomials) and they fulfill the CR equations:
𝜕𝑥𝑢 = 𝜕𝑦𝑣,

𝜕𝑦𝑢 = −𝜕𝑥𝑣,
⇐⇒


2𝑎𝑥 + 𝑏𝑦 = 𝑥,

𝑏𝑥 + 2𝑐𝑦 = −𝑦,
∀(𝑥, 𝑦) ∈ R2., ⇐⇒


2𝑎 = 1, 𝑏 = 0,

𝑏 = 0, 2𝑐 = −1.
Thus,

𝑢 =
1
2
𝑥2 − 1

2
𝑦2, 𝑣 = 𝑥𝑦,

and 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic on C.
ii) Notice that

𝑓 = 𝑢 + 𝑖𝑣 =
1
2
𝑥2 − 1

2
𝑦2 + 𝑖𝑥𝑦 =

1
2

(
𝑥2 − 𝑦2 + 𝑖2𝑥𝑦

)
=

1
2
(𝑥 + 𝑖𝑦)2 ≡ 𝑧2

2
, 𝑧 ∈ C. □

Exercise 20. Clearly 𝑓 ∈ 𝒞(R𝑑) and moreover 𝑓 ⩾ 0 (trivial) and
lim

®𝑥→∞𝑑

𝑓 (®𝑥) = +∞.

Just notice that 𝑓 (®𝑥) ⩾ ∥®𝑥 − ®𝑎1∥2 −→ +∞ when ®𝑥 −→ ∞𝑑 . Thus 𝑓 cannot have a maximum but it has a
minimum according to Weierstrass’ thm. Now, 𝑓 is differentiable on R𝑑 ,

∇ 𝑓 =

𝑁∑︁
𝑗=1

∇∥®𝑥 − ®𝑎 𝑗 ∥2

and
∇∥®𝑥 − ®𝑎 𝑗 ∥2 =

(
𝜕1∥®𝑥 − ®𝑎 𝑗 ∥2, . . . , 𝜕𝑑 ∥®𝑥 − ®𝑎 𝑗 ∥2

)
,

so, writing

∥®𝑥 − ®𝑎 𝑗 ∥2 =

𝑑∑︁
𝑘=1

(𝑥𝑘 − 𝑎 𝑗 ,𝑘)2, =⇒ 𝜕𝑖 ∥®𝑥 − ®𝑎 𝑗 ∥2 = 𝜕𝑖

𝑑∑︁
𝑘=1

(𝑥𝑘 − 𝑎 𝑗 ,𝑘)2 = 2(𝑥𝑖 − 𝑎 𝑗 ,𝑖),

we deduce
∇∥®𝑥 − ®𝑎 𝑗 ∥2 =

(
2(𝑥1 − 𝑎 𝑗 ,1), 2(𝑥2 − 𝑎 𝑗 ,2, . . . , 2(𝑥𝑑 − 𝑎 𝑗 ,𝑑)

)
= 2(®𝑥 − ®𝑎 𝑗).

Therefore, ∇ 𝑓 ∈ 𝒞 and 𝑓 is differentiable. According to Fermat thm, at min point we must have

∇ 𝑓 = ®0, ⇐⇒
𝑁∑︁
𝑗=1

2(®𝑥 − ®𝑎 𝑗) = 0, ⇐⇒ 𝑁 ®𝑥 −
𝑁∑︁
𝑗=1

®𝑎 𝑗 = ®0, ⇐⇒ ®𝑥 =
1
𝑁

𝑁∑︁
𝑗=1

®𝑎 𝑗 . □

Exercise 21. i) 𝑦 ≡ 𝐶 is a solution iff 0 = 𝐶 log𝐶, from which 𝐶 > 0 (to be log𝐶 well defined), thus
log𝐶 = 0, that is 𝐶 = 1.

ii) If 𝑦(0) = 1, then 𝑦(𝑡) ≡ 1 (constant solution. For 𝑎 ≠ 1 (but 𝑎 > 0 because of the equation),
solution is non constant and it can be determined by separation of variables:

𝑦 = 𝑦 log 𝑦, ⇐⇒ 𝑦′

𝑦 log 𝑦
= 1, ⇐⇒

∫
𝑦′

𝑦 log 𝑦
𝑑𝑡 = 𝑡 + 𝑐.
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Since ∫
𝑦′

𝑦 log 𝑦
𝑑𝑡

𝑢=𝑦 (𝑡 ) , 𝑑𝑢=𝑦′ (𝑡 )𝑑𝑡
=

∫
1

𝑢 log 𝑢
𝑑𝑢 =

∫ (log 𝑢)′
log 𝑢

𝑑𝑢 = log | log 𝑢 | = log | log 𝑦(𝑡) |.

Therefore,
log | log 𝑦(𝑡) | = 𝑡 + 𝑐.

By imposing 𝑦(0) = 𝑎 we have 𝑐 = log | log 𝑎 |, hence

| log 𝑦(𝑡) | = | log 𝑎 |𝑒𝑡 , ⇐⇒ log 𝑦(𝑡) = ±(log 𝑎)𝑒𝑡 .

Because of the initial condition we have log 𝑦(𝑡) = (log 𝑎)𝑒𝑡 , hence

𝑦(𝑡) = 𝑒 (log 𝑎)𝑒𝑡 .

iii) We have lim𝑡→+∞ 𝑦(𝑡) = 0 iff log 𝑎 < 0, that is 𝑎 < 1. □

Exercise 22. i) Let 𝑔1 := 𝑥2 − 𝑦2 − 𝑧2 and 𝑔2 := 𝑥2 + 𝑦2 − 𝑥𝑦 − 1. Then, ®𝑔 = (𝑔1, 𝑔2) is a submersion
on 𝐷 iff rk®𝑔′(𝑥, 𝑦, 𝑧) = 2 for all (𝑥, 𝑦, 𝑧) ∈ 𝐷. Now,

rk ®𝑔′(𝑥, 𝑦, 𝑧) = rk

∇𝑔1

∇𝑔2

 = rk


2𝑥 −2𝑦 −2𝑧

2𝑥 − 𝑦 2𝑦 − 𝑥 0

 < 2, ⇐⇒


2𝑥(2𝑦 − 𝑥) + 2𝑦(2𝑥 − 𝑦) = 0,
2𝑧(2𝑥 − 𝑦) = 0,
2𝑧(2𝑦 − 𝑥) = 0.

Simplifying, we get the system 
𝑥2 + 𝑦2 − 4𝑥𝑦 = 0,
𝑧(2𝑥 − 𝑦) = 0,
𝑧(2𝑦 − 𝑥) = 0.

Choosing the second equation, we have the alternative 𝑧 = 0 or 2𝑥 − 𝑦 = 0. In the first case the system
reduces to 

𝑧 = 0,

𝑥2 + 𝑦2 − 4𝑥𝑦 = 0.

These points belong to 𝐷 iff 
𝑥2 = 𝑦2,

4𝑥𝑦 = 𝑥𝑦 + 1,
⇐⇒


𝑦 = ±𝑥,

3𝑥𝑦 = 1.

However, since 𝑥2 + 𝑦2 = 4𝑥𝑦 implies that, for 𝑦 = ±𝑥, that 𝑥 = 0 = 𝑦, it is impossible that 3𝑥𝑦 = 1, thus
no solutions are in 𝐷.

In the second case, namely, 𝑧 ≠ 0 and 2𝑥 − 𝑦 = 0 or 𝑦 = 2𝑥, condition rk®𝑔′(𝑥, 𝑦, 𝑧) < 2 reduces to
𝑦 − 2𝑥,
𝑥(2𝑦 − 𝑥) = 0,
2𝑦 − 𝑥 = 0,
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we easily get 𝑥 = 𝑦 = 0, that is a point of type (0, 0, 𝑧). Now,

(0, 0, 𝑧) ∈ 𝐷, ⇐⇒


𝑧 = 0,

0 = 1,

clearly impossible. Conclusion: rank of ®𝑔′(𝑥, 𝑦, 𝑧) is never less than 2 on 𝐷, that is ®𝑔 is a submersion on
𝐷.

ii) 𝐷 is clearly closed being defined by equalities involving continuous functions. To determine whether
𝐷 is bounded or less, we look first at constraint 𝑥2 + 𝑦2 = 𝑥𝑦 + 1. Writing 𝑥 = 𝜌 cos 𝜃 and 𝑦 = 𝜌 sin 𝜃,
this reads as

𝜌2 = 𝜌2 cos 𝜃 sin 𝜃 + 1 =
𝜌2

2
sin(2𝜃) + 1, ⩽

𝜌2

2
+ 1, =⇒ 𝜌2

2
⩽ 1, =⇒ 𝑥2 + 𝑦2 ⩽ 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

But then, by the first equation,

𝑧2 = 𝑥2 − 𝑦2 ⩽ 𝑥2 ⩽ 𝑥2 + 𝑦2 ⩽ 2, =⇒ 𝑥2 + 𝑦2 + 𝑧2 ⩽ 4, =⇒ ∥(𝑥, 𝑦, 𝑧)∥ ⩽ 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

This means that 𝐷 is bounded, hence compact.
iii) We have to miunimize/maximize 𝑓 (𝑥, 𝑦, 𝑧) = ∥(𝑥, 𝑦, 𝑧)∥ or, which is the same, 𝑓 (𝑥, 𝑦, 𝑧) =

∥(𝑥, 𝑦, 𝑧)∥2 = 𝑥2 + 𝑦2 + 𝑧2. The existence of min and max is ensured by the Weierstrass theorem being 𝐷

compact by ii).
To determine min/max points, we apply Lagrange multipliers theorem. By i), assumptions of this

theorem are verified. Thus, at min/max point (𝑥, 𝑦, 𝑧) ∈ 𝐷 we must have

∇ 𝑓 = 𝜆1∇𝑔1 + 𝜆2∇𝑔2, ⇐⇒ rk

∇ 𝑓

∇𝑔1
∇𝑔2

 < 3, ⇐⇒ det

∇ 𝑓

∇𝑔1
∇𝑔2

 = 0.

Now,

0 = det

∇ 𝑓

∇𝑔1
∇𝑔2

 = det


2𝑥 2𝑦 2𝑧
2𝑥 −2𝑦 −2𝑧

2𝑥 − 𝑦 2𝑦 − 𝑥 0

 = −(2𝑦 − 𝑧) (−8𝑥𝑧) = 8𝑥𝑧(2𝑦 − 𝑧),

iff 𝑥 = 0, or 𝑧 = 0 or 2𝑦 − 𝑧 = 0. Thus, we have points (0, 𝑦, 𝑧), (𝑥, 𝑦, 0) and (𝑥, 𝑦, 2𝑦). Now:
• (0, 𝑦, 𝑧) ∈ 𝐷 iff 0 = 𝑦2 + 𝑧2 and 𝑦2 = 1, and of course this is impossible.
• (𝑥, 𝑦, 0) ∈ 𝐷 iff 𝑥2 = 𝑦2 and 𝑥2 + 𝑦2 = 𝑥𝑦 + 1. From the first we have 𝑦 = ±𝑥. For 𝑦 = 𝑥, second

condition becomes 2𝑥2 = 𝑥2 = 1, thus 𝑥2 = 1, so 𝑥 = ±1 and we have points (±1,±1, 0) (same
sign). For 𝑦 = −𝑥, second condition becomes 2𝑥2 = −𝑥2 + 1, that is 𝑥2 = 1

3 , that is 𝑥 = ± 1√
3
, from

which we have points
(
± 1√

3
,∓ 1√

3
, 0

)
(opposite sign).

• (𝑥, 𝑦, 2𝑦) ∈ 𝐷 iff 𝑥2 = 𝑦2 + 4𝑦2 = 5𝑦2 and 𝑥2 + 𝑦2 = 𝑥𝑦 + 1. From first equation we get 𝑥 = ±
√

5𝑦.
In the case 𝑥 =

√
5𝑦, from second eqn we have 5𝑦2 + 𝑦2 =

√
5𝑦2 + 1, that is (6 −

√
5)𝑦2 = 1, that

is 𝑦 = ± 1√
6−

√
5
, this yielding to points

(
±

√
5√

6−
√

5
,± 1√

6−
√

5
, 0

)
(same sign). In the case 𝑥 = −

√
5𝑦,



25

second condition yields to 5𝑦2 + 𝑦2 = −
√

5𝑦1, that is 𝑦2 = 1
5+

√
5
, or 𝑦 = ± 1√

5+
√

5
, from which we

get points
(
∓

√
5√

5+
√

5
,± 1√

5+
√

5
, 0

)
(opposite sign).

Previous analysis figured out possible min/max points. To decide which are min and which max it suffices
to compute 𝑓 at these points. We have:

• 𝑓 (±1,±1, 0) = 2;
• 𝑓

(
± 1√

3
,∓ 1√

3
, 0

)
= 2

3 = 0, 6̄;

• 𝑓

(
±

√
5√

6−
√

5
,± 1√

6−
√

5
, 0

)
= 6

6−
√

5
≈ 1, 59 . . .

• 𝑓

(
∓

√
5√

5+
√

5
,± 1√

5+
√

5
, 0

)
= 6

5+
√

5
≈ 0, 83 . . .

From this it is clear that (±1,±1, 0) are points of 𝐷 at max distance to ®0, while
(
± 1√

3
,∓ 1√

3
, 0

)
are poitns

of 𝐷 at min distance to ®0. □

Exercise 23. i) To be irrotational, the field must verify

𝜕𝑦
𝑎𝑥 + 𝑏𝑦√︁
𝑥2 + 𝑦2

≡ 𝜕𝑥
𝑐𝑥 + 𝑑𝑦√︁
𝑥2 + 𝑦2

, ∀(𝑥, 𝑦) ∈ 𝐷 = R2\{®0}.

We have

𝜕𝑦
𝑎𝑥 + 𝑏𝑦√︁
𝑥2 + 𝑦2

=

𝑏
√︁
𝑥2 + 𝑦2 − (𝑎𝑥 + 𝑏𝑦) 2𝑦

2
√

𝑥2+𝑦2

(𝑥2 + 𝑦2)
=

𝑏(𝑥2 + 𝑦2) − 𝑦(𝑎𝑥 + 𝑏𝑦)
(𝑥2 + 𝑦2)3/2 =

𝑏𝑥2 − 𝑎𝑥𝑦

(𝑥2 + 𝑦2)3/2 ,

and, similarly

𝜕𝑥
𝑐𝑥 + 𝑑𝑦√︁
𝑥2 + 𝑦2

=
𝑐𝑦2 − 𝑑𝑥𝑦

(𝑥2 + 𝑦2)3/2 .

Thus, the field is irrotational iff

𝑏𝑥2 − 𝑎𝑥𝑦

(𝑥2 + 𝑦2)3/2 ≡ 𝑐𝑦2 − 𝑑𝑥𝑦

(𝑥2 + 𝑦2)3/2 , ⇐⇒ 𝑏𝑥2 − 𝑎𝑥𝑦 = 𝑐𝑦2 − 𝑑𝑥𝑦, ∀(𝑥, 𝑦) ∈ R2\{®0}.

Since the identity is trivally verified at (𝑥, 𝑦) = ®0, we may say that the field is irrotational iff

𝑏𝑥2 − 𝑎𝑥𝑦 ≡ 𝑐𝑦2 − 𝑑𝑥𝑦, ⇐⇒ 𝑏 = 𝑐 = 0, 𝑎 = 𝑑.

ii) By i), to be conservative ®𝐹 must have the form

®𝐹 =

(
𝑎𝑥√︁

𝑥2 + 𝑦2
,

𝑎𝑦√︁
𝑥2 + 𝑦2

)
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Now, such a ®𝐹 is conservative iff ®𝐹 = ∇ 𝑓 , that is
𝜕𝑥 𝑓 =

𝑎𝑥√
𝑥2+𝑦2

,

𝜕𝑦 𝑓 =
𝑎𝑦√
𝑥2+𝑦2

.

From first equation,

𝑓 (𝑥, 𝑦) =
∫

𝑎𝑥√︁
𝑥2 + 𝑦2

𝑑𝑥 + 𝑘 (𝑦) = 𝑎

2

∫
(𝑥2 + 𝑦2)−1/2(2𝑥) 𝑑𝑥 + 𝑘 (𝑦) = 𝑎(𝑥2 + 𝑦2)1/2 + 𝑘 (𝑦).

Plugging this into the second equation we have

𝜕𝑦 𝑓 = 𝑎
1
2
(𝑥2 + 𝑦2)−1/22𝑦 + 𝑘 ′(𝑦) = 𝑎𝑦√︁

𝑥2 + 𝑦2
, ⇐⇒ 𝑘 ′(𝑦) = 0.

Thus, we deduce that

𝑓 (𝑥, 𝑦) = 𝑎

√︃
𝑥2 + 𝑦2 + 𝑘, 𝑘 ∈ R,

are all the potentials for ®𝐹. □

Exercise 24. For the volume, we may notice that

𝜆3(𝐷) =
∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧
𝑅𝐹
=

∫ 1

0

(∫
𝑥2+4𝑦2⩽1+𝑧2

𝑑𝑥𝑑𝑦

)
𝑑𝑧.

By using adapted polar coordinates, 𝑥 = 𝜌 cos 𝜃, 𝑦 = 1
2 𝜌 sin 𝜃, in such a way that 𝑥2 + 4𝑦2 = 𝜌2, we have∫

𝑥2+4𝑦2⩽1+𝑧2
𝑑𝑥𝑑𝑦 =

∫
0⩽𝜌⩽

√
1+𝑧2, 0⩽𝜃⩽2𝜋

1
2
𝜌 𝑑𝜌𝑑𝜃

𝑅𝐹
= 𝜋

∫ √
1+𝑧2

0
𝜌 𝑑𝜌 = 𝜋

[
𝜌2

2

]𝜌=√1+𝑧2

𝜌=0
=

𝜋

2
(1 + 𝑧2).

Therefore

𝜆3(𝐷) =
∫ 1

0

𝜋

2
(1 + 𝑧2) 𝑑𝑧 = 𝜋

2

(
1 +

[
𝑧3

3

] 𝑧=1

𝑧=0

)
=

2
3
𝜋. □

Exercise 25. i) If 𝑢(𝑥, 𝑦) = Re 𝑓 (𝑥 + 𝑖𝑦) and 𝑣(𝑥, 𝑦) = Im 𝑓 (𝑥 + 𝑖𝑦), then

𝑔(𝑥 + 𝑖𝑦) = 𝑓 (𝑥 − 𝑖𝑦) = 𝑢(𝑥,−𝑦) + 𝑖𝑣(𝑥,−𝑦) = 𝑢(𝑥,−𝑦) − 𝑖𝑣(𝑥,−𝑦),
from which we see that

𝑈 (𝑥, 𝑦) = Re 𝑔(𝑥 + 𝑖𝑦) = 𝑢(𝑥,−𝑦), 𝑉 (𝑥, 𝑦) = Im 𝑔(𝑥 + 𝑖𝑦) = −𝑣(𝑥,−𝑦).
ii) 𝑔 is holomorphic iff 𝑈,𝑉 are R−differentiable and they verify CR equations. Clearly, sunce 𝑓 is
holomorphic, 𝑢, 𝑣 are R−differentiable, hence also 𝑈,𝑉 are R−differentiable. Therefore, we have to
verify if 𝑈,𝑉 fulfil also the CR equations, that is

𝜕𝑥𝑈 ≡ 𝜕𝑦𝑉,

𝜕𝑦𝑈 ≡ −𝜕𝑥𝑉.



27

We have,

𝜕𝑥𝑈 = 𝜕𝑥 (𝑢(𝑥,−𝑦)) = 𝜕𝑥𝑢(𝑥,−𝑦), 𝜕𝑦𝑉 = 𝜕𝑦 (−𝑣(𝑥,−𝑦)) = −𝜕𝑦𝑣(𝑥,−𝑦) (−1) = 𝜕𝑦𝑣(𝑥,−𝑦).
And since 𝜕𝑥𝑢 ≡ 𝜕𝑦𝑣 we deduce that also 𝜕𝑥𝑈 = 𝜕𝑦𝑉 . Similarly, 𝜕𝑦𝑈 = −𝜕𝑥𝑉 and the check is
completed. □

Exercise 26. i) We have a second order equation. The homogeneous equation is 𝑦′′ + 2𝑦′ + 𝑦 = 0,
whoose characteristic equation is 𝜆2 + 2𝜆 + 1 = 0, or (𝜆 + 1)2 = 0. The fundamental system of solutions
for the homogeneous equation is 𝑤1 = 𝑒−𝑡 , 𝑤2 = 𝑡𝑒−𝑡 , whoose wronskian is

𝑊 (𝑡) = det

𝑤1 𝑤2

𝑤′
1 𝑤′

2

 = det


𝑒−𝑡 𝑡𝑒−𝑡

−𝑒−𝑡 𝑒−𝑡 (1 − 𝑡)

 = 𝑒−2𝑡 (1 − 𝑡) + 𝑡𝑒−2𝑡 = 𝑒−2𝑡 .

The general solution of the original equation is then

𝑦(𝑡) =
(
𝑐1 −

∫
𝑤2
𝑊

(𝑡 + 1) 𝑑𝑡
)
𝑤1 +

(
𝑐2 +

∫
𝑤1
𝑊

(𝑡 + 1) 𝑑𝑡
)
𝑤2

We have ∫
𝑤2
𝑊
(𝑡 + 1) 𝑑𝑡 =

∫
𝑡𝑒−𝑡

𝑒−2𝑡 (𝑡 + 1) 𝑑𝑡 =
∫
𝑒𝑡 (𝑡2 + 𝑡) 𝑑𝑡 = 𝑒𝑡 (𝑡2 + 𝑡) −

∫
𝑒𝑡 (2𝑡 + 1) 𝑑𝑡

= 𝑒𝑡 (𝑡2 + 𝑡 − 2𝑡 − 1) +
∫

2𝑒𝑡 𝑑𝑡 = 𝑒𝑡 (𝑡2 − 𝑡 + 1),
and ∫

𝑤1
𝑊

(𝑡 + 1) 𝑑𝑡 =
∫

𝑒−𝑡

𝑒−2𝑡 (𝑡 + 1) 𝑑𝑡 =
∫
𝑒𝑡 (𝑡 + 1) 𝑑𝑡 = 𝑒𝑡 (𝑡 + 1) −

∫
𝑒𝑡 𝑑𝑡 = 𝑡𝑒𝑡 .

Therefore, the general integral is

𝑦(𝑡) =
(
𝑐1 − 𝑒𝑡 (𝑡2 − 𝑡 + 1)

)
𝑒−𝑡 +

(
𝑐2 + 𝑡𝑒𝑡

)
𝑡𝑒−𝑡 = 𝑐1𝑒

−𝑡 + 𝑐2𝑡𝑒
−𝑡 + 𝑡 − 1, 𝑐1, 𝑐2 ∈ R.

ii) Imposing 𝑦(0) = 0 we get 𝑐1 − 1 = 0, that is 𝑐1 = 1, so

𝑦(𝑡) = 𝑒−𝑡 + 𝑐2𝑡𝑒
−𝑡 + 𝑡 − 1.

To determine also 𝑐2, we impose 𝑦′(0) = 1, that is, since

𝑦′(𝑡) = −𝑒−𝑡 + 𝑐2𝑒
−𝑡 (1 − 𝑡) + 1, =⇒ −1 + 𝑐2 + 1 = 1, ⇐⇒ 𝑐2 = 1.

The solution of the Cauchy problem is then,

𝑦(𝑡) = 𝑒−𝑡 + 𝑡𝑒−𝑡 + 𝑡 − 1, 𝑐1, 𝑐2 ∈ R.
iii) From 𝑦(0) = 0 we get

𝑦(𝑡) = 𝑒−𝑡 + 𝑐2𝑡𝑒
−𝑡 + 𝑡 − 1,

and imposing also 𝑦(1) = 0 we get

0 = 𝑒−1 + 𝑐2𝑒
−1, ⇐⇒ 𝑐2 = 1.

The solution is the same of that one found at ii). □
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Exercise 27. i) For 𝐷 ≠ ∅ we consider a point of type (𝑥, 𝑦, 2). Then (𝑥, 𝑦, 2) ∈ 𝐷 iff 𝑥2 + 𝑦2 = 4 and
𝑦2 = 1, thus 𝑦 = ±1 and 𝑥2 = 3, that is 𝑥 = ±

√
3. We conclude that points (±

√
3,±1, 2) (four points, all

possible combinations of sign) belong to 𝐷.
We have that 𝐷 = {𝑔1 = 0, 𝑔2 = 0} where 𝑔1 = 𝑥2 + 𝑦2 − 𝑧2, and 𝑔2 = 𝑦2 + (𝑧 − 2)2 − 1. Clearly, both

𝑔1 and 𝑔2 are differentiable functions (they are polynomials). In order ®𝑔 = (𝑔1, 𝑔2) be a submersion on 𝐷

we need to verify that

rk ®𝑔′ = rk

∇𝑔1

∇𝑔2

 = rk


2𝑥 2𝑦 −2𝑧

0 2𝑦 2(𝑧 − 2)

 = 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

Now, this is false iff all 2 × 2 sub-determinants of the Jacobian matrix ®𝑔′ vanish, that is iff
4𝑥𝑦 = 0,
4𝑥(𝑧 − 2) = 0,
8𝑦(𝑧 − 1) = 0.

⇐⇒


𝑥 = 0,

𝑦(𝑧 − 1) = 0,
∨


𝑦 = 0,

𝑥(𝑧 − 2) = 0,

The first subsystem has solutions (0, 0, 𝑧) and (0, 𝑦, 1) (𝑥, 𝑦 ∈ R); the second, (0, 0, 𝑧) and (𝑥, 0, 2),
(𝑥, 𝑧 ∈ R). Now:

• (0, 0, 𝑧) ∈ 𝐷 iff 𝑧2 = 0 and (𝑧 − 2)2 = 1, impossible;
• (0, 𝑦, 1) ∈ 𝐷 iff 𝑦2 = 1 and 𝑦2 + 1 = 1, again impossible;
• (𝑥, 0, 2) ∈ 𝐷 iff 𝑥2 = 4 and 0 = 1, impossible.

Cocnlusion: there is no point on 𝐷 at which rank of ®𝑔′ is less than 2, therefore rank of ®𝑔′(𝑥, 𝑦, 𝑧) is 2 for
every (𝑥, 𝑦, 𝑧) ∈ 𝐷, that is ®𝑔 is a submersion on 𝐷.

ii) 𝐷 is defined by equalities involving continuous functions, it is therefore closed. From the second
equation

𝑦2 + (𝑧 − 2)2 = 1, =⇒ 𝑦2 ⩽ 1, (𝑧 − 2)2 ⩽ 1.
In particular, −1 ⩽ 𝑧 − 2 ⩽ 1, that is 1 ⩽ 𝑧 ⩽ 3, thus 𝑧2 ⩽ 9. Plugging this into the first equation,

𝑥2 + 𝑦2 = 𝑧2, 𝑥2 + 𝑦29, =⇒ 𝑥29.

In conclusion 𝑥2 + 𝑦2 + 𝑧29 + 1 + 9 = 19, for every (𝑥, 𝑦, 𝑧) ∈ 𝐷, from which we see that 𝐷 is bounded.
We conclude that 𝐷 is compact.

iii) Points at min/max distance to ®0 minimize/maximize the function 𝑓 = 𝑥2 + 𝑦2 + 𝑧2. Since 𝑓 is
continuous and 𝐷 is compact, according to the Weierstrass theorem, 𝑓 has both min and max on 𝐷.

To determine these points, we apply the Lagrange multipliers’ theorem. By i), hypotheses of the
theorem are fulfilled. Thus, at every (𝑥, 𝑦, 𝑧) ∈ 𝐷 min/max point for 𝑓 in 𝐷 we must have

∇ 𝑓 = 𝜆1∇𝑔1 + 𝜆2∇𝑔2, ⇐⇒ rk

∇ 𝑓

∇𝑔1
∇𝑔2

 < 3, ⇐⇒ det

∇ 𝑓

∇𝑔1
∇𝑔2

 = det


2𝑥 2𝑦 2𝑧
2𝑥 2𝑦 −2𝑧
0 2𝑦 2(𝑧 − 2)

 = 0.

By computing the determinant we get

0 = 2𝑥 · 4𝑦(𝑧 − 2 + 𝑧) − 2𝑥 · 4𝑦(𝑧 − 2 − 𝑧) = 16𝑥𝑦𝑧,

whose solutions are points (0, 𝑦, 𝑧), (𝑥, 0, 𝑧) and (𝑥, 𝑦, 0). Now,



29

• (0, 𝑦, 𝑧) ∈ 𝐷 iff 𝑦2 = 𝑧2 and 𝑦2 + (𝑧 − 2)2 = 1, from which 𝑧2 + (𝑧 − 2)2 = 1, or 2𝑧2 − 2𝑧 + 3 = 0,
and since Δ < 0 there are no solutions to this equation;

• (𝑥, 0, 𝑧) ∈ 𝐷 iff 𝑥2 = 𝑧2 and (𝑧 − 2)2 = 1, from which 𝑧 = 1, 3 and 𝑥2 = 1 (that is 𝑥 = ±1), or
𝑥2 = 9 (that is 𝑥 = ±3). We obtain points (±1, 0, 1) and (±3, 0, 3);

• (𝑥, 𝑦, 0) ∈ 𝐷 iff 𝑥2 + 𝑦2 = 0, 𝑦2 + 4 = 1 which is impossible.
Since 𝑓 (±1, 0, 1) = 2 and 𝑓 (±3, 0, 3) = 18 we deduce that (±1, 0, 1) are points of 𝐷 at min distance to
®0, (±3, 0, 3) are points of 𝐷 at max distance to ®0. □

Exercise 28 ii) The change or variable is given in the form (𝑢, 𝑣) = Φ(𝑥, 𝑦) = (𝑦 − 𝑥3, 𝑦 + 𝑥3).
According to the change of variable formula,∫

𝐷

𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =

∫
Φ(𝐷)

𝑓 (Φ−1(𝑢, 𝑣)) | det(Φ−1)′(𝑢, 𝑣) | 𝑑𝑢𝑑𝑣.

We need to determine Φ−1. Notice that
𝑢 = 𝑦 − 𝑥3,

𝑣 = 𝑦 + 𝑥3,
⇐⇒


𝑢 + 𝑣 = 2𝑦,

𝑣 − 𝑢 = 2𝑥3,
⇐⇒


𝑦 = 𝑢+𝑣

2 ,

𝑥3 = 𝑣−𝑢
2 ,

⇐⇒


𝑦 = 𝑢+𝑣
2 ,

𝑥 =
(
𝑣−𝑢

2
)1/3

,

Therefore

Φ−1(𝑢, 𝑣) =
(( 𝑣 − 𝑢

2

)1/3
,
𝑢 + 𝑣

2

)
.

Moreover,

(𝑥, 𝑦) ∈ 𝐷, ⇐⇒


𝑥 ⩾ 1,

𝑥3 ⩽ 𝑦 ⩽ 3,
⇐⇒


(
𝑣−𝑢

2
)1/3
⩾ 1,

𝑣−𝑢
2 ⩽

𝑢+𝑣
2 ⩽ 3

⇐⇒


𝑣 − 𝑢 ⩾ 2,

𝑣 − 𝑢 ⩽ 𝑣 + 𝑢 ⩽ 6

that is
Φ(𝐷) = {(𝑢, 𝑣) : 2 ⩽ 𝑣 − 𝑢 ⩽ 𝑣 + 𝑢 ⩽ 6}.

Now, to be 𝑣 − 𝑢 ⩽ 𝑣 + 𝑢 it must be 𝑢 ⩾ 0, and from 2 ⩽ 𝑣 − 𝑢 ⩽ 𝑣 + 𝑢 ⩽ 6 we get 2 + 𝑢 ⩽ 𝑣 ⩽ 6 − 𝑢

provided 2 + 𝑢 ⩽ 6 − 𝑢, that is 𝑢 ⩽ 2. In conclusion

Φ(𝐷) = {(𝑢, 𝑣) : 0 ⩽ 𝑢 ⩽ 2, 2 + 𝑢 ⩽ 𝑣 ⩽ 6 − 𝑢}.

About 𝑓 , in coordinates (𝑢, 𝑣) we have

𝑓 (Φ−1(𝑢, 𝑣)) =
( 𝑣 − 𝑢

2

)2/3
𝑢𝑒𝑣 ,

while

det(Φ−1)′ = det


1
3
(
𝑣−𝑢

2
)−2/3

(
−1

2

)
1
3
(
𝑣−𝑢

2
)−2/3

(
+1

2

)
1
2

1
2

 = −1
6

( 𝑣 − 𝑢

2

)−2/3
.



30

In conclusion∫
𝐷

𝑓 𝑑𝑥𝑑𝑦 =
∫

0⩽𝑢⩽2, 2+𝑢⩽𝑣⩽6−𝑢
(
𝑣−𝑢

2
)2/3

𝑢𝑒𝑣 1
6
(
𝑣−𝑢

2
)−2/3

𝑑𝑢𝑑𝑣 = 1
6

∫
0⩽𝑢⩽2, 2+𝑢⩽𝑣⩽6−𝑢 𝑢𝑒

𝑣 𝑑𝑢𝑑𝑣

𝑅𝐹
= 1

6

∫ 2
0

∫ 6−𝑢
2+𝑢 𝑢𝑒𝑣 𝑑𝑣 𝑑𝑢 = 1

6

∫ 2
0 𝑢

∫ 6−𝑢
2+𝑢 𝑒𝑣 𝑑𝑣 𝑑𝑢 = 1

6

∫ 2
0 𝑢 [𝑒𝑣]𝑣=6−𝑢

𝑣=2+𝑢 𝑑𝑢

= 1
6

∫ 2
0 𝑢

(
𝑒6−𝑢 − 𝑒2+𝑢) 𝑑𝑢 = 1

6

(
𝑒6

∫ 2
0 𝑢𝑒−𝑢 𝑑𝑢 − 𝑒2

∫ 2
0 𝑢𝑒𝑢 𝑑𝑢

)
= 1

6

(
𝑒6

(
[−𝑢𝑒−𝑢]𝑢=2

𝑢=0 +
∫ 2

0 𝑒−𝑢 𝑑𝑢

)
− 𝑒2

(
[𝑢𝑒𝑢]𝑢=2

𝑢=0 −
∫ 2

0 𝑒𝑢 𝑑𝑢

))
= 1

6
(
𝑒6 (

−2𝑒−2 − (𝑒−2 − 1)
)
− 𝑒2 (

2𝑒2 − (𝑒2 − 1)
) )

= 𝑒2

6
(
−2𝑒2 + 𝑒4 − 1

)
. □

Exercise 29. In order 𝑓 = 𝑢 + 𝑖𝑣 be holomorphic, we need that 𝑢, 𝑣 are both R−differentiable (and
certainly 𝑣 it is), and they verify the CR equations,

𝜕𝑥𝑢 = 𝜕𝑦𝑣,

𝜕𝑦𝑢 = −𝜕𝑥𝑣.

Thus we have to look for an R−differentiable 𝑢 such that
𝜕𝑥𝑢 = 3𝑦2 − 3𝑥2 + 4𝑥,

𝜕𝑦𝑢 = −(−6𝑥𝑦 + 4𝑦 − 1).

From the first equation we get,

𝑢(𝑥, 𝑦) =
∫
(3𝑦2 − 3𝑥2 + 4𝑥) 𝑑𝑥 + 𝑘 (𝑦) = 3𝑦2𝑥 − 𝑥3 + 2𝑥2 + 𝑘 (𝑦).

Plugging this into the second equation we have

6𝑥𝑦 + 𝑘 ′(𝑦) = 6𝑥𝑦 − 4𝑦 + 1, ⇐⇒ 𝑘 ′(𝑦) = −4𝑦 + 1, ⇐⇒ 𝑘 (𝑦) = −2𝑦2 + 𝑦 + 𝑘, 𝑘 ∈ R.

Thus, all the possible 𝑢 that verify the CR eqns together with 𝑣 are

𝑢(𝑥, 𝑦) = 3𝑦2𝑥 − 𝑥3 + 2𝑥2 − 2𝑦2 + 𝑦 + 𝑘.

Since such 𝑢 are clearly R−differentiable, 𝑓 = 𝑢 + 𝑖𝑣 is C−differentiable (holomorphic) on R2.
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To determine the analytical expression for 𝑓 as a function of complex variable 𝑧 = 𝑥 + 𝑖𝑦, we may
notice that

𝑓 = 𝑢 + 𝑖𝑣 = 3𝑦2𝑥 − 𝑥3 + 2𝑥2 − 2𝑦2 + 𝑦 + 𝑘 + 𝑖
(
𝑦3 − 3𝑥2𝑦 + 4𝑥𝑦 − 𝑥

)
= −𝑖 (𝑥 + 𝑖𝑦)︸  ︷︷  ︸

𝑧

+2 (𝑥2 − 𝑦2 + 𝑖2𝑥𝑦)︸              ︷︷              ︸
𝑧2

−
(
𝑥3 − 𝑖𝑦3 − 3𝑦2𝑥 + 𝑖3𝑥2𝑦

)
︸                            ︷︷                            ︸

𝑧3

+𝑘

= −𝑧3 + 2𝑧2 − 𝑖𝑧 + 𝑘. □

Exercise 30. See notes for definitions and characterizations.
Let’s focus on the resuire property. We first notice that is 𝜕𝑆 = ∅, 𝜕𝑆 is closed. We assume then that

𝜕𝑆 ≠ ∅. To verify that 𝜕𝑆 is closed, we use the Cantor characterization. Let (®𝑥𝑛) ⊂ 𝜕𝑆 be such that
®𝑥𝑛 −→ ®𝑥 ∈ R𝑑 . We prove that ®𝑥 ∈ 𝜕𝑆. Fix 𝑟 > 0. Since ®𝑥𝑛 −→ ®𝑥, we have that for 𝑛 ⩾ 𝑁 ∥®𝑥𝑛 − ®𝑥∥ ⩽ 𝑟

2 .
Now, since ®𝑥𝑛 ∈ 𝜕𝑆,

𝐵(®𝑥𝑛, 𝑟/2] ∩ 𝑆 ≠ ∅, ∧ 𝐵(®𝑥𝑛, 𝑟/2] ∩ 𝑆𝑐 ≠ ∅.
Since ∥®𝑥𝑛 − ®𝑥∥ ⩽ 𝑟

2 , we have that
𝐵(®𝑥𝑛, 𝑟/2] ⊂ 𝐵(®𝑥, 𝑟],

therefore
𝐵(®𝑥, 𝑟] ∩ 𝑆 ⊃ 𝐵(®𝑥𝑛, 𝑟/2] ∩ 𝑆 ≠ ∅,

and, similarly, 𝐵(®𝑥, 𝑟] ∩ 𝑆𝑐 ≠ ∅. We conclude that ®𝑥 ∈ 𝜕𝑆, thus 𝜕𝑆 is closed. □

Exercise 31. First of all let 𝑧 ≠ 0. Setting 𝑤 = 1
𝑧
, we have to solve

sinh𝑤 = 0, ⇐⇒ 𝑒𝑤 − 𝑒−𝑤

2
= 0, ⇐⇒ 𝑒2𝑤 = 1, ⇐⇒ 2𝑤 = log |1| + 𝑖 (0 + 𝑘2𝜋) = 𝑖𝑘2𝜋, 𝑘 ∈ Z.

Thus
1
𝑧
= 𝑤 = 𝑖𝑘𝜋, ⇐⇒ 𝑧 =

1
𝑖𝑘𝜋

=
−𝑖
𝑘𝜋

=
𝑖

𝑘𝜋
, 𝑘 ∈ Z\{0}. □

Exercise 32. The problem asks to determine

min/ max
(𝑥,𝑦,𝑧) ∈𝐷

√︃
(𝑥 − 1)2 + (𝑦 − 2)2 + (𝑧 + 3)2.

Previous problem has the same min/max points (if any) of

min/ max
(𝑥,𝑦,𝑧) ∈𝐷

(
(𝑥 − 1)2 + (𝑦 − 2)2 + (𝑧 + 3)2

)
,

which is the problem we solve here.
We start discussing existence. 𝐷 is certainly a closed set (defined by an equality of a continuous

function). Let’s see if 𝐷 is also bounded. Since no condition on 𝑧 is given, it means that if (𝑥, 𝑦, 𝑧0) ∈ 𝐷

then (𝑥, 𝑦, 𝑧) ∈ 𝐷 for every 𝑧 ∈ R. In paricular (𝑥, 𝑥, 𝑧) ∈ 𝐷 for every 𝑥, 𝑧 ∈ R. We deduce that 𝐷
is unbounded. Thus, 𝐷 is not compact. The function 𝑓 (𝑥, 𝑦, 𝑧) = ∥(𝑥 − 1, 𝑦 − 2, 𝑧 + 3)∥2 is clearly
continuous, and since

lim
(𝑥,𝑦,𝑧)→∞3

𝑓 = +∞,
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we conclude that 𝑓 has no maximum on 𝐷 but it has global minimum on 𝐷.
To determine the minimum, we wish to apply the Lagrange multipliers’ theorem. To this aim, we need

first to check if 𝐷 is the zero set of a submersion on 𝐷 itself. Now, 𝐷 = {𝑔 = 0} where 𝑔 = (𝑥−𝑦)2+(𝑥−𝑦),
and 𝑔 is a submersion on 𝐷 iff ∇𝑔 ≠ ®0 on 𝐷. We have

∇𝑔 = (2(𝑥 − 𝑦) − 1,−2(𝑥 − 𝑦 + 1, 0) = ®0, ⇐⇒ 2(𝑥 − 𝑦) − 1 = 0, ⇐⇒ 𝑥 − 𝑦 =
1
2
.

However, if 𝑥 − 𝑦 = 1
2 we easily see that the condition characterizing 𝐷 is not fulfilled. Thus, ∇𝑔 ≠ 0

always. Thus, in particular, 𝑔 is a submersion on 𝐷. Therefore, according to Lagrange multipliers’
theorem, at (𝑥, 𝑦, 𝑧) ∈ 𝐷 min point for 𝑓 ,

∇ 𝑓 = 𝜆∇𝑔, ⇐⇒ rk

∇ 𝑓

∇𝑔

 = rk


2(𝑥 − 1) 2(𝑦 − 2) 2(𝑧 + 3)

2(𝑥 − 𝑦) − 1 −2(𝑥 − 𝑦) + 1 0

 < 2.

This happens iff all 2 × 2 sub-determinants vanish, that is
(1 − 2(𝑥 − 𝑦)) (𝑥 + 𝑦 − 3) = 0,
2(𝑧 + 3) (2(𝑥 − 𝑦) − 1) = 0,
2(𝑧 + 3) (1 − 2(𝑥 − 𝑦)) = 0.

The first equation yields to the alternative 𝑥 − 𝑦 = 1
2 , and plugging this into the other two equations we

get identities 0 = 0. Thus, we get points (𝑥, 𝑥 − 1
2 , 𝑧). Now these points belong to 𝐷 iff 1

4 − 1
2 = 0, which

is false.
In the second case, 𝑥 + 𝑦 = 3, and plugging this into the other two equations we get 𝑧 = −3, thus points

(𝑥, 3 − 𝑥,−3). Now,

(𝑥, 3−𝑥,−3) ∈ 𝐷, ⇐⇒ (2𝑥−3)2−(2𝑥−3) = 0, ⇐⇒ (2𝑥−3) (2𝑥−4) = 0, ⇐⇒ 𝑥 =
3
2
, ∨ 𝑥 = 2.

We get points ( 3
2 ,

3
2 ,−3) and (2, 1,−3). Since 𝑓 ( 3

2 ,
3
2 ,−3) = 1

4 + 1
4 = 1

2 and 𝑓 (2, 1,−3) = 1 + 1 = 2, we
see that the points od 𝐷 at minimum distance to (1, 2,−3) is ( 3

2 ,
3
2 ,−3). □

Exercise 33. i) 𝐷 is closed because it is defined by large inequalities. It is not open because 𝐷 ≠ ∅,R3.
It is unbounded since (𝑛, 𝑛, 1

cosh(2𝑛2 ) ) ∈ 𝐷 for every 𝑛 ∈ N, therefore it is not compact.
ii) We have

𝜆3(𝐷) =
∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧
𝑅𝐹
=

∫
R2

(∫ 1/cosh(𝑥2+𝑦2 )

0
𝑑𝑧

)
𝑑𝑥𝑑𝑦 =

∫
R2

1
cosh(𝑥2 + 𝑦2)

𝑑𝑥𝑑𝑦.

By introducing polar coordinates,

𝜆3(𝐷) =
∫
𝜌⩾0, 0⩽𝜃⩽2𝜋

1
cosh 𝜌2 𝜌 𝑑𝜌𝑑𝜃 = 2𝜋

∫ +∞

0

𝜌

cosh 𝜌2 𝑑𝜌.

Notice that
𝜌

cosh 𝜌2 =
2𝜌

𝑒𝜌
2 + 𝑒−𝜌2 =

2𝜌𝑒𝜌2

1 + 𝑒2𝜌2 = 𝜕𝜌 arctan(𝑒𝜌2),
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thus

𝜆3(𝐷) = 2𝜋
[
arctan(𝑒𝜌2)

]𝜌=+∞
𝜌=0

= 2𝜋
(𝜋

2
− 𝜋

4

)
=

𝜋2

2
.

iii) Proceeding as in ii), we have

𝐼𝛼 :=
∫
𝐷

𝑒𝛼(𝑥2+𝑦2 ) 𝑑𝑥𝑑𝑦𝑑𝑧
𝑅𝐹
=

∫
R2

(∫ 1/cosh(𝑥2+𝑦2 )

0
𝑒𝛼(𝑥2+𝑦2 ) 𝑑𝑧

)
𝑑𝑥𝑑𝑦 =

∫
R2

𝑒𝛼(𝑥2+𝑦2 )

cosh(𝑥2 + 𝑦2)
𝑑𝑥𝑑𝑦.

Changing vars to polar coords,

𝐼𝛼 =

∫
𝜌⩾0, 0⩽𝜃⩽2𝜋

𝑒𝛼𝜌
2

cosh 𝜌2 𝜌 𝑑𝜌𝑑𝜃 = 2𝜋
∫ +∞

0

2𝜌𝑒 (𝛼+1)𝜌2

1 + 𝑒2𝜌2 𝑑𝜌.

Notice that
2𝜌𝑒 (𝛼+1)𝜌2

1 + 𝑒2𝜌2 ∼+∞ 2𝜌
𝑒 (𝛼+1)𝜌2

𝑒2𝜌2 = 2𝜌𝑒 (𝛼−1)𝜌2

and
∃
∫ +∞

0
𝜌𝑒 (𝛼−1)𝜌2

𝑑𝜌 ⇐⇒ 𝛼 − 1 < 0, ⇐⇒ 𝛼 < 1. □

Exercise 34. i) In order 𝑓 = 𝑢 + 𝑖𝑣 be C−differentiable on C we need 1. that 𝑢, 𝑣 are R differentiable
on R2 (which is true, being 𝑢, 𝑣 polynomials) and 2. 𝑢, 𝑣 fulfil the CR equations, namely

𝜕𝑥𝑢 ≡ 𝜕𝑦𝑣,

𝜕𝑦𝑢 ≡ −𝜕𝑥𝑣,
⇐⇒


3𝑥2 + 𝑎𝑦2 ≡ 𝑏𝑥2 − 3𝑦2,

2𝑎𝑥𝑦 ≡ −2𝑏𝑥𝑦,
⇐⇒ 𝑏 = 3, 𝑎 = −3.

ii) We have
𝑓 = (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3) = (𝑥 + 𝑖𝑦)3 = 𝑧3. □

Exercise 35. i) To prove that 𝜙(𝑡) := 𝐸 (𝑦(𝑡), 𝑦′(𝑡)) is constant we show that the derivative of 𝜙 w.r.t.
𝑡 vanishes. According to the total derivative formula, we have

𝜙′(𝑡) = 𝑑

𝑑𝑡
𝐸 (𝑦, 𝑦′) = 𝜕𝑦𝐸 (𝑦, 𝑦′)𝑦′ + 𝜕𝑣𝐸 (𝑦, 𝑦′)𝑦′′.

Now,

𝐸 (𝑦, 𝑣) = 1
2
𝑚𝑣2 − 𝑓 (𝑦), =⇒ 𝜕𝑦𝐸 = − 𝑓 ′(𝑦) = −𝐹 (𝑦), 𝜕𝑣𝐸 = 𝑚𝑣,

thus
𝜙′(𝑡) = −𝐹 (𝑦)𝑦′ + 𝑚𝑦′𝑦′′ = 𝑦′(𝑚𝑦′′ − 𝐹 (𝑦)︸         ︷︷         ︸

=0 𝑏𝑦 𝑒𝑞𝑛

) ≡ 0.

Therefore

𝐸 (𝑦, 𝑦′) ≡ 𝑘, ⇐⇒ 1
2
𝑚(𝑦′)2− 𝑓 (𝑦) ≡ 𝑘, ⇐⇒ (𝑦′)2 =

2
𝑚
( 𝑓 (𝑦)+𝑘), ⇐⇒ 𝑦′ = ±

√︂
2
𝑚
( 𝑓 (𝑦) + 𝑘).

The last one is a separable variables equation.
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ii) If 𝑚 = 1 and 𝐹 (𝑦) = −2𝑦 − 3𝑦2, then 𝑓 (𝑦) =
∫
𝐹 (𝑦)′𝑑𝑦 =

∫
(−2𝑦 − 3𝑦2) = −𝑦2 − 𝑦3. Therefore

𝑦′ = ±
√︃

2(𝑘 − 𝑦2 − 𝑦3),

where 𝐸 (𝑦, 𝑦′) ≡ 𝑘 . In particular, 𝐸 (𝑦(0), 𝑦′(0)) = 𝑘 , and since 𝑦(0) = −2, 𝑦′(0) =
√

8 we have

𝐸 (−2,
√

8) = 1
2
(
√

8)2 − (−(−2)2 − (−2)3) = 4 − (−4 + 8) = 0.

Thus 𝑘 = 0 and 𝑦 solves the equation

𝑦′ = ±
√︃
−2(𝑦3 + 𝑦2) = ±

√︃
−2𝑦2(𝑦 + 1) = ±

√
2𝑦

√︁
−𝑦 − 1.

Since at 𝑡 = 0 we have 𝑦′(0) =
√

8 > 0, 𝑦(0) = −2 < 0 the previous equation is

𝑦′ =
√

2𝑦
√︁
−𝑦 − 1.

We can now solve this by separation of variables once we notice that 𝑦 is not a constant solution. We have∫
𝑦′

𝑦
√︁
−𝑦 − 1

𝑑𝑡 = −
∫ √

2 𝑑𝑡 = −
√

2𝑡 + 𝑐.

We have∫
𝑦′

𝑦
√

−𝑦−1
𝑑𝑡

𝑢=𝑦 (𝑡 ) , 𝑑𝑢=𝑦′ (𝑡 ) 𝑑𝑡
=

∫
1

𝑢
√
−𝑢−1

𝑑𝑢
𝑣=

√
−𝑢−1, 𝑢=−1−𝑣2, 𝑑𝑢=−2𝑣 𝑑𝑣

=
∫

1
(−1−𝑣2 )𝑣 (−2𝑣) 𝑑𝑣

= 2
∫

1
1+𝑣2 𝑑𝑣 = 2 arctan 𝑣 = 2 arctan

√︁
−𝑦 − 1.

Therefore
2 arctan

√︁
−𝑦 − 1 = −

√
2𝑡 + 𝑐.

For 𝑡 = 0 we have
2 arctan

√
1 = 𝑐, ⇐⇒ 𝑐 =

𝜋

2
.

We conclude that

2 arctan
√︁
−𝑦 − 1 = −

√
2𝑡+𝜋

2
, ⇐⇒

√︁
−𝑦 − 1 = tan

(
− 𝑡
√

2
+ 𝜋

4

)
, ⇐⇒ 𝑦(𝑡) = −1−tan2

(
− 𝑡
√

2
+ 𝜋

4

)
. □

Exercise 36. i) We have a second order linear equation

𝑦′′ + 9𝑦 = 6 sin(3𝑡).
The homogeneous equation associated to this is 𝑦′′+9𝑦 = 0, whose characteristic equation is𝜆2+9 = 0, that
is 𝜆 = ±𝑖3. The fundamental system of solutions for the homogeneous equation is then 𝑤1(𝑡) = sin(3𝑡),
𝑤2(𝑡) = cos(3𝑡), whose wronskian is

𝑊 (𝑡) = det

𝑤1 𝑤2

𝑤′
1 𝑤′

2

 = det


sin(3𝑡) cos(3𝑡)

3 cos(3𝑡) −3 sin(3𝑡)

 = −3
(
sin2(3𝑡) + cos2(3𝑡)

)
= −3.
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Therefore, the general solution for the original equation is

𝑦(𝑡) =
(
𝑐1 −

∫
𝑤2
𝑊

6 sin(3𝑡) 𝑑𝑡
)
𝑤1 +

(
𝑐2 +

∫
𝑤1
𝑊

6 sin(3𝑡) 𝑑𝑡
)
𝑤2.

We have
6
∫

𝑤2
𝑊

sin(3𝑡) 𝑑𝑡 = 6
∫ cos(3𝑡 )

−3 sin(3𝑡) 𝑑𝑡 = −
∫

sin(6𝑡) 𝑑𝑡 = 1
6 cos(6𝑡),

6
∫

𝑤1
𝑊

sin(3𝑡) 𝑑𝑡 = 6
∫ sin(3𝑡 )

−3 sin(3𝑡) 𝑑𝑡 = −2
∫

sin2(3𝑡) 𝑑𝑡.
Now ∫

sin2(3𝑡) 𝑑𝑡 =
∫
(sin(3𝑡))

(
− cos(3𝑡 )

3

) ′
𝑑𝑡 = −1

3 sin(3𝑡) cos(3𝑡) +
∫

cos2(3𝑡) 𝑑𝑡

= −1
6 sin(6𝑡) +

∫
1 − sin2(3𝑡) 𝑑𝑡 = − 1

6 sin(6𝑡) + 𝑡 −
∫

sin2(3𝑡) 𝑑𝑡,
thus ∫

sin2(3𝑡) 𝑑𝑡 = 1
2

(
𝑡 − sin(6𝑡)

6

)
.

In conclusion,

𝑦(𝑡) =
(
𝑐1 −

cos(6𝑡)
6

)
sin(3𝑡) +

(
𝑐2 − 𝑡 + sin(6𝑡)

6

)
cos(3𝑡), 𝑐1, 𝑐2 ∈ R.

ii) Imposing 𝑦(0) = 0 we get
𝑐2 = 0,

thus
𝑦(𝑡) =

(
𝑐1 −

cos(6𝑡)
6

)
sin(3𝑡) −

(
𝑡 − sin(6𝑡)

6

)
cos(3𝑡).

Computing 𝑦′(𝑡) we have

𝑦′(𝑡) = sin(6𝑡) sin(3𝑡) +
(
𝑐1 −

cos(6𝑡)
6

)
3 cos(3𝑡) − (1 − cos(6𝑡)) cos(3𝑡) +

(
𝑡 − sin(6𝑡)

6

)
3 sin(3𝑡),

and, by imposing 𝑦′(0) = 0 we get

3
(
𝑐1 −

1
6

)
= 0, ⇐⇒ 𝑐1 =

1
6
.

The solution of the CP is then

𝑦(𝑡) = 1
6
(1 − cos(6𝑡)) sin(3𝑡) −

(
𝑡 − sin(6𝑡)

6

)
cos(3𝑡).

iii) We may write the general solution in the form

𝑦(𝑡) =
(
𝑐1 −

cos(6𝑡)
6

)
sin(3𝑡) +

(
𝑐2 +

sin(6𝑡)
6

)
cos(3𝑡)︸                                                          ︷︷                                                          ︸

𝑏𝑜𝑢𝑛𝑑𝑒𝑑

− 𝑡 cos(3𝑡)︸    ︷︷    ︸
𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑

,

and since the unbounded component is independent of 𝑐1, 𝑐2 we deduce that all the solutions are un-
bounded for 𝑡 −→ ±∞. □
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Exercise 37. i) 𝐷 is closed being defined by large inequalities involving continuous functions of (𝑥, 𝑦).
It is not open since 𝐷 ≠ ∅,R2. It is bounded because 𝑥 ⩾ 0 and from 0 ⩽ 𝑦 ⩽ 1 − 𝑥, in particular
1 − 𝑥 ⩾ 0, that is 𝑥 ⩽ 1, so 0 ⩽ 𝑥 ⩽ 1 and, at same time, 0 ⩽ 𝑦 ⩽ 1 − 𝑥 ⩽ 1. Thus 0 ⩽ 𝑥, 𝑦 ⩽ 1 and this
implies that 𝐷 is bounded. Since 𝐷 is closed and bounded it is also compact.

ii) Since 𝑓 is clearly continuous on 𝐷 and 𝐷 is compact, 𝑓 admits both global min/max on 𝐷. To
determine min/max points, we may argue in the following way. If (𝑥, 𝑦) ∈ 𝐷 is a min/max point for 𝑓

then
• either (𝑥, 𝑦) ∈ Int 𝐷
• or (𝑥, 𝑦) ∈ 𝐷\Int 𝐷 = 𝜕𝐷.

In the first case, since
𝜕𝑥 𝑓 = 3𝑦 + 2𝑥𝑦 + 𝑦2, 𝜕𝑦 𝑓 = 3𝑥 + 𝑥2 + 2𝑥𝑦

so 𝜕𝑥 𝑓 , 𝜕𝑦 𝑓 ∈ 𝒞(𝐷), 𝑓 is then differentiable on 𝐷, according to Fermat theorem, at min/max points

∇ 𝑓 (𝑥, 𝑦) = ®0, ⇐⇒


3𝑦 + 2𝑥𝑦 + 𝑦2 = 0,

3𝑥 + 𝑥2 + 2𝑥𝑦 = 0.
⇐⇒


𝑦(3 + 2𝑥 + 𝑦) = 0,

𝑥(3 + 2𝑦 + 𝑥) = 0.

The first equation leads to the alternative 𝑦 = 0 or 3 + 2𝑥 + 𝑦 = 0. In the first case, the second equation
becomes 𝑥(3 + 𝑥) = 0. whose solutions are 𝑥 = 0 and 𝑥 = −3. This produces points (0, 0) and (−3, 0).
In any case these do not belong to Int 𝐷. In the second case, 𝑦 = −2𝑥 − 3, from the second equation we
obtain 𝑥(−3 − 3𝑥) = 0, that is 𝑥 = 0 or 𝑥 = −1. This yields points (0,−3), (−1,−1) ∉ 𝐷. In conclusion,
no stationary point for 𝑓 is in the interior of 𝐷.

Thus, min/max points for 𝑓 are on 𝜕𝐷 = 𝐴 ∪ 𝐵 ∪ 𝐶 where 𝐴 = {(0, 𝑦) : 0 ⩽ 𝑦 ⩽ 1}, 𝐵 = {(𝑥, 0) :
0 ⩽ 𝑥 ⩽ 1} and, finally, 𝐶 = {(𝑥, 1 − 𝑥) : 0 ⩽ 𝑥 ⩽ 1}. On 𝐴 we have

𝑓 (0, 𝑦) ≡ 0,

thus every point is min/max point for 𝑓 on 𝐴. On 𝐵, similarly, we have 𝑓 (𝑥, 0) ≡ 0, thus every point of
𝐵 is at same time min/max for 𝑓 on 𝐵. Finally, on 𝐶

𝑓 (𝑥, 1 − 𝑥) = 3𝑥(1 − 𝑥) + 𝑥2(1 − 𝑥) + 𝑥(1 − 𝑥)2 = 3𝑥 − 3𝑥2 + 𝑥2 − 𝑥3 + 𝑥 − 2𝑥2 + 𝑥3 = −4𝑥2 + 4𝑥 =: 𝑔(𝑥).

Let’s determine min/max points for 𝑔 with 𝑥 ∈ [0, 1]. We have 𝑔′(𝑥) = −8𝑥 + 4 ⩾ 0 iff 𝑥 ⩽ 1
2 . Thus

𝑥 = 1
2 is max point for 𝑔 and 𝑥 = 0, 1 are min points for 𝑔. This means that

•
(

1
2 ,

1
2

)
is max point for 𝑓 on 𝐶

• (0, 1), (1, 0) are min points for 𝑓 on 𝐶.
We can now draw the conclusion:

• for minimum, candidates are points (𝑥, 0), (0, 𝑦) with 0 ⩽ 𝑥, 𝑦 ⩽ 1 where 𝑓 = 0. All these are
min points for 𝑓 on 𝐷;

• for maximum, candidates are points
(

1
2 ,

1
2

)
(where 𝑓 = 1) and (𝑥, 0) and (0, 𝑦) with 0 ⩽ 𝑥, 𝑦 ⩽ 1

(where 𝑓 = 0). Thus, the max point is
(

1
2 ,

1
2

)
.
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Exercise 38. i) Let ®𝐹 = (𝜙, 𝜓). In order ®𝐹 be irrotational on 𝐷 we need
𝜕𝑦𝜙 ≡ 𝜕𝑥𝜓, on 𝐷.

We have
𝜕𝑦𝜙 =

𝑏 (𝑥2+𝑦2 )2−(𝑎𝑥+𝑏𝑦)2(𝑥2+𝑦2 )2𝑦
(𝑥2+𝑦2 )4 =

𝑏 (𝑥2+𝑦2 )−4𝑦 (𝑎𝑥+𝑏𝑦)
(𝑥2+𝑦2 )2 =

𝑏𝑥2−4𝑎𝑥𝑦−3𝑏𝑦2

(𝑥2+𝑦2 )2 ,

𝜕𝑥𝜓 =
𝑐 (𝑥2+𝑦2 )2−(𝑐𝑥+𝑑𝑦)2(𝑥2+𝑦2 )2𝑥

(𝑥2+𝑦2 )4 =
𝑐 (𝑥2+𝑦2 )−4𝑥 (𝑐𝑥+𝑑𝑦)

(𝑥2+𝑦2 )2 =
−3𝑐𝑥2−4𝑑𝑥𝑦+𝑐𝑦2

(𝑥2+𝑦2 )2 .

Hence,

𝜕𝑦𝜙 ≡ 𝜕𝑥𝜓, ⇐⇒ 𝑏𝑥2 − 4𝑎𝑥𝑦 − 3𝑏𝑦2 ≡ −3𝑐𝑥2 − 4𝑑𝑥𝑦 + 𝑐𝑦2, ⇐⇒


𝑏 = −3𝑐,
𝑎 = 𝑑,

−3𝑏 = 𝑐

from which 𝑏 = 𝑐 = 0 and 𝑎 = 𝑑 ∈ R. Thus

®𝐹 =

(
𝑎𝑥

(𝑥2 + 𝑦2)2 ,
𝑎𝑦

(𝑥2 + 𝑦2)2

)
, ∀(𝑥, 𝑦) ∈ 𝐷.

ii) Necessary condition to be conservative is that ®𝐹 be irrotational, thus ®𝐹 is given as at the end of i).
Now, such ®𝐹 is conservative iff ®𝐹 = ∇ 𝑓 , that is

𝜕𝑥 𝑓 =
𝑎𝑥

(𝑥2+𝑦2 )2 ,

𝜕𝑦 𝑓 =
𝑎𝑦

(𝑥2+𝑦2 )2 .

From the first equation

𝑓 (𝑥, 𝑦) =
∫

𝑎𝑥

(𝑥2 + 𝑦2)2 𝑑𝑥 + 𝑘 (𝑦) = 𝑎

2

∫
𝜕𝑥 − (𝑥2 + 𝑦2)−1 𝑑𝑥 + 𝑘 (𝑦) = −𝑎

2
(𝑥2 + 𝑦2)−1 + 𝑘 (𝑦).

Plugging this into the second equation we have

𝜕𝑦 𝑓 =
𝑎𝑦

(𝑥2 + 𝑦2)2 , ⇐⇒ 𝑎𝑦

(𝑥2 + 𝑦2)2 +𝑘
′(𝑦) = 𝑎𝑦

(𝑥2 + 𝑦2)2 , ⇐⇒ 𝑘 ′(𝑦) = 0, ⇐⇒ . .𝑘 (𝑦) = 𝑘 ∈ R.

Thus, ®𝐹 is conservative with potentials

𝑓 (𝑥, 𝑦) = −𝑎

2
(𝑥2 + 𝑦2)−1 + 𝑘, 𝑘 ∈ R.

iii) By previous discussion, when (𝑎, 𝑏, 𝑐, 𝑑) = (2, 0, 0, 2), field ®𝐹 is conservative. Thus∫
𝛾

®𝐹 = 𝑓 (0, 2) − 𝑓 (1, 0) = −1
4
− (−1) = 3

4
. □

Exercise 39. i) Since 𝑥2 + 𝑧2 is invariant by rotations around the 𝑦−axis, 𝐷 is invariant by rotations
around such axis. We can draw any section containing the 𝑦 axis, for instance 𝐷 ∩ {𝑥 = 0} (section of 𝐷
in plane 𝑦𝑧). We have

𝐷 ∩ {𝑥 = 0} = {(0, 𝑦, 𝑧) : 1 − 𝑧2 ⩾ 𝑦 ⩽
√︁

1 − 𝑧2}.
Figure:
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ii) Notice that

𝜆3(𝐷) =
∫
𝐷

1 𝑑𝑥𝑑𝑦𝑑𝑧
𝑅𝐹
=

∫
1−(𝑥2+𝑧2 )⩽

√
1−(𝑥2+𝑦2 )

(∫√1−(𝑥2+𝑧2 )
1−(𝑥2+𝑧2 ) 1 𝑑𝑦

)
𝑑𝑥𝑑𝑧

=
∫

1−(𝑥2+𝑧2 )⩽
√

1−(𝑥2+𝑧2 )

(√︁
1 − (𝑥2 + 𝑧2) − (1 − (𝑥2 + 𝑧2))

)
𝑑𝑥𝑑𝑧

𝑝𝑜𝑙. 𝑐𝑜𝑜𝑟𝑑𝑠
=

∫
1−𝜌2⩽

√
1−𝜌2, 0⩽𝜃⩽2𝜋 𝜌

(√︁
1 − 𝜌2 − (1 − 𝜌2)

)
𝑑𝜌𝑑𝜃

𝑅𝐹
= 2𝜋

∫
1−𝜌2⩽

√
1−𝜌2 𝜌

(√︁
1 − 𝜌2 − (1 − 𝜌2)

)
𝑑𝜌.

Now, 1 − 𝜌2 ⩽
√︁

1 − 𝜌2 iff (being 1 − 𝜌2 ⩾ 0 for the root),
√︁

1 − 𝜌2 ⩽ 1 always true, the condition on 𝜌

is 𝜌2 ⩽ 1, that is 0 ⩽ 𝜌 ⩽ 1. In conclusion,

𝜆3(𝐷) = 2𝜋
∫ 1

0 𝜌

(√︁
1 − 𝜌2 − (1 − 𝜌2)

)
𝑑𝜌 = 2𝜋

∫ 1
0 𝜌(1 − 𝜌2)1/2 − 𝜌 + 𝜌3 𝑑𝜌

= 2𝜋
( [
−1

3 (1 − 𝜌2)3/2]𝜌=1
𝜌=0 −

[
𝜌2

2

]𝜌=1

𝜌=0
+

[
𝜌4

4

]𝜌=1

𝜌=0

)
= 2𝜋

(
1
3 − 1

2 + 1
4

)
= 𝜋

6 . □

Exercise 40. See notes for CR equations and connection with C−differentiability.
i) If 𝑓 = 𝑢 + 𝑖𝑣 with, for example, 𝑢 constant, then, by the CR eqns,

0 ≡ 𝜕𝑥𝑢 ≡ 𝜕𝑦𝑣,

0 = 𝜕𝑦𝑢 ≡ −𝜕𝑥𝑣,
=⇒


𝜕𝑥𝑣 ≡ 0,

𝜕𝑦𝑣 ≡ 0.

From this it follows that 𝑣 is constant.
iii) Suppose now that 𝑓 = 𝑢 + 𝑖𝑣 be C−differentiable and such that | 𝑓 | =

√
𝑢2 + 𝑣2 = 𝑘 or, equivalently,

𝑢2 + 𝑣2 ≡ 𝑘2. If 𝑘 = 0 the conclusion is trivial. Assume 𝑘 ≠ 0. By computing 𝜕𝑥 we have

2𝑢𝜕𝑥𝑢 + 2𝑣𝜕𝑥𝑣 ≡ 0,

and because of CR equations
𝑢𝜕𝑥𝑢 − 𝑣𝜕𝑦𝑢 = 0.

Similarly, computing 𝜕𝑦

2𝑢𝜕𝑦𝑢 + 2𝑣𝜕𝑦𝑣 = 0, ⇐⇒ 𝑢𝜕𝑦𝑢 + 𝑣𝜕𝑥𝑢 = 0.

Multiplying the first relation by 𝜕𝑥𝑢 and the second by 𝜕𝑦𝑢 we obtain

𝑢(𝜕𝑥𝑢)2 ≡ 𝑣𝜕𝑦𝑢𝜕𝑥𝑢 = −𝑢(𝜕𝑦𝑢)2, ⇐⇒ 𝑢

(
(𝜕𝑥𝑢)2 + (𝜕𝑦𝑢)2

)
≡ 0. ⇐⇒ 𝑢2

(
(𝜕𝑥𝑢)2 + (𝜕𝑦𝑢)2

)
≡ 0.

Similarly,

𝑣2
(
(𝜕𝑥𝑣)2 + (𝜕𝑦𝑣)2

)
≡ 0.
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By CR eqns, (𝜕𝑥𝑢)2 + (𝜕𝑦𝑢)2 ≡ (𝜕𝑥𝑣)2 + (𝜕𝑦𝑣)2, thu summing up the two previous relations we get

(𝑢2 + 𝑣2)
(
(𝜕𝑥𝑢)2 + (𝜕𝑦𝑢)2

)
≡ 0, ⇐⇒ 𝑘2

(
(𝜕𝑥𝑢)2 + (𝜕𝑦𝑢)2

)
≡ 0, ⇐⇒ (𝜕𝑥𝑢)2 + (𝜕𝑦𝑢)2 ≡ 0,

which means 𝜕𝑥𝑢 ≡ 𝜕𝑦𝑢 ≡ 0. Thus 𝑢 is constant and we can now conclude by ii). □

Exercise 41. i) We have a separable variables equation. Solutions are either constant or obtained by
separation of variables. In the first case, 𝑦 ≡ 𝐶 is a solution iff 𝐶 (𝐶2 + 1) = 0, that is 𝐶 = 0. Other
solution are obtained by separation of variables:

𝑦′ = 𝑦(𝑦2 + 1), ⇐⇒ 𝑦′

𝑦(𝑦2 + 1)
= 1, ⇐⇒

∫
𝑦′

𝑦(𝑦2 + 1)
𝑑𝑡 = 𝑡 + 𝑘.

Now, ∫
𝑦′

𝑦(𝑦2 + 1)
𝑑𝑡

𝑢=𝑦 (𝑡 ) , 𝑑𝑢=𝑦′ (𝑡 ) 𝑑𝑡
=

∫
1

𝑢(𝑢2 + 1)
𝑑𝑢.

According to Hermite decomposition,
1

𝑢(𝑢2 + 1)
=

𝐴

𝑢
+ 𝐵𝑢 + 𝐶

𝑢2 + 1
from which 𝐴 = 1, 𝐵 = −1 and 𝐶 = 0. Therefore∫

1
𝑢(𝑢2 + 1)

𝑑𝑢 = log |𝑢 | − 1
2

log(𝑢2 + 1) = log
|𝑢 |

√
𝑢2 + 1

.

Thus we have
log

|𝑦 |√︁
𝑦2 + 1

= 𝑡 + 𝑘,

that is

|𝑦 |√︁
𝑦2 + 1

= 𝑘𝑒𝑡 , ⇐⇒ 𝑦2

𝑦2 + 1
= 𝑘𝑒2𝑡 , (𝑘 > 0) ⇐⇒ 𝑦2 =

𝑘𝑒2𝑡

1 − 𝑘𝑒2𝑡 , ⇐⇒ 𝑦 = ±
√︂

𝑘𝑒2𝑡

1 − 𝑘𝑒2𝑡 .

ii) The solution for which 𝑦(0) = 1 cannot be a constant solution. Since 𝑦(0) = 1, we have

𝑦(𝑡) =
√︂

𝑘𝑒2𝑡

1 − 𝑘𝑒2𝑡 ,

and 𝑦(0) = 1 means
√︃

𝑘
1−𝑘 = 1, that is 𝑘 = 1

2 . □

Exercise 42. i) Let (𝑔1, 𝑔2) := (𝑥2 + 𝑦2 − 1, 𝑥 + 𝑦 + 𝑧 − 1) in such a way 𝐷 = {𝑔1 = 0, 𝑔2 = 0}. To
check that (𝑔1, 𝑔2) is a submersion on 𝐷 we have to verify that

rk


𝑔1

∇𝑔2

 = rk


2𝑥 2𝑦 0

1 1 1

 = 2, ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷.

Now, rank is < 2 iff the two gradients are linearly dependent. This is manifestly impossible because of
their third component.
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ii) 𝐷 is closed being defined by equalities involving continuous functions. 𝐷 is also bounded: indeed,
by first equation we have 𝑥2, 𝑦2 ⩽ 1, thus −1 ⩽ 𝑥, 𝑦 ⩽ 1, and by the secon

−1 ⩾ 𝑧 = 1 − (𝑥 + 𝑦) ⩽ 3,

thus 𝑧2 ⩽ 9 and 𝑥2 + 𝑦2 + 𝑧2 ⩽ 11.
iii) Function 𝑓 is continuous on 𝐷 compact: existence of min/max is ensured by Weierstrass thm. To

determine these points, we apply Lagrange multipliers thm. By i), 𝐷 fulfils the assumption of the thm.
Thus, at (𝑥, 𝑦, 𝑧) min/max point for 𝑓 on 𝐷 we must have

∇ 𝑓 = 𝜆1∇𝑔1 + 𝜆2∇𝑔2, ⇐⇒ rk

∇ 𝑓

∇𝑔1
∇𝑔2

 = rk


2𝑥 + 𝑦 − 1 2𝑦 + 𝑥 + 𝑧 − 1 𝑦

2𝑥 2𝑦 0
1 1 1

 < 3,

that is iff the determinant of previous matrix vanishes. We get the condition

2𝑦(𝑥 − 𝑦) + 2(𝑦(2𝑥 + 𝑦 − 1) − 𝑥(2𝑦 + 𝑥 + 𝑧 − 1)) = 0,

from which, simplifying,
𝑦(𝑦 − 𝑥) + (𝑦2 − 𝑦 − 𝑥2 + 𝑥 − 𝑥𝑧) = 0.

Since we are looking for solutions (𝑥, 𝑦, 𝑧) ∈ 𝐷, we must have 𝑧 = 1 − 𝑥 − 𝑦, and plugging this into
previous equation yields,

𝑦 (2𝑦 − 1) = 0, ⇐⇒ 𝑦 = 0, ∨ 𝑦 =
1
2
.

Thus we get points (𝑥, 0, 1−𝑥) and (𝑥, 1
2 ,

1
2 −𝑥), to which we have still to impose the condition 𝑥2+ 𝑦2 = 1.

In the first case 𝑥2 + 02 = 1, thus 𝑥 = ±1, that is points (±1, 0,∓1) (two points). In the second case,
𝑥2 + 1

4 = 1, thus 𝑥2 = 3
4 and 𝑥 = ±

√
3

2 , that is points
(√

3
2 , 1

2 ,
1−

√
3

2

)
and

(
−

√
3

2 , 1
2 ,

1+
√

3
2

)
. We have

• 𝑓 (1, 0,−1) = 0
• 𝑓 (−1, 0, 1) = 2
• 𝑓

(√
3

2 , 1
2 ,

1−
√

3
2

)
=

√
3

4 (
√

3 − 2)

• 𝑓

(
−

√
3

2 , 1
2 ,

1+
√

3
2

)
=

√
3

4 (
√

3 + 2)

From this we see that (−1, 0, 1) is max point,
(√

3
2 , 1

2 ,
1−

√
3

2

)
is min point. □

Exercise 43. i) 𝐷 is closed, being defined by large inequalities involving continuous functions. Let’s
check that 𝐷 is bounded (hence compact). Denoting by 𝜌 =

√︁
𝑥2 + 𝑦2 = ∥(𝑥, 𝑦)∥ we have

(𝑥, 𝑦) ∈ 𝐷, =⇒ 𝜌2 ⩽ 2𝜌 cos 𝜃 − 𝜌 = 𝜌(2 cos 𝜃 − 1), ⇐⇒ 𝜌 ⩽ 2 cos 𝜃 − 1 ⩽ 1.

Therefore, 𝐷 is bounded. In particular, 𝐷 cannot be be open: only ∅,R2 are both open and closed, and
(0, 0) ∈ 𝐷 (thus 𝐷 ≠ ∅), and 𝐷 is bounded, thus 𝐷 ⊊ R2.

ii) The area of 𝐷 is

𝜆2(𝐷) =
∫
𝐷

1 𝑑𝑥𝑑𝑦 =

∫
𝑥2+𝑦2⩽2𝑥−

√
𝑥2+𝑦2

1 𝑑𝑥𝑑𝑦
𝑝𝑜𝑙 𝑐𝑜𝑜𝑟𝑑𝑠

=

∫
𝜌⩽2 cos 𝜃−1

𝜌 𝑑𝜌𝑑𝜃.
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Now, notice that since 𝜌 ⩾ 0, this imposes 2 cos 𝜃 − 1 ⩾ 0, that is cos 𝜃 ⩾ 1
2 . In one period this means

− 𝜋
3 ⩽ 𝜃 ⩽ 𝜋

3 . Thus

𝜆2(𝐷) =
∫
𝜌⩽2 cos 𝜃−1, − 𝜋

3 ⩽𝜃⩽
𝜋
3
𝜌 𝑑𝜌𝑑𝜃

𝑅𝐹
=

∫ 𝜋/3
−𝜋/3

∫ 2 cos 𝜃−1
0 𝜌 𝑑𝜌 𝑑𝜃 = 1

2

∫ 𝜋/3
−𝜋/3(2 cos 𝜃 − 1)2 𝑑𝜃

= 1
2

(
2𝜋
3 − 4

∫ 𝜋/3
−𝜋/3 cos 𝜃 𝑑𝜃 + 4

∫ 𝜋/3
−𝜋/3(cos 𝜃)2 𝑑𝜃

)
= 𝜋

3 − 2
√

3 + 2
∫ 𝜋/3
−𝜋/3(cos 𝜃)2 𝑑𝜃.

About this last integral we have∫ 𝜋/3

−𝜋/3
(cos 𝜃)2 𝑑𝜃 =

∫ 𝜋/3

−𝜋/3
(cos 𝜃) (sin 𝜃)′ 𝑑𝜃 = [sin 𝜃 cos 𝜃] 𝜃=𝜋/3

𝜃=−𝜋/3+
∫ 2𝜋

0
(sin 𝜃)2 𝑑𝜃 =

√
3

2
−
∫ 𝜋/3

−𝜋/3
(cos 𝜃)2 𝑑𝜃,

from which
∫ 𝜋/3
−𝜋/3(cos 𝜃)2 𝑑𝜃 =

√
3

4 . We conclude that 𝜆2(𝐷) = 𝜋
3 − 3

√
3

2 . □

Exercise 44. i) In order 𝑓 = 𝑢‘ + 𝑖𝑣 be C−differentiable on C, we need 𝑢, 𝑣 R−differentiable on R2

and fulfilling the CR equations. About 𝑢 it is clear that, being 𝜕𝑥𝑢, 𝜕𝑦𝑢 ∈ 𝒞(R2), 𝑢 is R−differentiable
on R2 by the differentiability test. Thus, we look for a 𝑣 differentiable such that

𝜕𝑥𝑢 ≡ 𝜕𝑦𝑣,

𝜕𝑦𝑢 = −𝜕𝑥𝑣,
⇐⇒


𝜕𝑥𝑣 = −𝜕𝑦𝑢 = −(−20𝑥3𝑦 + 20𝑥𝑦3),

𝜕𝑦𝑣 = 𝜕𝑥𝑢 = 5𝑥4 − 30𝑥2𝑦2 + 5𝑦4.

From first equation,

𝑣(𝑥, 𝑦) =
∫

20𝑥3𝑦 − 20𝑥𝑦3 𝑑𝑥 + 𝑘 (𝑦) = 5𝑥4𝑦 − 10𝑥2𝑦3 + 𝑘 (𝑦),

and plugging this into the second equation we have
5𝑥4 − 30𝑥2𝑦2 + 𝑘 ′(𝑦) = 5𝑥4 − 30𝑥2𝑦2 + 5𝑦4, ⇐⇒ 𝑘 ′(𝑦) = 5𝑦4, ⇐⇒ 𝑘 (𝑦) = 𝑦5 + 𝑘,

where 𝑘 is now a constant. Thus, the 𝑣 that fulfils CR eqns together with 𝑢 is
𝑣(𝑥, 𝑦) = 5𝑥4𝑦 − 10𝑥2𝑦3 + 5𝑦4 + 𝑘,

and since this is also differentiable (being 𝜕𝑥𝑣, 𝜕𝑦𝑣 ∈ 𝒞(R2)), we conclude that 𝑓 = 𝑢 + 𝑖𝑣 is
C−differentiable.

ii) We have
𝑓 =

(
𝑥5 − 10𝑥3𝑦2 + 5𝑥𝑦4

)
+ 𝑖

(
5𝑥4𝑦 − 10𝑥2𝑦3 + 5𝑦4 + 𝑘

)
Noticed that, for 𝑧 = 𝑥 + 𝑖𝑦,

𝑧5 = (𝑥 + 𝑖𝑦)5 = 𝑥5 + 𝑖5𝑥4𝑦 − 10𝑥3𝑦2 − 𝑖10𝑥2𝑦3 + 5𝑥𝑦4 + 𝑖𝑦5

thus 𝑓 = 𝑧5 + 𝑖𝑘 , 𝑘 ∈ R. □

Exercise 45. See notes for definitions. We aim to prove that 𝑓 −1(𝑆) is open if 𝑆 it is. Suppose this is
false. There exists then a point 𝑥 ∈ 𝑓 −1(𝑆) for which

�𝐵(𝑥, 𝑟] ⊂ 𝑓 −1(𝑆).
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This means that:
∀𝑟 > 0, 𝐵(𝑥, 𝑟] ∩ 𝑓 −1(𝑆)𝑐 ≠ ∅.

Taking 𝑟 = 1
𝑛

∀𝑛 ∈ N, 𝑛 ⩾ 1, ∃𝑥𝑛 ∈ 𝐵(𝑥, 1/𝑛] ∩ 𝑓 −1(𝑆)𝑐 .
This means that ∥𝑥𝑛 − 𝑥∥ ⩽ 1

𝑛
, thus 𝑥𝑛 −→ 𝑥. By continuity, 𝑓 (𝑥𝑛) −→ 𝑓 (𝑥). Furthermore, by

construction of (𝑥𝑛), we have that 𝑥𝑛 ∈ 𝑓 −1(𝑆)𝑐, that is 𝑓 (𝑥𝑛) ∉ 𝑆 for every 𝑛. However, since 𝑓 (𝑥) ∈ 𝑆

(recall that 𝑥 ∈ 𝑓 −1(𝑆)), and 𝑆 is supposed to be open,
∃𝐵( 𝑓 (𝑥), 𝜌] ⊂ 𝑆.

And since 𝑓 (𝑥𝑛) −→ 𝑓 (𝑥), we have that
∃𝑁 : 𝑓 (𝑥𝑛) ∈ 𝐵( 𝑓 (𝑥), 𝜌] ⊂ 𝑆, ∀𝑛 ⩾ 𝑁,

which is in contradiction with the construction of (𝑥𝑛). We deduce that the initial assumption must be
false, that is 𝑓 −1(𝑆) is open. □


