## Calculus 2 - Final Exam

Exercise 1. Consider the Cauchy problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y^{2}-4}{t}, \\
y(1)=0 .
\end{array}\right.
$$

i) Determine the solution.
ii) Determine the domain of definition $] a, b$ [ of the solution and the limits of $y(t)$ when $t \longrightarrow a$ and $t \longrightarrow b$.

Exercise 2. Let

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1+x y\right\} .
$$

i) Show that $D \neq \emptyset$ is the zero set of a submersion.
ii) Is $D$ compact?
iii) Determine, if any, points of $D$ at $\mathrm{min} / \mathrm{max}$ distance to $\overrightarrow{0}$.

Exercise 3. Let

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(x^{2}+y^{2}\right)^{1 / 4} \leqslant z \leqslant 2-x^{2}-y^{2}\right\} .
$$

i) Draw $D \cap\{x=0\}$ and deduce a figure for $D$.
ii) Compute the volume of $D$.

Exercise 4. Let

$$
v(x, y):=e^{-y}(y \cos x+x \sin x), \quad(x, y) \in \mathbb{R}^{2} .
$$

i) Determine all possible $u=u(x, y)$ in such a way that $f(x+i y):=u(x, y)+i v(x, y)$ be $\mathbb{C}$-differentiable on $\mathbb{R}^{2}$.
ii) Express the $f$ found at i) as function of complex number $z$, that is $f=f(z)$.

Exercise 5. State the Green formula. Let $f \in \mathscr{C}\left(\mathbb{R}^{2}\right)$ with $\partial_{i} f, \partial_{j}\left(\partial_{i} f\right) \in \mathscr{C}\left(\mathbb{R}^{2}\right)$, for all $i, j=1,2$. Prove that

$$
\oint_{\partial D} f \nabla f=0 .
$$

Exercise 6. Consider the equation

$$
y^{\prime}=\frac{e^{y}-1}{t}, t \neq 0 .
$$

i) Determine the constant solutions.
ii) Determine the solution of the Cauchy problem $y(1)=-1$.
iii) Determine in particular the domain of definition ] $a, b$ [ of the solution and its limits when $t \rightarrow a+$ and $t \rightarrow b$ -

## Exercise 7. Let

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=1, y^{2}+z=1\right\} .
$$

i) Show that $D \neq \varnothing$ is the zero set of a submersion $\left(g_{1}, g_{2}\right)$.
ii) Is $D$ compact?
iii) Determine, if any, points of $D$ at $\min / \max$ distance to $\overrightarrow{0}$.

Exercise 8. Let

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leqslant z \leqslant 1-y^{2}\right\} .
$$

i) Draw $D \cap\{x=0\}$ and $D \cap\{y=0\}$. Is $D$ invariant by some rotation? Justify your answer. Draw $D$ as best as you can.
ii) Compute the volume of $D$.

Exercise 9. Let

$$
\vec{F}:=\left(\frac{a x^{2}+b y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \frac{x y}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

on $D=\mathbb{R}^{2} \backslash\{(0,0)\}$. Here $a, b \in \mathbb{R}$ are constants.
i) Determine all possible values for $a, b$ in such a way $\vec{F}$ be irrotational on $D$.
ii) Determine values of $a, b, c$ in such a way $\vec{F}$ be conservative on $D$, in this case determining also all the possible potentials.

Exercise 10. What are the Cauchy-Riemann equations (or conditions)? State precisely. Then, let $f=u+i v(u=\operatorname{Re} f$ and $v=\operatorname{Im} f)$ be a $\mathbb{C}$ differentiable function on the entire plane $\mathbb{C}$. Assume that also $\bar{f}=u-i v=u+i(-v)$ is $\mathbb{C}$ differentiable on $\mathbb{C}$. What conclusion can you draw on $f$ ?

Exercise 11. Consider the second order equation

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{2 t} .
$$

i) Determine the general integral.
ii) Solve the Cauchy problem $y(0)=1, y^{\prime}(0)=0$.
iii) For which $a \in \mathbb{R}$ there exists a solution such that $y(0)=0$ and $y(1)=a$ ?

Exercise 12. Let

$$
f(x, y):=\left(x^{2}+y^{2}\right)^{3}-x^{4}+y^{4},(x, y) \in \mathbb{R}^{2} .
$$

i) Compute, if it exists, $\lim _{(x, y) \rightarrow \infty_{2}} f(x, y)$.
ii) Discuss existence of $\min / \max$ of $f$ on $\mathbb{R}^{2}$ and find the eventual $\min / \max$ points of $f$. What about $f\left(\mathbb{R}^{2}\right)$ ?

Exercise 13. Let $D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+2 y^{2} \leqslant z \leqslant 4-3\left(x^{2}+2 y^{2}\right)\right\}$.
i) Draw the set $D$. Someone says: " $D$ is a rotation volume with respect to the $z$-axis". Is it true or false?
ii) Compute the volume of $D$.

Exercise 14. Let

$$
u(x, y):=x^{2}+y^{2} .
$$

i) Determine, if any, $v=v(x, y)$ in such a way that $f(x+i y):=u(x, y)+i v(x, y)$ be $\mathbb{C}$-differentiable on $\mathbb{C}$.
ii) For the $f$ you found at $\mathbf{i}$ ), write $f=f(z)$ as function of $z \in \mathbb{C}$.

Exercise 15. State the Lagrange multipliers theorem. Then, consider a curve $y=f(x)$ defined by a function $f=f(x): \mathbb{R} \longrightarrow \mathbb{R}, f \in \mathscr{C}^{1}(\mathbb{R})$. Let $P=(a, b)$ a point in the cartesian plane not belonging to the curve $y=f(x)$. Prove that if $Q$ is a point of the curve $y=f(x)$ where the distance to $P$ is minimum, then the segment $P-Q$ is perpendicular to the tangent to $f$.

Exercise 16. Consider the differential equation

$$
y^{\prime}=\frac{t-t y^{2}}{y+t^{2} y} .
$$

i) Show that it is a separable variables equation and determine all possible constant solutions.
ii) Determine the solution of the Cauchy Problem with passage condition $y(0)=2$.

Exercise 17. Let $\Gamma \subset \mathbb{R}^{3}$ the set described by equations

$$
\Gamma:\left\{\begin{array}{l}
x^{2}+y^{2}=1, \\
x^{2}+z^{2}=x z+1 .
\end{array}\right.
$$

i) Show that $\Gamma \neq \emptyset$ is the zero set of a submersion on $\Gamma$.
ii) Is $\Gamma$ compact? Justify your answer.
iii) Determine points of $\Gamma$ at minimum/maximum distance to ( $0,0,0$ ) (if any).

Exercise 18. Let $D:=\left\{(x, y, z) \in \mathbb{R}^{3}: 1-\left(x^{2}+y^{2}\right) \leqslant z \leqslant \sqrt{1-\left(x^{2}+y^{2}\right)}\right\}$.
i) Draw $D \cap\{y=0\}$ and deduce a figure for $D$.
ii) Compute the volume of $D$.

Exercise 19. Let $f=u+i v$ where

$$
u(x, y):=a x^{2}+b x y+c y^{2}, \quad v(x, y):=x y, \quad x+i y \in \mathbb{C} .
$$

( $a, b, c$ are real constant)
i) Determine all possible $a, b, c$ such that $f$ be holomorphic on $\mathbb{C}$.
ii) For values found at i), determine the analytical expression for $f=f(z)$ in terms of variable $z \in \mathbb{C}$.

Exercise 20. Let $\vec{a}_{1}, \ldots, \vec{a}_{N} \in \mathbb{R}^{d}$ be $N$ fixed vectors, $\vec{a}_{i} \neq \vec{a}_{j}$ for $i \neq j$. Define

$$
f(\vec{x}):=\sum_{j=1}^{N}\left\|\vec{x}-a_{j}\right\|^{2} .
$$

Discuss the problem of determining, if any, points of $\min / \max$ for $f$ on $\mathbb{R}^{d}$. Justify carefully, state all general facts you use.

## September 2023

Exercise 21. Consider the equation

$$
y^{\prime}=y \log y .
$$

i) Determine, if any, all constant solutions.
ii) Solve the Cauchy problem with $y(0)=a$.
iii) Determine, if any, values of $a$ such that $\lim _{t \rightarrow+\infty} y(t)=0$.

Exercise 22. Let $D:=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad x^{2}=y^{2}+z^{2}, \quad x^{2}+y^{2}=x y+1\right\}$.
i) Show that $D$ is the zero set of a submersion on $D$ itself.
ii) Is $D$ compact? Justify your answer.
iii) Determine, if any, the points of $D$ at the $\min / \max$ distance to the origin.

Exercise 23. Consider the vector field

$$
\vec{F}(x, y):=\left(\frac{a x+b y}{\sqrt{x^{2}+y^{2}}}, \frac{c x+d y}{\sqrt{x^{2}+y^{2}}}\right),(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\} .
$$

i) Find all possible values of $a, b, c, d \in \mathbb{R}$ such that $\vec{F}$ is irrotational.
ii) Find all possible values for $a, b, c, d$ such that $\vec{F}$ is conservative. For such values, determine the potentials of $\vec{F}$.

Exercise 24. Let $D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+4 y^{2}-z^{2} \leqslant 1,0 \leqslant z \leqslant 1\right\}$. Draw $D$ and calculate its volume.

Exercise 25. Let $f=u+i v$ be holomorphic on $D \subset \mathbb{C}$. Define

$$
g(z):=\overline{f(\bar{z})}, z \in \bar{D}:=\{w \in \mathbb{C}: \bar{w} \in D\}
$$

i) Express real and imaginary part of $g$ in terms of real and imaginary parts $u$ and $v$ of $f$.
ii) Use i) to discuss whether $g$ is holomorphic on $\bar{D}$ or not.

Exercise 26. Consider the differential equation

$$
y "+2 y^{\prime}+y=t+1 .
$$

i) Determine the general integral of the equation.
ii) Solve the Cauchy problem $y(0)=0, y^{\prime}(0)=1$.
iii) Discuss the boundary value problem $y(0)=0, y(1)=0$.

Exercise 27. Let

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}, y^{2}+(z-2)^{2}=1\right\} .
$$

i) Show that $D \neq \emptyset$ and it is the zero set of a submersion.
ii) Is $D$ compact? Prove or disprove.
iii) Find points of $D$ at $\min /$ max distance to $\overrightarrow{0}$.

Exercise 28. Let $D:=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant 1, x^{3} \leqslant y \leqslant 3\right\}$.
i) Draw $D$.
ii) By using the change of variables $u=y-x^{3}, v=y+x^{3}$, compute the integral

$$
\int_{D} x^{2}\left(y-x^{3}\right) e^{y+x^{3}} d x d y
$$

Exercise 29. Let $v(x, y):=y^{3}-3 x^{2} y+4 x y-x,(x, y) \in \mathbb{R}^{2}$. Determine all possible $u=u(x, y)$ such that

$$
f(x+i y):=u(x, y)+i v(x, y),
$$

be holomorphic on $\mathbb{C}$. What is $f(z)$ as a function of $z$ ?
Exercise 30. What does it mean that a set $C \subset \mathbb{R}^{d}$ is closed? What is the Cantor characterization of closed sets?

Given a generic set $S \subset \mathbb{R}^{d}$, we define the frontier of $S$ as the set

$$
\partial S:=\left\{\vec{x} \in \mathbb{R}^{d}: \forall r>0, B(\vec{x}, r] \cap S \neq \varnothing, B(\vec{x}, r] \cap S^{c} \neq \varnothing\right\} .
$$

Is $\partial S$ always closed? Justify your answer providing a proof if yes, a counterexample if no.

## Exam Simulation

Exercise 31. Solve the following equation in the unknown $z \in \mathbb{C}$ :

$$
\sinh \frac{1}{z}=0 .
$$

Exercise 32. Consider the set (surface)

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}-2 x y+y^{2}-x+y=0\right\} .
$$

Determine, if any, points of $D$ at $\min /$ max distance to the point $(1,2,-3)$. Justify carefully the method you use.

Exercise 33. Let

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leqslant z \leqslant \frac{1}{\cosh \left(x^{2}+y^{2}\right)}\right\} .
$$

i) Draw $D \cap\{x=0\}$ and deduce the figure of $D$. Is $D$ closed? Open? Bounded? Compact? Justify your answer.
ii) Determine the volume of $D$.
iii) Determine for which values of $\alpha$ the following integral has a finite value:

$$
\int_{D} e^{\alpha\left(x^{2}+y^{2}\right)} d x d y d z
$$

Exercise 34. Let

$$
u(x, y):=x^{3}+a x y^{2}, \quad v(x, y):=b x^{2} y-y^{3}, \quad(x, y) \in \mathbb{R}^{2} .
$$

i) Determine $a, b \in \mathbb{R}$ in such a way that $f(x+i y):=u(x, y)+i v(x, y)$ be holomorphic on $\mathbb{C}$.
ii) For values of $a, b$ found at i ), express $f$ as a function of the complex variable $z$.

Exercise 35. Consider a Newton equation of type

$$
m y^{\prime \prime}=F(y) .
$$

Suppose that force $F$ admits a potential, that is $F(y)=f^{\prime}(y)$. Define the potential energy

$$
E(y, v):=\frac{1}{2} m v^{2}-f(y) .
$$

i) Prove that $E\left(y, y^{\prime}\right)=E\left(y(t), y^{\prime}(t)\right)$ is a constant function of $t$. Deduce that $y$ solves a first order separable variables equation.
ii) Assume $m=1$ and let $F(y)=-2 y-3 y^{2}$ (elastic force plus viscosity). Determine the motion of the mass with $y(0)=-2, y^{\prime}(0)=\sqrt{8}$.

Exercise 36. Consider the equation

$$
y^{\prime \prime}=-9 y+6 \sin (3 t) .
$$

This equation represents the motion of a unitary mass particle subject to an elastic force (constant of elasticity $k=-9$ ) and to an external force $F(t)=6 \sin (3 t)$.
i) Determine the general solution of the equation.
ii) Solve the Cauchy problem $y(0)=y^{\prime}(0)=0$.
iii) Describe the long time (that is $t \longrightarrow+\infty$ ) of the general solution. In particular: are there solutions for which $\exists \lim _{t \rightarrow+\infty} y(t)$ ? are there solutions which are bounded, that is $|y(t)| \leqslant M$ for all $t \geqslant 0$ for some constant $M$ ? Justify carefully.

## Exercise 37. Let

$$
f(x, y):=3 x y+x^{2} y+x y^{2}, \quad(x, y) \in D:=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant 0,0 \leqslant y \leqslant 1-x\right\} .
$$

i) Draw $D$. Is $D$ closed? open? bounded? compact? Justify carefully.
ii) Discuss the problem of determining $\min / \max$ (if any) of $f$ on $D$.

Exercise 38. Let $a, b, c, d \in \mathbb{R}$ and

$$
\vec{F}(x, y):=\left(\frac{a x+b y}{\left(x^{2}+y^{2}\right)^{2}}, \frac{c x+d y}{\left(x^{2}+y^{2}\right)^{2}}\right), \quad(x, y) \in D:=\mathbb{R}^{2} \backslash\{(0,0)\} .
$$

i) Determine $a, b, c, d \in \mathbb{R}$ in such a way that $\vec{F}$ be irrotational on $D$.
ii) Determine $a, b, c, d$ such that $\vec{D}$ be conservative on $D$. For these values (if any), determine all possible potentials of $\vec{F}$ on $D$.
iii) Let $\gamma=\gamma(t) \subset D$ be the segment joining $(1,0)$ to $(0,2)$. For $(a, b, c, d)=(2,0,0,2)$ compute

$$
\int_{\gamma} \vec{F}
$$

Exercise 39. Let $D:=\left\{(x, y, z) \in \mathbb{R}^{3}: 1-\left(x^{2}+z^{2}\right) \leqslant y \leqslant \sqrt{1-\left(x^{2}+z^{2}\right)}\right\}$.
i) Draw $D$. Is $D$ a rotation solid?
ii) Compute the volume of $D$.

Exercise 40. Let $f=u+i v: \mathbb{C} \longrightarrow \mathbb{C}$ be a $\mathbb{C}$-differentiable function. What are the Cauchy-Riemann equations? How are these equations relatived to $\mathbb{C}$-differentiability of $f$ ? Write a precise statement.

Discuss the following questions:
i) Assume that $\operatorname{Re} f$ or $\operatorname{Im} f$ is constant. What can be drawn on $f$ ?
ii) Assume that $|f|$ is constant. What can be drawn on $f$ ? (hint: $|f|^{2}=u^{2}+v^{2} \equiv k \ldots$ )

Exercise 41. Consider the equation

$$
y^{\prime}=y\left(y^{2}+1\right) .
$$

i) Determine the general integral of the equation.
ii) Determine the solution of the Cauchy problem $y(0)=1$.

Exercise 42. Let $D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1, x+y+z=1\right\}$.
i) Show that $D$ is the zero set of a submersion.
ii) Is $D$ compact?
iii) Determine, if any, $\min /$ max points for $f(x, y, z)=x^{2}-x+y^{2}+y x+y z-y$ on $D$.

Exercise 43. Let

$$
D:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 2 x-\sqrt{x^{2}+y^{2}}\right\} .
$$

i) Is $D$ closed? open? bounded? compact? Justify carefully.
ii) Compute the area of $D$.

## Exercise 44. Let

$$
u(x, y):=x^{5}-10 x^{3} y^{2}+5 x y^{4} .
$$

i) Determine all possible $v=v(x, y)$ in such a way that $f(x+i y):=u(x, y)+i v(x, y)$ be holomorphic on $\mathbb{C}$.
ii) For the $f$ found at $\mathbf{i}$ ), determine the analytical expression of $f(z)$ as function of $z \in \mathbb{C}$.

Exercise 45. What does it mean that a set $S \subset \mathbb{R}^{d}$ is open? Let $\vec{f}: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{m}$ be a continuous function on $\mathbb{R}^{d}$. Prove that the following property holds:

$$
\vec{f}^{-1}(S) \text { is open, } \forall S \subset \mathbb{R}^{m} \text { open. }
$$

(recall that $\vec{f}^{-1}(S)=\left\{\vec{x} \in \mathbb{R}^{d}: \vec{f}(\vec{x}) \in S\right\}$ ). Hint: suppose that for some $S$ open, $\vec{f}^{-1}(S)$ is not open...

Exercise 46. Solve the following equation in the complex variable $z \in \mathbb{C}$ :

$$
\cosh \left(\frac{z}{z+i}\right)=0 .
$$

Exercise 47. Consider the differential equation

$$
t y y^{\prime}=y^{2}+1 .
$$

i) Determine the general solution for $t>0$.
ii) Determine the solution of the Cauchy problem $y(1)=a$ with $a>0$, determining, in particular, its domain of definition and limit at endpoints of the domain. Quickly plot the graph of the solution.

Exercise 48. Let $S:=\left\{z=x^{2}+y^{2}, x+y+2 z=2\right\}$.
i) Check that $S \neq \varnothing$ and that it is the zero set of a submersion.
ii) Is $S$ compact? Justify carefully.
iii) Determine, if any, points of $S$ at $\mathrm{min} / \mathrm{max}$ distance to the origin.

Exercise 49. By using the change of variables $x=u^{2}$ and $y=v^{2}$, compute

$$
\int_{[0,+\infty[2} \frac{e^{-(x+y)}}{\sqrt{x^{2} y+x y^{2}}} d x d y
$$

Exercise 50. Let $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ be a continuous function such that

$$
\lim _{\vec{x} \rightarrow \infty_{d}} f(\vec{x})=+\infty .
$$

Prove that the set $S:=\left\{\vec{x} \in \mathbb{R}^{d}: f(\vec{x}) \leqslant K\right\}$ is compact for every $K \in \mathbb{R}$.

## Solutions

Exercise 1. i) We have a separable vars eqn, $y^{\prime}=a(t) f(y)$ where $f(y)=y^{2}-4$ and $a(t)=\frac{1}{t}$. Since $a \in \mathscr{C}$ and $f \in \mathscr{C}^{1}$. According to a general result, solutions of the differential equation are either constant or not, in this last case can be determined by separation of variables. Constant solutions are $y \equiv C$ iff $y^{\prime} \equiv 0=\frac{C^{2}-4}{t}$ iff $C^{2}=4$, iff $C= \pm 2$. Since the solution of CP is $y(1)=0$, certainly $y$ is not constant (otherwise $y \equiv \pm 2$ ). Thus, the solution of proposed CP can be determined by separation of vars:

$$
y^{\prime}=\frac{y^{2}-4}{t}, \Longleftrightarrow \frac{y^{\prime}}{y^{2}-4}=\frac{1}{t}, \Longleftrightarrow \int \frac{y^{\prime}}{y^{2}-4} d t=\int \frac{1}{t} d t+C=\log |t|+C
$$

Now,

$$
\int \frac{y^{\prime}}{y^{2}-4} d t \stackrel{u=y^{\prime}(t)}{=} \int \frac{1}{u^{2}-4} d u=\int \frac{1}{4}\left(\frac{1}{u-2}-\frac{1}{u+2}\right) d u=\frac{1}{4} \log \left|\frac{u-2}{u+2}\right|=\frac{1}{4} \log \left|\frac{y(t)-2}{y(t)+2}\right| .
$$

In this way, we have the implicit form for the solution

$$
\frac{1}{4} \log \left|\frac{y(t)-2}{y(t)+2}\right|=\log |t|+C
$$

Imposing the initial/passage condition we have

$$
\frac{1}{4} \log 1=\log |1|+C, \quad \Longleftrightarrow \quad C=0 .
$$

Thus, for the solution of the CP we have

$$
\frac{1}{4} \log \left|\frac{y(t)-2}{y(t)+2}\right|=\log |t|, \quad \Longleftrightarrow\left|\frac{y(t)-2}{y(t)+2}\right|=t^{4}, \quad \Longleftrightarrow \frac{y(t)-2}{y(t)+2}= \pm t^{4}
$$

Since $y(1)=0$ we have $-1= \pm 1^{4}= \pm 1$, thus the appropriate sign is - , and
$\frac{y(t)-2}{y(t)+2}=-t^{4}, \Longleftrightarrow y(t)-2=-t^{4}(y(t)+2), \Longleftrightarrow y(t)\left(1+t^{4}\right)=2\left(1-t^{4}\right), \Longleftrightarrow y(t)=2 \frac{1-t^{4}}{1+t^{4}}$.
ii) The formula found at i) for $y$ is defined for every $t \in \mathbb{R}$. However, since the equation does not make any sense at $t=0$, the solution must be defined either on ] $-\infty, 0$ [ or $] 0,+\infty[$. Since $y$ is defined at $t=1$ we conclude that the domain of the solution is $] 0,+\infty[$. About limits,

$$
\lim _{t \rightarrow 0} y(t)=2, \quad \lim _{t \rightarrow+\infty} y(t)=-2 .
$$

Exercise 2. i) For instance $(0,0, z) \in D$ iff $z^{2}=1$, thus $(0,0, \pm 1) \in D$ and $D \neq \emptyset . D$ is also the zero set of $g(x, y, z):=x^{2}+y^{2}+z^{2}-x y-1$. This is a submersion on $D$ iff

$$
\nabla g \neq \overrightarrow{0}, \text { on } D
$$

We have

$$
\nabla g=\overrightarrow{0}, \Longleftrightarrow\left\{\begin{array}{l}
2 x-y=0, \\
2 y-x=0, \\
2 z=0,
\end{array} \Longleftrightarrow(x, y, z)=(0,0,0) \notin D,\right.
$$

from which it follows that $g$ is a submersion on $D$.
ii) Certainly, $D=\{g=0\}$ is closed $(g \in \mathscr{C})$. Is it also bounded? We may see this by using spherical coordinates:

$$
\left\{\begin{array}{l}
x=\rho \cos \theta \sin \varphi, \\
y=\rho \sin \theta \sin \varphi, \quad \rho^{2}=x^{2}+y^{2}+z^{2}=\|(x, y, z)\|^{2} . \\
z=\rho \cos \varphi
\end{array}\right.
$$

Then, if $(x, y, z) \in D$ we have

$$
\rho^{2}=1+\rho^{2} \cos \theta \sin \theta(\sin \varphi)^{2}=1+\frac{1}{2} \rho^{2} \sin (2 \theta)(\sin \varphi)^{2} \leqslant 1+\frac{\rho^{2}}{2}
$$

from which

$$
\frac{\rho^{2}}{2} \leqslant 1, \quad \Longleftrightarrow \rho^{2}=\|(x, y, z)\|^{2} \leqslant 2 .
$$

Thus, $D$ is bounded, hence compact.
iii) We have to minimize/maximize $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ or, which is equivalent (same min/max points), $f(x, y, z)=x^{2}+y^{2}+z^{2}$. According to i), we are in condition to apply Lagrange multipliers theorem. According to this result, at $\mathrm{min} / \mathrm{max}$ points $(x, y, z) \in D$ we have

$$
\nabla f=\lambda \nabla g, \Longleftrightarrow \mathrm{rk}\left[\begin{array}{c}
\nabla f(x, y, z) \\
\nabla g(x, y, z)
\end{array}\right]=\operatorname{rk}\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x-y & 2 y-x & 2 z
\end{array}\right]<2 .
$$

This happens iff all $2 \times 2$ subdeterminats equal 0 :

$$
\left\{\begin{array} { l } 
{ 2 x ( 2 y - x ) - 2 y ( 2 x - y ) = 0 , } \\
{ 2 x 2 z - 2 z ( 2 x - y ) = 0 , } \\
{ 2 y 2 z - 2 z ( 2 y - x ) = 0 , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y^{2}-x^{2}=0, \\
y z=0, \\
x z=0 .
\end{array}\right.\right.
$$

The first leads to $y= \pm x$, the second $y=0$ (then $x=0$ ) or $z=0$. That is we have points $(0,0, z)$ and ( $x, \pm x, 0$ ). Now

- $(0,0, z) \in D$ iff $z^{2}=1$, that is $(0,0, \pm 1)$.
- $(x, \pm x, 0) \in D$ iff $2 x^{2}=1 \pm x^{2}$. If,$+ 2 x^{2}=1+x^{2}$, we get $x= \pm 1$, that is points $(1,1,0)$ and $(-1,-1,0)$. It,$- x^{2}=\frac{1}{3}$, thus points $\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, 0\right)$ and $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0\right)$.
Prom these we see that $(1,1,0)$ and $(-1,-1,0)$ are points at max distance to $\overrightarrow{0}$ while $\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, 0\right)$ and $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0\right)$ are points of $D$ at min distance to $\overrightarrow{0}$.

Exercise 3. i) $D \cap\{x=0\}=\left\{(0, y, z): \sqrt{|y|} \leqslant z \leqslant 2-y^{2}\right\}$. Thus, in the plane $y z, D \cap\{x=0\}$ is the plane region between $z=\sqrt{|y|}$ and the parabola $z=2-y^{2}$ (see figure). Since $(x, y, z) \in D$ depends on $(x, y)$ through $x^{2}+y^{2}, D$ is invariant by rotations around the $z$-axis.
ii) We have

$$
\begin{aligned}
\lambda_{3}(D) & =\int_{D} 1 d x d y d z=\int_{\sqrt[4]{x^{2}+y^{2}} \leqslant z \leqslant 2-\left(x^{2}+y^{2}\right)} 1 d x d y d z \stackrel{R F}{=} \int_{\sqrt[4]{x^{2}+y^{2}} \leqslant 2-\left(x^{2}+y^{2}\right)} \int_{\sqrt[4]{x^{2}+y^{2}}}^{2-\left(x^{2}+y^{2}\right)} 1 d z d x d y \\
& =\int_{\sqrt[4]{x^{2}+y^{2}} \leqslant 2-\left(x^{2}+y^{2}\right)}\left(2-\left(x^{2}+y^{2}\right)-\sqrt[4]{x^{2}+y^{2}}\right) d x d y \\
& \stackrel{C V}{=} \int_{\sqrt{\rho} \leqslant 2-\rho^{2}, \theta \in[0,2 \pi]}\left(\sqrt{\rho}-\left(2-\rho^{2}\right)\right) \rho d \rho d \theta .
\end{aligned}
$$

Now, $\sqrt{\rho} \leqslant 2-\rho^{2}$ might be hard to solve. However, here $\rho \geqslant 0 ; \sqrt{\rho}$ is increasing while $2-\rho^{2}$ decreases. Since at $\rho=1$ they are equal, we conclude that $\sqrt{\rho} \leqslant 2-\rho^{2}$ iff $0 \leqslant \rho \leqslant 1$. We can continue previous chain by the RF:

$$
\begin{aligned}
& \stackrel{R F}{=} \int_{0}^{1} \int_{0}^{2 \pi}\left(2 \rho-\rho^{3}-\rho^{3 / 2}\right) d \theta d \rho=2 \pi\left(-\left[\rho^{2}\right]_{\rho=0}^{\rho=1}-\left[\frac{\rho^{4}}{4}\right]_{\rho=0}^{\rho=1}-\left[\frac{\rho^{5 / 2}}{5 / 2}\right]_{\rho=0}^{\rho=1}\right) \\
& =2 \pi\left(1-\frac{1}{4}-\frac{2}{5}\right)=\frac{7 \pi}{10} . \quad
\end{aligned}
$$

Exercise 4. i) $f=u+i v$ is $\mathbb{C}$-differentiable on $\mathbb{C}$ iff $u, v$ are $\mathbb{R}$-differentiable on $\mathbb{R}^{2}$ and $u, v$ fulfill the CR conditions. Clearly $v$ is differentiable. Thus we have to look at $u=u(x, y) \mathbb{R}$-differentiable such that

$$
\left\{\begin{array}{l}
\partial_{x} u=\partial_{y} v=-e^{-y}(y \cos x+x \sin x)+e^{-y} \cos x, \\
\partial_{y} u=-\partial_{x} v=-e^{-y}(-y \sin x+\sin x+x \cos x) .
\end{array}\right.
$$

From the first equation,

$$
u(x, y)=\int \partial_{x} u(x, y) d x+c(y)=-e^{-y}(y \sin x-x \cos x)+c(y) .
$$

We have

$$
\partial_{y} u=e^{-y}(y \sin x-x \cos x)-e^{-y} \sin x+c^{\prime}(y)=e^{-y}(y \sin x-x \cos x+\sin x)+c^{\prime}(y)
$$

thus $\partial_{y} u=-\partial_{x} v$ iff $c^{\prime}(y)=0$, that is $c(y)$ is constant. We conclude that

$$
u(x, y)=-e^{-y}(y \sin x-x \cos x)+c+e^{-y}(y \cos x+x \sin x) .
$$

ii) We have

$$
\begin{aligned}
f & =u+i v=-e^{-y}(y \sin x-x \cos x)+i e^{-y}(y \cos x+x \sin x) \\
& =e^{-y}(y(-\sin x+i \cos x)+x(\cos x+i \sin x)) \\
& =e^{-y}\left(i y e^{i x}+x e^{i x}\right) \\
& =e^{i x-y}(i y+x)=e^{i(x+i y)}(x+i y)=e^{i z} z .
\end{aligned}
$$

Exercise 5. Let $\vec{F}:=f \nabla f=\left(f \partial_{x} f, f \partial_{y} f\right)=:\left(F_{1}, F_{2}\right)$. According to Green formula,

$$
\oint_{\partial D} f \nabla f=\oint_{\partial D} \vec{F}=\int_{D}\left(\partial_{y} F_{1}-\partial_{x} F_{2}\right) d x d y
$$

Now, since

$$
\partial_{y} F_{1}=\partial_{y}\left(f \partial_{x} f\right)=\partial_{y} f \partial_{x} f+f \partial_{y x} f, \quad \partial_{x} F_{2}=\partial_{x}\left(f \partial_{y} f\right)=\partial_{x} f \partial_{y} f+f \partial_{x y} f
$$

we easily deduce that $\partial_{y} F_{1}-\partial_{x} F_{2} \equiv 0$ being $f \in \mathscr{C}^{2}\left(\mathbb{R}^{2}\right)$.
Exercise 6. i) We have a separable variables equation $y^{\prime}=a(t) f(y)$ where $a(t)=\frac{1}{t}$ and $f(y)=e^{y}-1$. $y \equiv C$ is a solution iff $0=\frac{1}{t}\left(e^{C}-1\right)$, iff $e^{C}=1$ that is, $C=0$. There is a unique constant solution, $y \equiv 0$.
ii) Since $y(1)=-1, y$ is not constant. Furthermore, since $a \in \mathscr{C}$ and $f \in \mathscr{C}^{1}$, the solution can be found by separating vars:

$$
y^{\prime}=\frac{e^{y}-1}{t}, \Longleftrightarrow \frac{y^{\prime}}{e^{y}-1}=\frac{1}{t}, \Longleftrightarrow \int \frac{y^{\prime}(t)}{e^{y(t)}-1} d t=\int \frac{1}{t} d t+c=\log |t|+c
$$

On the lhs

$$
\begin{aligned}
\int \frac{y^{\prime}(t)}{e^{y(t)}-1} d t & \stackrel{u=y(t)}{=} \int \frac{d u}{e^{u}-1} \stackrel{v=e^{u}}{ }, u=\log v, d u=d v / v \\
& =\log |v-1|-\log |v|=\log \left\lvert\, \frac{1}{v(v-1)} d v=\int-\frac{1}{v}+\frac{1}{v-1} d v\right. \\
& =\log \left|\frac{e^{y(t)}-1}{e^{u}}\right|
\end{aligned}
$$

Thus,

$$
\log \left|\frac{e^{y(t)}-1}{e^{y(t)}}\right|=\log \left|1-\frac{1}{e^{y(t)}}\right|=\log |t|+c
$$

By imposing the initial condition, we find

$$
c=\log (e-1)
$$

and

$$
\left|1-\frac{1}{e^{y(t)}}\right|=(e-1)|t|, \quad \Longleftrightarrow \quad 1-\frac{1}{e^{y(t)}}= \pm(e-1) t
$$

A check with the initial condition shows that the sign is - , thus

$$
1-\frac{1}{e^{y(t)}}=-(e-1) t, \quad \Longleftrightarrow \quad 1+(e-1) t=\frac{1}{e^{y(t)}}=e^{-y(t)}, \quad \Longleftrightarrow \quad y(t)=-\log (1+(e-1) t)
$$

iii) The domain of definition for the solution is

$$
1+(e-1) t>0, \quad \Longleftrightarrow \quad t>-\frac{1}{e-1}
$$

However, since at $t=0$ the solution cannot be defined (because the equation does not make sense at $t=0$ ), and the solution is defined on an interval, we conclude that the domain is $] 0,+\infty[$. We have

$$
\lim _{t \rightarrow 0+} y(t)=\log 1=0, \quad \lim _{t \rightarrow+\infty} y(t)=-\infty
$$

Exercise 7. i) Point $(0, y, 0) \in D$ iff $y^{2}=1$ and $y^{2}=1$, that is $y= \pm 1$, so $(0, \pm 1,0) \in D . D$ is the zero set of $\left(g_{1}, g_{2}\right)=\left(x^{2}+y^{2}-z^{2}-1, y^{2}+z-1\right)$. According to the Definition,

$$
\left(g_{1}, g_{2}\right) \text { is a submersion on } D \Longleftrightarrow \mathrm{rk}\left[\begin{array}{c}
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 2 y & -2 z \\
0 & 2 y & 1
\end{array}\right]=2 \text { on } D .
$$

Since this is a $2 \times 3$ matrix, its rank is $<2$ iff all $2 \times 2$ sub determinant equal 0 , or

$$
\left\{\begin{array} { l } 
{ 4 x y = 0 , } \\
{ 2 x = 0 , } \\
{ 2 y ( - 1 + 2 z ) = 0 , }
\end{array} \Longleftrightarrow \left\{\begin{array} { l } 
{ x = 0 , } \\
{ y ( 1 + 2 z ) = 0 . }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=0, \\
y=0,
\end{array} \Longleftrightarrow(0,0, z),\right.\right.\right.
$$

Now,

- $(0,0, z) \in D$ iff $-z^{2}=1$ and $z=1$, impossible;
- $\left(0, y,-\frac{1}{2}\right) \in D$ iff $y^{2}=\frac{5}{4}$ and $y^{2}=\frac{3}{2}$, impossible.

Conclusion: at no point of $D$ the rank of the matrix $\left[\begin{array}{c}\nabla g_{1} \\ \nabla g_{2}\end{array}\right]$ is less than 2 , thus $\left(g_{1}, g_{2}\right)$ is a submersion on $D$.
ii) $D$ is certainly closed being defined by equations involving continuous functions. Is it also bounded? From the second equation $y^{2}=1-z$, thus $y= \pm \sqrt{1-z}$ for $z \leqslant 1$. Plugging this into the first equation

$$
x^{2}=z^{2}-(1-z)+1=z^{2}+z=z(z+1), \Longrightarrow x= \pm \sqrt{z^{2}+z} \text { for } z \leqslant 0 \vee z \geqslant 1
$$

In particular, for $z \leqslant 0$ points

$$
\left( \pm \sqrt{z^{2}+z}, \pm \sqrt{1-z}, z\right) \in D, \forall z \leqslant 0 .
$$

These points are unbounded because

$$
\left\|\left( \pm \sqrt{z^{2}+z}, \pm \sqrt{1-z}, z\right)\right\|^{2}=z^{2}+z+(1-z)+z^{2}=2 z^{2}+1 \longrightarrow+\infty, z \longrightarrow-\infty .
$$

We conclude that $D$ is unbounded.
iii) By ii) $D$ is closed and unbounded. We have to $\min / \max \sqrt{x^{2}+y^{2}+z^{2}}$ or, equivalently, $f:=$ $x^{2}+y^{2}+z^{2}$, which is continuous on $D$ and such that $\lim _{\infty_{3}} f=+\infty$. We conclude $f$ has no max point on $D$ while it has min points. By i) and according to the Lagrange multipliers theorem, at min point we must have

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}, \quad \Longleftrightarrow \quad \text { rk }\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x & 2 y & -2 z \\
0 & 2 y & 1
\end{array}\right]<3 .
$$

This happens iff the determinant of the previous jacobian matrix equals 0 , that is

$$
8 x y(x+z)=0, \quad \Longleftrightarrow \quad x=0, \vee y=0, \vee z=-x .
$$

This leads to points $(0, y, z),(x, 0, z)$ and $(x, y,-x)$. Now,

- $(0, y, z) \in D$ iff $y^{2}-z^{2}=1$ and $y^{2}+z=1$. From these, $z^{2}+z=0$ that is, $z=0$ or $z=-1$, thus we have points $(0, \pm 1,0)$ and $(0, \pm \sqrt{2},-1)$;
- $(x, 0, z) \in D$ iff $x^{2}-z^{2}=1$ and $z=1$, that is $( \pm \sqrt{2}, 0,1)$.
- $(x, y,-x) \in D$ iff $x^{2}+y^{2}-x^{2}=1$ and $y^{2}-x=1$, that is $y^{2}=1$ and $x=0$, from which we have points $(0, \pm 1,0)$.
Conclusion: min points are among $(0, \pm 1,0),(0, \pm \sqrt{2},-1),( \pm \sqrt{2}, 0,1)$, and clearly thos at min distance to $\overrightarrow{0}$ are $(0, \pm 1,0)$.

Exercise 8. i) Figures are straightforward. $D$ is not invariant by any rotation because one part of the inequality $\left(z \geqslant x^{2}+y^{2}\right)$ is invariant by rotations around $z$-axis while the second part $\left(z \leqslant 1-y^{2}\right)$ is not. ii) We have

$$
\begin{aligned}
\lambda_{3}(D) & =\int_{D} 1 d x d y d z \stackrel{R F}{=} \int_{x^{2}+y^{2} \leqslant 1-y^{2}} \int_{x^{2}+y^{2}}^{1-y^{2}} 1 d z d x d y=\int_{x^{2}+2 y^{2} \leqslant 1}\left(1-y^{2}-\left(x^{2}+y^{2}\right)\right) d x d y \\
& =\int_{x^{2}+2 y^{2} \leqslant 1}\left(1-\left(x^{2}+2 y^{2}\right)\right) d x d y \\
& C V x=\rho \cos \stackrel{\theta}{=} \sqrt{2} y=\rho \sin \theta \\
& \int_{0 \leqslant \rho \leqslant 1,0 \leqslant \theta \leqslant 2 \pi}\left(1-\rho^{2}\right) \frac{\rho}{\sqrt{2}} d \rho d \theta \\
& \stackrel{R F}{=} \frac{2 \pi}{\sqrt{2}} \int_{0}^{1} \rho-\rho^{3} d \rho=\sqrt{2} \pi\left(\left[\frac{\rho^{2}}{2}\right]_{\rho=0}^{\rho=1}-\left[\frac{\rho^{4}}{4}\right]_{\rho=0}^{\rho=1}\right)=\frac{\sqrt{2} \pi}{4} .
\end{aligned}
$$

Exercise 9. i) $\vec{F}$ is irrotational on $D$ iff

$$
\partial_{y} \frac{a x^{2}+b y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \equiv \partial_{x} \frac{x y}{\left(x^{2}+y^{2}\right)^{2}} \text { on } D .
$$

By computing derivatives, the previous is equivalent to

$$
\frac{2 b y\left(x^{2}+y^{2}\right)-\left(a x^{2}+b y^{2}\right) 4 y}{\left(x^{2}+y^{2}\right)^{3}}=\frac{y\left(x^{2}+y^{2}\right)-4 x^{2} y}{\left(x^{2}+y^{2}\right)^{3}}
$$

that is, iff

$$
(2 b-4 a) y x^{2}-2 b y^{3}=-3 x^{2} y+y^{3}, \quad \Longleftrightarrow \quad 2 b=-1,-1-4 a=-3, \quad \Longleftrightarrow \quad b=-\frac{1}{2}, a=\frac{1}{2} .
$$

ii) To be conservative, $\vec{F}$ must be irrotational, hence, necessarily, $a=\frac{1}{2}=-b$. Thus,

$$
\vec{F}=\left(\frac{1}{2} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \frac{x y}{\left(x^{2}+y^{2}\right)^{2}}\right)=\nabla f, \Longleftrightarrow\left\{\begin{array}{l}
\partial_{x} f=\frac{1}{2} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \\
\partial_{y} f=\frac{x y}{\left(x^{2}+y^{2}\right)^{2}} .
\end{array}\right.
$$

Looking at the second equation,
$f(x, y)=\int \frac{x y}{\left(x^{2}+y^{2}\right)^{2}} d y+c(x)=\frac{x}{2} \int 2 y\left(x^{2}+y^{2}\right)^{-2} d y+c(x)=\frac{x}{2} \frac{\left(x^{2}+y^{2}\right)^{-1}}{-1}+c(x)=-\frac{1}{2\left(x^{2}+y^{2}\right)}+c(x)$.

Now, by imposing also the first equation we get

$$
c^{\prime}(x)=0, \quad \Longleftrightarrow c(x) \equiv \text { constant } .
$$

Thus, all the potentials of $\vec{F}$ are

$$
f(x, y)=-\frac{1}{2\left(x^{2}+y^{2}\right)}+c .
$$

Exercise 10. About the CR equations see the course notes. Assume that $f=u+i v$ is $\mathbb{C}$ differentiable on $\mathbb{C}$. Then, $u, v$ are $\mathbb{R}$ differentiable and the CR eqns hold,

$$
\left\{\begin{array}{l}
\partial_{x} u=\partial_{y} v, \\
\partial_{y} u=-\partial_{x} v .
\end{array}\right.
$$

If also $\bar{f}=u-i v=u+i(-v)$ is $\mathbb{C}$ differentiable, $u,-v$ fulfill the CR eqns,

$$
\left\{\begin{array}{l}
\partial_{x} u=\partial_{y}(-v)=-\partial_{y} v, \\
\partial_{y} u=-\partial_{x}(-v)=+\partial_{x} v .
\end{array}\right.
$$

But then, combining the two CR eqns, we get

$$
\partial_{x} u=-\partial_{y} v=-\partial_{x} u, \Longrightarrow 2 \partial_{x} u \equiv 0,
$$

and, similarly, $\partial_{y} u \equiv 0$. From this $\nabla u \equiv 0$ hence $u$ is constant. Similar conclusion holds for $v$. We conclude that both $u$ and $v$ must be constant, hence also $f$ must be constant.

Alternative solution: you may remind that we have seen that if a $\mathbb{C}$ differentiable function is real (or imaginary) valued, then, necessarily, the function must be constant (this is again a consequence of the CR eqns). Now, if both $f$ and $\bar{f}$ are $\mathbb{C}$ differentiable, also $f+\bar{f}=2 u$ is $\mathbb{C}$ differentiable. But since $2 u$ is real valued, $f+\bar{f}$ (hence $u$ ) must be constant. Same conclusion for $f-\bar{f}=i 2 v$, hence $v$ is constant.

Exercise 11. i) The general integral is

$$
y(t)=c_{1} w_{1}(t)+c_{2} w_{2}(t)+u(t)
$$

where $\left(w_{1}, w_{2}\right)$ is a fundamental system of solutions for the homogeneous equation $y^{\prime \prime}-2 y^{\prime}+y=0$ and $u$ is a particular solution of the equation. The characteristic equation is

$$
\lambda^{2}-2 \lambda+1=0, \quad \Longleftrightarrow(\lambda-1)^{2}=0, \quad \Longleftrightarrow \lambda_{1,2}=1 .
$$

Therefore, the fundamental system of solutions is $w_{1}=e^{t}, w_{2}=t e^{t}$. To compute the particular solution $u$ we apply the Lagrange formula

$$
u(t)=\left(-\int \frac{w_{2}}{W} f d t\right) w_{1}+\left(\int \frac{w_{1}}{W} f d t\right) w_{2}
$$

where $W$ is the wronskian

$$
W=\operatorname{det}\left[\begin{array}{ll}
w_{1} & w_{2} \\
w_{1}^{\prime} & w_{2}^{\prime}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & (t+1) e^{t}
\end{array}\right]=(t+1) e^{2 t}-t e^{2 t}=e^{2 t},
$$

and $f=f(t)=e^{2 t}$. Thus

$$
u(t)=\left(-\int \frac{t e^{t}}{e^{2 t}} e^{2 t} d t\right) e^{t}+\left(\int \frac{e^{t}}{e^{2 t}} e^{2 t} d t\right)\left(t e^{t}\right)=-\left(t e^{t}-\int e^{t} d t\right) e^{t}+e^{t} t e^{t}=e^{2 t}
$$

Conclusion: the general integral is

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}+e^{2 t}, c_{1}, c_{2} \in \mathbb{R} .
$$

ii) To solve the Cauchy problem we impose the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$ to the general integral. First notice that

$$
y^{\prime}=c_{1} e^{t}+c_{2}(t+1) e^{t}+2 e^{2 t}
$$

thus

$$
\left\{\begin{array} { l } 
{ y ( 0 ) = 1 , } \\
{ y ^ { \prime } ( 0 ) = 0 , }
\end{array} \Longleftrightarrow \left\{\begin{array} { l } 
{ c _ { 1 } + 1 = 1 , } \\
{ c _ { 1 } + c _ { 2 } + 2 = 0 , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
c_{1}=0, \\
c_{2}=-2,
\end{array}\right.\right.\right.
$$

and the solution is $y(t)=-2 t e^{t}+e^{2 t}$.
iii) Again, we impose the passage conditions

$$
\left\{\begin{array} { l } 
{ c _ { 1 } + 1 = 0 , } \\
{ c _ { 1 } e + c _ { 2 } e + e ^ { 2 } = a , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
c_{1}=-1, \\
c_{2}=\frac{a-e^{2}+e}{e} .
\end{array}\right.\right.
$$

We conclude that: for every $a \in \mathbb{R}$ there exists a unique solution to the proposed problem.
Exercise 12. i) Clearly $f(x, 0)=x^{6}-x^{4} \longrightarrow+\infty$ for $|x| \longrightarrow+\infty$. So, if a limit exists it must be $=+\infty$. We check this changing coordinates and using polar coords:

$$
f(x, y)=\rho^{6}-(\rho \cos \theta)^{4}+(\rho \sin \theta)^{4} \geqslant \rho^{6}-2 \rho^{4} \longrightarrow+\infty, \text { if } \rho=\|(x, y)\| \longrightarrow+\infty .
$$

ii) By i) and a consequence of Weierstrass theorem, $f$ has global minimum on $\mathbb{R}^{2}$ but not any global maximum. Since every point of $\mathbb{R}^{2}$ lies in its interior, according to Fermat theorem (clearly $\partial_{x} f=6 x\left(x^{2}+y^{2}\right)^{2}-4 x^{3}$ and $\partial_{y} f=6 y\left(x^{2}+y^{2}\right) 2+4 y^{3}$ are both continuous on $\mathbb{R}^{2}$, hence $f$ is differentiable on $\mathbb{R}^{2}$ according to the differentiability test), at min we have $\nabla f=\overrightarrow{0}$. Now,

$$
\nabla f=\overrightarrow{0}, \Longleftrightarrow\left\{\begin{array} { l } 
{ 6 x ( x ^ { 2 } + y ^ { 2 } ) ^ { 2 } - 4 x ^ { 3 } = 0 , } \\
{ 6 y ( x ^ { 2 } + y ^ { 2 } ) ^ { 2 } + 4 y ^ { 3 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x\left(6\left(x^{2}+y^{2}\right)^{2}-4 x^{2}\right)=0, \\
y\left(6\left(x^{2}+y^{2}\right)^{2}+4 y^{2}\right)=0,
\end{array}\right.\right.
$$

Now, looking at second equation, we see that either $y=0$ or $6\left(x^{2}+y^{2}\right)^{2}+4 y^{2}=0$. In the second case we obtain trivially $x=0$ and $y=0$, thus the point $(0,0)$. Plugging $y=0$ into the first equation we get

$$
x\left(6 x^{4}-4 x^{2}\right)=0, \Longleftrightarrow x^{3}\left(3 x^{2}-2\right)=0, \quad \Longleftrightarrow \quad x=0, \vee x= \pm \sqrt{\frac{2}{3}} .
$$

Thus we have again $(0,0)$ and two more points $\left( \pm \sqrt{\frac{2}{3}}, 0\right)$. Since $f(0,0)=0$ while

$$
f\left( \pm \sqrt{\frac{2}{3}}, 0\right)=\frac{8}{27}-\frac{4}{9}=-\frac{28}{27}<f(0,0)=0
$$

we conclude that $\left( \pm \sqrt{\frac{2}{3}}, 0\right)$ are global minimums. Finally, since $\mathbb{R}^{2}$ is connected,

$$
f\left(\mathbb{R}^{2}\right)=\left[-\frac{28}{27},+\infty[\right.
$$

Exercise 13. ii)

$$
\begin{aligned}
\lambda_{3}(D) & =\int_{x^{2}+2 y^{2} \leqslant z \leqslant 4-3\left(x^{2}+2 y^{2}\right)} 1 d x d y d z \\
& \stackrel{R F}{=} \int_{x^{2}+2 y^{2} \leqslant 4-3\left(x^{2}+2 y^{2}\right)} \int_{x^{2}+2 y^{2}}^{4-3\left(x^{2}+2 y^{2}\right)} 1 d z d x d y \\
& =\int_{x^{2}+2 y^{2} \leqslant 4-3\left(x^{2}+2 y^{2}\right)} 4\left(1-\left(x^{2}+2 y^{2}\right)\right) d x d y
\end{aligned}
$$

Noticed that $x^{2}+2 y^{2} \leqslant 4-3\left(x^{2}+2 y^{2}\right)$ iff $x^{2}+2 y^{2} \leqslant 1$, we have

$$
\lambda_{3}(D)=\int_{x^{2}+2 y^{2} \leqslant 1} 4\left(1-\left(x^{2}+2 y^{2}\right)\right) d x d y
$$

Changing variables to adapted polar coordinates

$$
x=\rho \cos \theta, \quad \sqrt{2} y=\rho \sin \theta
$$

we have

$$
\lambda_{3}(D)=\int_{0 \leqslant \rho \leqslant 1,0 \leqslant \theta \leqslant 2 \pi} 4\left(1-\rho^{2}\right) \frac{\rho}{\sqrt{2}} d \rho d \theta \stackrel{R F}{=} \frac{8 \pi}{\sqrt{2}} \int_{0}^{1}\left(\rho-\rho^{3}\right) d \rho=\frac{8 \pi}{\sqrt{2}}\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{4 \pi}{\sqrt{2}}
$$

Exercise 14. i) Let $u=x^{2}+y^{2}$. From CR equations, $v=v(x, y)$ is such that $f=u+i v$ is $\mathbb{C}$-differentiable iff $u, v$ are $\mathbb{R}$-differentiable and CR equations hold,

$$
\left\{\begin{array}{l}
\partial_{x} u=\partial_{y} v \\
\partial_{y} u=-\partial_{x} v
\end{array}\right.
$$

Clearly $u$ is $\mathbb{R}$-differentiable. Thus we seek for $v \mathbb{R}$-differentiable such that

$$
\left\{\begin{array}{l}
\partial_{x} v=-\partial_{y} u=-2 y \\
\partial_{y} v=\partial_{x} u=2 x
\end{array}\right.
$$

From the first equation $v(x, y)=-\int 2 y d x+c(y)=-2 x y+c(y)$. Plugging this into the second equation we have $\partial_{y} v=-2 x+c^{\prime}(y)=2 x$, that is $c^{\prime}(y)=4 x$, which is impossible since $c$ does not depend on $y$. We conclude that such $v$ does not exist.
ii) Since there is no $v$ such that $f=u+i v$ is $\mathbb{C}$-differentiable, there is no $f$ to be found.

Exercise 15. See notes for the statement. We may formally set the optimization problem in the following way. The set $y=f(x)$ is also $f(x)-y=0$. Setting $g(x, y):=f(x)-y$ we see that $g$ is a submersion on $\{g=0\}$. Indeed $\nabla g=\left(\partial_{x} g, \partial_{y} g\right)=\left(f^{\prime}(x),-1\right) \neq 0$, whatever is $x$. Let now

$$
d(x, y):=(x-a)^{2}+(y-b)^{2}
$$

the square of distance from $(a, b)$ to $(x, y)$. At minimum $(x, y)$ on the curve, that is $y=f(x)$, according to Lagrange theorem we have

$$
\nabla d=\lambda \nabla g=\lambda\left(f^{\prime}(x),-1\right)
$$

Since

$$
\nabla d=(2(x-a), 2(y-b))=2(x-a, y-b)=2 Q-P,
$$

we have

$$
Q-P=\frac{\lambda}{2}\left(f^{\prime}(x),-1\right) .
$$

Now, since the tangent direction to $y=f(x)$ at point $(x, f(x))$ is $\left(1, f^{\prime}(x)\right)$, and clearly $\left(f^{\prime}(x),-1\right) \perp$ $\left(1, f^{\prime}(x)\right)$, we have that

$$
Q-P\left\|\left(f^{\prime}(x),-1\right) \perp\left(1, f^{\prime}(x)\right)\right\| \text { tangent to } f
$$

we obtain the conclusion.
Exercise 16. i) The equation can be written as

$$
y^{\prime}=\frac{t}{1+t^{2}} \frac{1-y^{2}}{y}=: a(t) f(y),
$$

with obvious definition of $a$ and $f . y \equiv C$ is a solution iff

$$
0=y^{\prime}=\frac{t}{1+t^{2}} \frac{1-C^{2}}{C}, \Longleftrightarrow 1-C^{2}=0, \Longleftrightarrow C= \pm 1 .
$$

ii) Since $y(0)=2, y$ cannot be constant (otherwise: $y \equiv \pm 1$ thus, in particular, $y(0)= \pm 1$ but $y(0)=2$ ). Therefore, $y$ can be determined by separation of variables:

$$
\frac{y}{1-y^{2}} y^{\prime}=\frac{t}{1+t^{2}}, \Longleftrightarrow \int \frac{y}{1-y^{2}} y^{\prime} d t=\int \frac{t}{1+t^{2}} d t+c=\frac{1}{2} \log \left(1+t^{2}\right)+c .
$$

Now,

$$
\int \frac{y}{1-y^{2}} y^{\prime} d t \stackrel{u=y(t), d u=y^{\prime}(t) d t}{=} \int \frac{u}{1-u^{2}} d u=-\frac{1}{2} \log \left|1-u^{2}\right|=-\frac{1}{2} \log \left|1-y(t)^{2}\right|,
$$

hence

$$
-\frac{1}{2} \log \left|1-y(t)^{2}\right|=\frac{1}{2} \log \left(1+t^{2}\right)+c, \quad \Longleftrightarrow \log \left|1-y(t)^{2}\right|=-\log \left(1+t^{2}\right)+c
$$

(we relabeled $2 c$ by $c$ ). Imposing $y(0)=2$,

$$
\log 3=-\log 1+c, \quad \Longleftrightarrow c=\log 3 .
$$

Therefore

$$
\left|1-y(t)^{2}\right|=\frac{3}{1+t^{2}},
$$

that is

$$
1-y(t)^{2}= \pm \frac{3}{1+t^{2}}
$$

When $t=0 \mathrm{lhs}$ is -3 , thus sign is - and

$$
y(t)^{2}=1+\frac{3}{1+t^{2}}, \Longleftrightarrow y(t)= \pm \sqrt{1+\frac{3}{1+t^{2}}},
$$

and, again by imposing $y(0)=2$, we see that sign is + .
Exercise 17. i) We have $(x, y, 0) \in \Gamma$ iff $x^{2}+y^{2}=1$ and $x^{2}=1$, thus $x= \pm 1$ and $y^{2}=0$, hence $( \pm 1,0,0) \in \Gamma$. Now, $\Gamma=\left\{g_{1}=0, g_{2}=0\right\}$, where $g_{1}=x^{2}+y^{2}-1$, and $g_{2}=x^{2}+z^{2}-x z-1$. Clearly $g_{1}, g_{2} \in \mathscr{C}^{1}$ and $\left(g_{1}, g_{2}\right)$ is a submersion on $\Gamma$ iff

$$
\operatorname{rank}\left[\begin{array}{c}
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
2 x & 2 y & 0 \\
2 x-z & 0 & 2 z-x
\end{array}\right]=2, \forall(x, y, z) \in \Gamma
$$

This is false iff all $2 \times 2$ submatrices have determinant $=0$, that is

$$
\left\{\begin{array}{l}
2 y(2 x-z)=0 \\
2 x(2 z-x)=0 \\
2 y(2 z-x)=0
\end{array}\right.
$$

Working on the first equation, we have the alternatives $y=0$ or $2 x-z=0$. In the first case, the system reduces to $x(2 z-x)=0$ that is $x=0$ (points $(0,0, z)$ ) or $x=2 z$ (points $(2 z, 0, z)$ ). In the second case, the system reduces to

$$
\left\{\begin{array}{l}
z=2 x \\
3 x^{2}=0 \\
3 y x=0
\end{array} \Longleftrightarrow(0, y, 0)\right.
$$

Thus, rank is less than 2 at points $(0,0, z),(2 z, 0, z)$ and $(0, y, 0)$. Now:

- $(0,0, z) \in \Gamma$ iff $0=1$ (first condition), impossible;
- $(2 z, 0, z) \in \Gamma$ iff $4 z^{2}=1$ and $5 z^{2}=2 z^{2}+1$, that is $z^{2}=\frac{1}{4}$ and $z^{2}=\frac{1}{3}$ which are impossible together.
- $(0, y, 0) \in \Gamma$ iff $y^{2}=1$ and $0=1$, which is, again, impossible.

Conclusion: none of points where rank is $; 2$ belong to $\Gamma$, this meaning that rank $=2$ on $\Gamma$, hence $\left(g_{1}, g_{2}\right)$ is a submersion on $\Gamma$.
ii) Clearly $\Gamma$ is closed because defined by equations involving continuous functions. Boundedness: from first equation we deduce $x^{2}, y^{2} \leqslant 1$. From second equation, recalling that $a b \leqslant \frac{a^{2}+b^{2}}{2}$ we have

$$
x^{2}+z^{2}=x z+1 \leqslant \frac{x^{2}+z^{2}}{2}+1, \Longrightarrow \frac{x^{2}+z^{2}}{2} \leqslant 1
$$

from which, in particular, $z^{2} \leqslant 2$. Therefore $\|(x, y, z)\|=\sqrt{x^{2}+y^{2}+z^{2}} \leqslant \sqrt{1+1+2}=\sqrt{4}=2$, for every $(x, y, z) \in \Gamma$. Conclusion: $\Gamma$ is bounded, hence compact.
iii) We have to minimize/maximize $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ or, equivalently, $f(x, y, z)=x^{2}+y^{2}+z^{2}$. By ii), $\Gamma$ is compact and obviously $f \in \mathscr{C}$, thus existence of min and max for $f$ is ensured by Weierstrass' theorem. To determine min/max points we apply Lagrange's thm. According to i), this thm can be applied on $\Gamma$. We deduce that, at $\mathrm{min} / \mathrm{max}$ points $(x, y, z) \in \Gamma$,

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}, \quad \Longleftrightarrow \quad \operatorname{rank}\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x & 2 y & 0 \\
2 x-z & 0 & 2 z-x
\end{array}\right]=2
$$

or, equivalently, the determinant of this last matrix equals 0 . We obtain

$$
2 z \cdot(-2 y(2 x-z))=0, \Longleftrightarrow y z(2 x-z)=0, \Longleftrightarrow y=0, \vee z=0, \vee z=2 x .
$$

Thus possible min/max points are among points $(x, 0, z),(x, y, 0)$ and $(x, y, 2 x)$. Now,

- $(x, 0, z) \in \Gamma$ iff $x^{2}=1$ and $x^{2}+z^{2}=x z+1$, or, equivalently, $x^{2}=1$ and $z^{2}=x z+1$. For $x=1$ we get $z^{2}=z+1$, that is $z=\frac{1 \pm \sqrt{5}}{2}$, namely points $\left(1,0, \frac{1 \pm \sqrt{5}}{2}\right)$. For $x=-1$ we get $z^{2}=-z+1$, that is $z=\frac{-1 \pm \sqrt{5}}{2}$, namely points $\left(-1,0, \frac{-1 \pm \sqrt{5}}{2}\right)$.
- $(x, y, 0) \in \Gamma$ iff $x^{2}+y^{2}=1$ and $x^{2}=1$, that is $x= \pm 1$ and $y^{2}=0$, namely points $( \pm 1,0,0)$.
- $(x, y, 2 x) \in \Gamma$ iff $x^{2}+y^{2}=1$ and $x^{2}+4 x^{2}=2 x^{2}+1$, from which $x^{2}=\frac{1}{3}, x= \pm \frac{1}{\sqrt{3}}$ and $y^{2}=\frac{2}{3}$, $y= \pm \sqrt{\frac{2}{3}}$, thus we get points $\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}, \frac{2}{\sqrt{3}}\right)$ and $\left(-\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}},-\frac{2}{\sqrt{3}}\right)$ (4 points).
We have
- $f\left(1,0, \frac{1 \pm \sqrt{5}}{2}\right)=1+\left(\frac{1 \pm \sqrt{5}}{2}\right)^{2}=\frac{10 \pm 2 \sqrt{5}}{4}, f\left(-1,0, \frac{-1 \pm \sqrt{5}}{2}\right)=1+\left(\frac{-1 \pm \sqrt{5}}{2}\right)^{2}=\frac{10 \pm 2 \sqrt{5}}{4} \approx ; \mathrm{f}( \pm 1,0,0)=1 ;$
- $f\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}, \frac{2}{\sqrt{3}}\right)=\frac{1}{3}+\frac{2}{3}+\frac{4}{3}=\frac{7}{3}$ and $f\left(-\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}},-\frac{2}{\sqrt{3}}\right)=\frac{1}{3}+\frac{2}{3}+\frac{4}{3}=\frac{7}{3}$.

From this we see that $\left(1,0, \frac{1+\sqrt{5}}{2}\right)$ and $\left(-1,0, \frac{-1-\sqrt{5}}{2}\right)$ are maximum points while $( \pm 1,0,0)$ are min points.

Exercise 18. ii) $D$ is closed (because defined by large inequalities involving continuous functions) and bounded (the root imposes $x^{2}+y^{2} \leqslant 1$ and, consequently, $0 \leqslant 1-\left(x^{2}+y^{2}\right) \leqslant z \leqslant \sqrt{1-\left(x^{2}+y^{2}\right)} \leqslant \sqrt{1}$, that is $0 \leqslant z \leqslant 1$ ). Thus $D$ is compact, hence $1_{D}$ is integrable on $D$. Furthermore, noticed that, calling $\rho^{2}=x^{2}+y^{2}$,

$$
1-\rho^{2} \leqslant \sqrt{1-\rho^{2}}, \quad \Longleftrightarrow \quad \sqrt{1-\rho^{2}} \leqslant 1,
$$

which is always true, thus $1-\left(x^{2}+y^{2}\right) \leqslant \sqrt{1-\left(x^{2}+y^{2}\right)}$ always when defined. Then

$$
\begin{aligned}
\text { Vol } D & =\int_{D} 1 d x d y d z \stackrel{R F}{=} \int_{x^{2}+y^{2} \leqslant 1} \int_{1-\left(x^{2}+y^{2}\right)}^{\sqrt{1-\left(x^{2}+y^{2}\right)}} 1 d z d x d y \\
& =\int_{x^{2}+y^{2} \leqslant 1}\left(\sqrt{1-\left(x^{2}+y^{2}\right)}-\left(1-\left(x^{2}+y^{2}\right)\right)\right) d x d y \\
& \text { pol. coords } \int_{0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant \rho \leqslant 1}\left(\sqrt{1-\rho^{2}}-1+\rho^{2}\right) \rho d \rho d \theta \\
& \stackrel{R F}{=} 2 \pi \int_{0}^{1} \rho\left(1-\rho^{2}\right)^{1 / 2}-\rho+\rho^{3} d \rho=2 \pi\left[\left[-\frac{1}{3}\left(1-\rho^{2}\right)^{3 / 2}\right]_{\rho=0}^{\rho=1}-\left[\frac{\rho^{2}}{2}\right]_{\rho=0}^{\rho=1}+\left[\frac{\rho^{4}}{4}\right]_{\rho=0}^{\rho=1}\right] \\
& =2 \pi\left[+\frac{1}{3}-\frac{1}{2}+\frac{1}{4}\right]=\frac{\pi}{6} . \quad
\end{aligned}
$$

Exercise 19. i) In order $f=u+i v$ is holomorphic on $\mathbb{C}$ we need that $u, v \in \mathscr{C}^{1}$ (true, $u$ and $v$ are polynomials) and they fulfill the CR equations:

$$
\left\{\begin{array} { l } 
{ \partial _ { x } u = \partial _ { y } v , } \\
{ \partial _ { y } u = - \partial _ { x } v , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
2 a x+b y=x, \\
b x+2 c y=-y,
\end{array} \quad \forall(x, y) \in \mathbb{R}^{2} ., \Longleftrightarrow\left\{\begin{array}{l}
2 a=1, b=0 \\
b=0,2 c=-1
\end{array}\right.\right.\right.
$$

Thus,

$$
u=\frac{1}{2} x^{2}-\frac{1}{2} y^{2}, \quad v=x y,
$$

and $f=u+i v$ is holomorphic on $\mathbb{C}$.
ii) Notice that

$$
f=u+i v=\frac{1}{2} x^{2}-\frac{1}{2} y^{2}+i x y=\frac{1}{2}\left(x^{2}-y^{2}+i 2 x y\right)=\frac{1}{2}(x+i y)^{2} \equiv \frac{z^{2}}{2}, z \in \mathbb{C} .
$$

Exercise 20. Clearly $f \in \mathscr{C}\left(\mathbb{R}^{d}\right)$ and moreover $f \geqslant 0$ (trivial) and

$$
\lim _{\vec{x} \rightarrow \infty_{d}} f(\vec{x})=+\infty .
$$

Just notice that $f(\vec{x}) \geqslant\left\|\vec{x}-\vec{a}_{1}\right\|^{2} \longrightarrow+\infty$ when $\vec{x} \longrightarrow \infty_{d}$. Thus $f$ cannot have a maximum but it has a minimum according to Weierstrass' thm. Now, $f$ is differentiable on $\mathbb{R}^{d}$,

$$
\nabla f=\sum_{j=1}^{N} \nabla\left\|\vec{x}-\vec{a}_{j}\right\|^{2}
$$

and

$$
\nabla\left\|\vec{x}-\vec{a}_{j}\right\|^{2}=\left(\partial_{1}\left\|\vec{x}-\vec{a}_{j}\right\|^{2}, \ldots, \partial_{d}\left\|\vec{x}-\vec{a}_{j}\right\|^{2}\right),
$$

so, writing

$$
\left\|\vec{x}-\vec{a}_{j}\right\|^{2}=\sum_{k=1}^{d}\left(x_{k}-a_{j, k}\right)^{2}, \Longrightarrow \partial_{i}\left\|\vec{x}-\vec{a}_{j}\right\|^{2}=\partial_{i} \sum_{k=1}^{d}\left(x_{k}-a_{j, k}\right)^{2}=2\left(x_{i}-a_{j, i}\right),
$$

we deduce

$$
\nabla\left\|\vec{x}-\vec{a}_{j}\right\|^{2}=\left(2\left(x_{1}-a_{j, 1}\right), 2\left(x_{2}-a_{j, 2}, \ldots, 2\left(x_{d}-a_{j, d}\right)\right)=2\left(\vec{x}-\vec{a}_{j}\right) .\right.
$$

Therefore, $\nabla f \in \mathscr{C}$ and $f$ is differentiable. According to Fermat thm, at min point we must have

$$
\nabla f=\overrightarrow{0}, \Longleftrightarrow \sum_{j=1}^{N} 2\left(\vec{x}-\vec{a}_{j}\right)=0, \Longleftrightarrow N \vec{x}-\sum_{j=1}^{N} \vec{a}_{j}=\overrightarrow{0}, \quad \Longleftrightarrow \quad \vec{x}=\frac{1}{N} \sum_{j=1}^{N} \vec{a}_{j}
$$

Exercise 21. i) $y \equiv C$ is a solution iff $0=C \log C$, from which $C>0$ (to be $\log C$ well defined), thus $\log C=0$, that is $C=1$.
ii) If $y(0)=1$, then $y(t) \equiv 1$ (constant solution. For $a \neq 1$ (but $a>0$ because of the equation), solution is non constant and it can be determined by separation of variables:

$$
y=y \log y, \quad \Longleftrightarrow \frac{y^{\prime}}{y \log y}=1, \quad \Longleftrightarrow \int \frac{y^{\prime}}{y \log y} d t=t+c .
$$

Since

$$
\int \frac{y^{\prime}}{y \log y} d t \stackrel{u=y(t), d u=y^{\prime}(t) d t}{=} \int \frac{1}{u \log u} d u=\int \frac{(\log u)^{\prime}}{\log u} d u=\log |\log u|=\log |\log y(t)| .
$$

Therefore,

$$
\log |\log y(t)|=t+c .
$$

By imposing $y(0)=a$ we have $c=\log |\log a|$, hence

$$
|\log y(t)|=|\log a| e^{t}, \Longleftrightarrow \log y(t)= \pm(\log a) e^{t} .
$$

Because of the initial condition we have $\log y(t)=(\log a) e^{t}$, hence

$$
y(t)=e^{(\log a) e^{t}} .
$$

iii) We have $\lim _{t \rightarrow+\infty} y(t)=0$ iff $\log a<0$, that is $a<1$.

Exercise 22. i) Let $g_{1}:=x^{2}-y^{2}-z^{2}$ and $g_{2}:=x^{2}+y^{2}-x y-1$. Then, $\vec{g}=\left(g_{1}, g_{2}\right)$ is a submersion on $D$ iff $\operatorname{rk} \vec{g}^{\prime}(x, y, z)=2$ for all $(x, y, z) \in D$. Now,
rk $\vec{g}^{\prime}(x, y, z)=\mathrm{rk}\left[\begin{array}{c}\nabla g_{1} \\ \nabla g_{2}\end{array}\right]=\mathrm{rk}\left[\begin{array}{ccc}2 x & -2 y & -2 z \\ 2 x-y & 2 y-x & 0\end{array}\right]<2, \Longleftrightarrow\left\{\begin{array}{l}2 x(2 y-x)+2 y(2 x-y)=0, \\ 2 z(2 x-y)=0, \\ 2 z(2 y-x)=0 .\end{array}\right.$
Simplifying, we get the system

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-4 x y=0, \\
z(2 x-y)=0, \\
z(2 y-x)=0 .
\end{array}\right.
$$

Choosing the second equation, we have the alternative $z=0$ or $2 x-y=0$. In the first case the system reduces to

$$
\left\{\begin{array}{l}
z=0 \\
x^{2}+y^{2}-4 x y=0
\end{array}\right.
$$

These points belong to $D$ iff

$$
\left\{\begin{array} { l } 
{ x ^ { 2 } = y ^ { 2 } , } \\
{ 4 x y = x y + 1 , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y= \pm x, \\
3 x y=1 .
\end{array}\right.\right.
$$

However, since $x^{2}+y^{2}=4 x y$ implies that, for $y= \pm x$, that $x=0=y$, it is impossible that $3 x y=1$, thus no solutions are in $D$.

In the second case, namely, $z \neq 0$ and $2 x-y=0$ or $y=2 x$, condition $\mathrm{rk} \vec{g}^{\prime}(x, y, z)<2$ reduces to

$$
\left\{\begin{array}{l}
y-2 x \\
x(2 y-x)=0 \\
2 y-x=0
\end{array}\right.
$$

we easily get $x=y=0$, that is a point of type $(0,0, z)$. Now,

$$
(0,0, z) \in D, \Longleftrightarrow\left\{\begin{array}{l}
z=0 \\
0=1
\end{array}\right.
$$

clearly impossible. Conclusion: rank of $\vec{g}^{\prime}(x, y, z)$ is never less than 2 on $D$, that is $\vec{g}$ is a submersion on D.
ii) $D$ is clearly closed being defined by equalities involving continuous functions. To determine whether $D$ is bounded or less, we look first at constraint $x^{2}+y^{2}=x y+1$. Writing $x=\rho \cos \theta$ and $y=\rho \sin \theta$, this reads as

$$
\rho^{2}=\rho^{2} \cos \theta \sin \theta+1=\frac{\rho^{2}}{2} \sin (2 \theta)+1, \leqslant \frac{\rho^{2}}{2}+1, \Longrightarrow \frac{\rho^{2}}{2} \leqslant 1, \Longrightarrow x^{2}+y^{2} \leqslant 2, \forall(x, y, z) \in D .
$$

But then, by the first equation,

$$
z^{2}=x^{2}-y^{2} \leqslant x^{2} \leqslant x^{2}+y^{2} \leqslant 2, \Longrightarrow x^{2}+y^{2}+z^{2} \leqslant 4, \Longrightarrow\|(x, y, z)\| \leqslant 2, \forall(x, y, z) \in D .
$$

This means that $D$ is bounded, hence compact.
iii) We have to miunimize/maximize $f(x, y, z)=\|(x, y, z)\|$ or, which is the same, $f(x, y, z)=$ $\|(x, y, z)\|^{2}=x^{2}+y^{2}+z^{2}$. The existence of min and max is ensured by the Weierstrass theorem being $D$ compact by ii).

To determine min/max points, we apply Lagrange multipliers theorem. By i), assumptions of this theorem are verified. Thus, at min/max point $(x, y, z) \in D$ we must have

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}, \quad \Longleftrightarrow \quad \text { rk }\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]<3, \quad \Longleftrightarrow \quad \operatorname{det}\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=0 .
$$

Now,

$$
0=\operatorname{det}\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x & -2 y & -2 z \\
2 x-y & 2 y-x & 0
\end{array}\right]=-(2 y-z)(-8 x z)=8 x z(2 y-z),
$$

iff $x=0$, or $z=0$ or $2 y-z=0$. Thus, we have points $(0, y, z),(x, y, 0)$ and $(x, y, 2 y)$. Now:

- $(0, y, z) \in D$ iff $0=y^{2}+z^{2}$ and $y^{2}=1$, and of course this is impossible.
- $(x, y, 0) \in D$ iff $x^{2}=y^{2}$ and $x^{2}+y^{2}=x y+1$. From the first we have $y= \pm x$. For $y=x$, second condition becomes $2 x^{2}=x^{2}=1$, thus $x^{2}=1$, so $x= \pm 1$ and we have points $( \pm 1, \pm 1,0)$ (same sign). For $y=-x$, second condition becomes $2 x^{2}=-x^{2}+1$, that is $x^{2}=\frac{1}{3}$, that is $x= \pm \frac{1}{\sqrt{3}}$, from which we have points $\left( \pm \frac{1}{\sqrt{3}}, \mp \frac{1}{\sqrt{3}}, 0\right)$ (opposite sign).
- $(x, y, 2 y) \in D$ iff $x^{2}=y^{2}+4 y^{2}=5 y^{2}$ and $x^{2}+y^{2}=x y+1$. From first equation we get $x= \pm \sqrt{5} y$. In the case $x=\sqrt{5} y$, from second eqn we have $5 y^{2}+y^{2}=\sqrt{5} y^{2}+1$, that is $(6-\sqrt{5}) y^{2}=1$, that is $y= \pm \frac{1}{\sqrt{6-\sqrt{5}}}$, this yielding to points $\left( \pm \frac{\sqrt{5}}{\sqrt{6-\sqrt{5}}}, \pm \frac{1}{\sqrt{6-\sqrt{5}}}, 0\right)$ (same sign). In the case $x=-\sqrt{5} y$,
second condition yields to $5 y^{2}+y^{2}=-\sqrt{5} y^{1}$, that is $y^{2}=\frac{1}{5+\sqrt{5}}$, or $y= \pm \frac{1}{\sqrt{5+\sqrt{5}}}$, from which we get points $\left(\mp \frac{\sqrt{5}}{\sqrt{5+\sqrt{5}}}, \pm \frac{1}{\sqrt{5+\sqrt{5}}}, 0\right)$ (opposite sign).
Previous analysis figured out possible min/max points. To decide which are min and which max it suffices to compute $f$ at these points. We have:
- $f( \pm 1, \pm 1,0)=2$;
- $f\left( \pm \frac{1}{\sqrt{3}}, \mp \frac{1}{\sqrt{3}}, 0\right)=\frac{2}{3}=0, \overline{6}$;
- $f\left( \pm \frac{\sqrt{5}}{\sqrt{6-\sqrt{5}}}, \pm \frac{1}{\sqrt{6-\sqrt{5}}}, 0\right)=\frac{6}{6-\sqrt{5}} \approx 1,59 \ldots$
- $f\left(\mp \frac{\sqrt{5}}{\sqrt{5+\sqrt{5}}}, \pm \frac{1}{\sqrt{5+\sqrt{5}}}, 0\right)=\frac{6}{5+\sqrt{5}} \approx 0,83 \ldots$

From this it is clear that $( \pm 1, \pm 1,0)$ are points of $D$ at max distance to $\overrightarrow{0}$, while $\left( \pm \frac{1}{\sqrt{3}}, \mp \frac{1}{\sqrt{3}}, 0\right)$ are poitns of $D$ at min distance to $\overrightarrow{0}$.

Exercise 23. i) To be irrotational, the field must verify

$$
\partial_{y} \frac{a x+b y}{\sqrt{x^{2}+y^{2}}} \equiv \partial_{x} \frac{c x+d y}{\sqrt{x^{2}+y^{2}}}, \quad \forall(x, y) \in D=\mathbb{R}^{2} \backslash\{\overrightarrow{0}\}
$$

We have

$$
\partial_{y} \frac{a x+b y}{\sqrt{x^{2}+y^{2}}}=\frac{b \sqrt{x^{2}+y^{2}}-(a x+b y) \frac{2 y}{2 \sqrt{x^{2}+y^{2}}}}{\left(x^{2}+y^{2}\right)}=\frac{b\left(x^{2}+y^{2}\right)-y(a x+b y)}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{b x^{2}-a x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

and, similarly

$$
\partial_{x} \frac{c x+d y}{\sqrt{x^{2}+y^{2}}}=\frac{c y^{2}-d x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

Thus, the field is irrotational iff

$$
\frac{b x^{2}-a x y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \equiv \frac{c y^{2}-d x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \Longleftrightarrow b x^{2}-a x y=c y^{2}-d x y, \quad \forall(x, y) \in \mathbb{R}^{2} \backslash\{\overrightarrow{0}\}
$$

Since the identity is trivally verified at $(x, y)=\overrightarrow{0}$, we may say that the field is irrotational iff

$$
b x^{2}-a x y \equiv c y^{2}-d x y, \quad \Longleftrightarrow \quad b=c=0, a=d
$$

ii) By i), to be conservative $\vec{F}$ must have the form

$$
\vec{F}=\left(\frac{a x}{\sqrt{x^{2}+y^{2}}}, \frac{a y}{\sqrt{x^{2}+y^{2}}}\right)
$$

Now, such a $\vec{F}$ is conservative iff $\vec{F}=\nabla f$, that is

$$
\left\{\begin{array}{l}
\partial_{x} f=\frac{a x}{\sqrt{x^{2}+y^{2}}}, \\
\partial_{y} f=\frac{a y}{\sqrt{x^{2}+y^{2}}}
\end{array}\right.
$$

From first equation,

$$
f(x, y)=\int \frac{a x}{\sqrt{x^{2}+y^{2}}} d x+k(y)=\frac{a}{2} \int\left(x^{2}+y^{2}\right)^{-1 / 2}(2 x) d x+k(y)=a\left(x^{2}+y^{2}\right)^{1 / 2}+k(y) .
$$

Plugging this into the second equation we have

$$
\partial_{y} f=a \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} 2 y+k^{\prime}(y)=\frac{a y}{\sqrt{x^{2}+y^{2}}}, \Longleftrightarrow k^{\prime}(y)=0 .
$$

Thus, we deduce that

$$
f(x, y)=a \sqrt{x^{2}+y^{2}}+k, k \in \mathbb{R},
$$

are all the potentials for $\vec{F}$.
Exercise 24. For the volume, we may notice that

$$
\lambda_{3}(D)=\int_{D} 1 d x d y d z \stackrel{R F}{=} \int_{0}^{1}\left(\int_{x^{2}+4 y^{2} \leqslant 1+z^{2}} d x d y\right) d z .
$$

By using adapted polar coordinates, $x=\rho \cos \theta, y=\frac{1}{2} \rho \sin \theta$, in such a way that $x^{2}+4 y^{2}=\rho^{2}$, we have

$$
\int_{x^{2}+4 y^{2} \leqslant 1+z^{2}} d x d y=\int_{0 \leqslant \rho \leqslant \sqrt{1+z^{2}}, 0 \leqslant \theta \leqslant 2 \pi} \frac{1}{2} \rho d \rho d \theta \stackrel{R F}{=} \pi \int_{0}^{\sqrt{1+z^{2}}} \rho d \rho=\pi\left[\frac{\rho^{2}}{2}\right]_{\rho=0}^{\rho=\sqrt{1+z^{2}}}=\frac{\pi}{2}\left(1+z^{2}\right) .
$$

Therefore

$$
\lambda_{3}(D)=\int_{0}^{1} \frac{\pi}{2}\left(1+z^{2}\right) d z=\frac{\pi}{2}\left(1+\left[\frac{z^{3}}{3}\right]_{z=0}^{z=1}\right)=\frac{2}{3} \pi .
$$

Exercise 25. i) If $u(x, y)=\operatorname{Re} f(x+i y)$ and $v(x, y)=\operatorname{Im} f(x+i y)$, then

$$
g(x+i y)=\overline{f(x-i y)}=\overline{u(x,-y)+i v(x,-y)}=u(x,-y)-i v(x,-y),
$$

from which we see that

$$
U(x, y)=\operatorname{Re} g(x+i y)=u(x,-y), \quad V(x, y)=\operatorname{Im} g(x+i y)=-v(x,-y) .
$$

ii) $g$ is holomorphic iff $U, V$ are $\mathbb{R}$-differentiable and they verify CR equations. Clearly, sunce $f$ is holomorphic, $u, v$ are $\mathbb{R}$-differentiable, hence also $U, V$ are $\mathbb{R}$-differentiable. Therefore, we have to verify if $U, V$ fulfil also the CR equations, that is

$$
\left\{\begin{array}{l}
\partial_{x} U \equiv \partial_{y} V \\
\partial_{y} U \equiv-\partial_{x} V .
\end{array}\right.
$$

We have,

$$
\partial_{x} U=\partial_{x}(u(x,-y))=\partial_{x} u(x,-y), \partial_{y} V=\partial_{y}(-v(x,-y))=-\partial_{y} v(x,-y)(-1)=\partial_{y} v(x,-y) .
$$

And since $\partial_{x} u \equiv \partial_{y} v$ we deduce that also $\partial_{x} U=\partial_{y} V$. Similarly, $\partial_{y} U=-\partial_{x} V$ and the check is completed.

Exercise 26. i) We have a second order equation. The homogeneous equation is $y^{\prime \prime}+2 y^{\prime}+y=0$, whoose characteristic equation is $\lambda^{2}+2 \lambda+1=0$, or $(\lambda+1)^{2}=0$. The fundamental system of solutions for the homogeneous equation is $w_{1}=e^{-t}, w_{2}=t e^{-t}$, whoose wronskian is

$$
W(t)=\operatorname{det}\left[\begin{array}{ll}
w_{1} & w_{2} \\
w_{1}^{\prime} & w_{2}^{\prime}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
e^{-t} & t e^{-t} \\
-e^{-t} & e^{-t}(1-t)
\end{array}\right]=e^{-2 t}(1-t)+t e^{-2 t}=e^{-2 t} .
$$

The general solution of the original equation is then

$$
y(t)=\left(c_{1}-\int \frac{w_{2}}{W}(t+1) d t\right) w_{1}+\left(c_{2}+\int \frac{w_{1}}{W}(t+1) d t\right) w_{2}
$$

We have

$$
\begin{aligned}
\int \frac{w_{2}}{W}(t+1) d t & =\int \frac{t e^{-t}}{e^{-2 t}}(t+1) d t=\int e^{t}\left(t^{2}+t\right) d t=e^{t}\left(t^{2}+t\right)-\int e^{t}(2 t+1) d t \\
& =e^{t}\left(t^{2}+t-2 t-1\right)+\int 2 e^{t} d t=e^{t}\left(t^{2}-t+1\right),
\end{aligned}
$$

and

$$
\int \frac{w_{1}}{W}(t+1) d t=\int \frac{e^{-t}}{e^{-2 t}}(t+1) d t=\int e^{t}(t+1) d t=e^{t}(t+1)-\int e^{t} d t=t e^{t}
$$

Therefore, the general integral is

$$
y(t)=\left(c_{1}-e^{t}\left(t^{2}-t+1\right)\right) e^{-t}+\left(c_{2}+t e^{t}\right) t e^{-t}=c_{1} e^{-t}+c_{2} t e^{-t}+t-1, c_{1}, c_{2} \in \mathbb{R} .
$$

ii) Imposing $y(0)=0$ we get $c_{1}-1=0$, that is $c_{1}=1$, so

$$
y(t)=e^{-t}+c_{2} t e^{-t}+t-1 .
$$

To determine also $c_{2}$, we impose $y^{\prime}(0)=1$, that is, since

$$
y^{\prime}(t)=-e^{-t}+c_{2} e^{-t}(1-t)+1, \Longrightarrow-1+c_{2}+1=1, \quad \Longleftrightarrow c_{2}=1 .
$$

The solution of the Cauchy problem is then,

$$
y(t)=e^{-t}+t e^{-t}+t-1, \quad c_{1}, c_{2} \in \mathbb{R}
$$

iii) From $y(0)=0$ we get

$$
y(t)=e^{-t}+c_{2} t e^{-t}+t-1
$$

and imposing also $y(1)=0$ we get

$$
0=e^{-1}+c_{2} e^{-1}, \Longleftrightarrow c_{2}=1 .
$$

The solution is the same of that one found at ii).

Exercise 27. i) For $D \neq \varnothing$ we consider a point of type $(x, y, 2)$. Then $(x, y, 2) \in D$ iff $x^{2}+y^{2}=4$ and $y^{2}=1$, thus $y= \pm 1$ and $x^{2}=3$, that is $x= \pm \sqrt{3}$. We conclude that points $( \pm \sqrt{3}, \pm 1,2)$ (four points, all possible combinations of sign) belong to $D$.

We have that $D=\left\{g_{1}=0, g_{2}=0\right\}$ where $g_{1}=x^{2}+y^{2}-z^{2}$, and $g_{2}=y^{2}+(z-2)^{2}-1$. Clearly, both $g_{1}$ and $g_{2}$ are differentiable functions (they are polynomials). In order $\vec{g}=\left(g_{1}, g_{2}\right)$ be a submersion on $D$ we need to verify that

$$
\operatorname{rk} \vec{g}^{\prime}=\operatorname{rk}\left[\begin{array}{c}
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\operatorname{rk}\left[\begin{array}{ccc}
2 x & 2 y & -2 z \\
0 & 2 y & 2(z-2)
\end{array}\right]=2, \forall(x, y, z) \in D
$$

Now, this is false iff all $2 \times 2$ sub-determinants of the Jacobian matrix $\vec{g}^{\prime}$ vanish, that is iff

$$
\left\{\begin{array} { l } 
{ 4 x y = 0 , } \\
{ 4 x ( z - 2 ) = 0 , } \\
{ 8 y ( z - 1 ) = 0 . }
\end{array} \Longleftrightarrow \left\{\begin{array} { l } 
{ x = 0 , } \\
{ y ( z - 1 ) = 0 , }
\end{array} \quad \vee \left\{\begin{array}{l}
y=0 \\
x(z-2)=0
\end{array}\right.\right.\right.
$$

The first subsystem has solutions $(0,0, z)$ and $(0, y, 1)(x, y \in \mathbb{R})$; the second, $(0,0, z)$ and $(x, 0,2)$, ( $x, z \in \mathbb{R}$ ). Now:

- $(0,0, z) \in D$ iff $z^{2}=0$ and $(z-2)^{2}=1$, impossible;
- $(0, y, 1) \in D$ iff $y^{2}=1$ and $y^{2}+1=1$, again impossible;
- $(x, 0,2) \in D$ iff $x^{2}=4$ and $0=1$, impossible.

Cocnlusion: there is no point on $D$ at which rank of $\vec{g}^{\prime}$ is less than 2 , therefore rank of $\vec{g}^{\prime}(x, y, z)$ is 2 for every $(x, y, z) \in D$, that is $\vec{g}$ is a submersion on $D$.
ii) $D$ is defined by equalities involving continuous functions, it is therefore closed. From the second equation

$$
y^{2}+(z-2)^{2}=1, \Longrightarrow y^{2} \leqslant 1,(z-2)^{2} \leqslant 1
$$

In particular, $-1 \leqslant z-2 \leqslant 1$, that is $1 \leqslant z \leqslant 3$, thus $z^{2} \leqslant 9$. Plugging this into the first equation,

$$
x^{2}+y^{2}=z^{2}, \quad x^{2}+y^{2} 9, \Longrightarrow x^{2} 9
$$

In conclusion $x^{2}+y^{2}+z^{2} 9+1+9=19$, for every $(x, y, z) \in D$, from which we see that $D$ is bounded. We conclude that $D$ is compact.
iii) Points at min/max distance to $\overrightarrow{0}$ minimize/maximize the function $f=x^{2}+y^{2}+z^{2}$. Since $f$ is continuous and $D$ is compact, according to the Weierstrass theorem, $f$ has both min and max on $D$.

To determine these points, we apply the Lagrange multipliers' theorem. By i), hypotheses of the theorem are fulfilled. Thus, at every $(x, y, z) \in D \min / \max$ point for $f$ in $D$ we must have

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}, \quad \Longleftrightarrow \operatorname{rk}\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]<3, \quad \Longleftrightarrow \operatorname{det}\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x & 2 y & -2 z \\
0 & 2 y & 2(z-2)
\end{array}\right]=0
$$

By computing the determinant we get

$$
0=2 x \cdot 4 y(z-2+z)-2 x \cdot 4 y(z-2-z)=16 x y z
$$

whose solutions are points $(0, y, z),(x, 0, z)$ and $(x, y, 0)$. Now,

- $(0, y, z) \in D$ iff $y^{2}=z^{2}$ and $y^{2}+(z-2)^{2}=1$, from which $z^{2}+(z-2)^{2}=1$, or $2 z^{2}-2 z+3=0$, and since $\Delta<0$ there are no solutions to this equation;
- $(x, 0, z) \in D$ iff $x^{2}=z^{2}$ and $(z-2)^{2}=1$, from which $z=1,3$ and $x^{2}=1$ (that is $x= \pm 1$ ), or $x^{2}=9$ (that is $x= \pm 3$ ). We obtain points $( \pm 1,0,1)$ and $( \pm 3,0,3)$;
- $(x, y, 0) \in D$ iff $x^{2}+y^{2}=0, y^{2}+4=1$ which is impossible.

Since $f( \pm 1,0,1)=2$ and $f( \pm 3,0,3)=18$ we deduce that $( \pm 1,0,1)$ are points of $D$ at min distance to $\overrightarrow{0},( \pm 3,0,3)$ are points of $D$ at max distance to $\overrightarrow{0}$.

Exercise 28 ii) The change or variable is given in the form $(u, v)=\Phi(x, y)=\left(y-x^{3}, y+x^{3}\right)$. According to the change of variable formula,

$$
\int_{D} f(x, y) d x d y=\int_{\Phi(D)} f\left(\Phi^{-1}(u, v)\right)\left|\operatorname{det}\left(\Phi^{-1}\right)^{\prime}(u, v)\right| d u d v .
$$

We need to determine $\Phi^{-1}$. Notice that

$$
\left\{\begin{array} { l } 
{ u = y - x ^ { 3 } , } \\
{ v = y + x ^ { 3 } , }
\end{array} \Longleftrightarrow \left\{\begin{array} { l } 
{ u + v = 2 y , } \\
{ v - u = 2 x ^ { 3 } , }
\end{array} \Longleftrightarrow \left\{\begin{array} { l } 
{ y = \frac { u + v } { 2 } , } \\
{ x ^ { 3 } = \frac { v - u } { 2 } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=\frac{u+v}{2}, \\
x=\left(\frac{v-u}{2}\right)^{1 / 3},
\end{array}\right.\right.\right.\right.
$$

Therefore

$$
\Phi^{-1}(u, v)=\left(\left(\frac{v-u}{2}\right)^{1 / 3}, \frac{u+v}{2}\right) .
$$

Moreover,

$$
(x, y) \in D, \Longleftrightarrow\left\{\begin{array} { l } 
{ x \geqslant 1 , } \\
{ x ^ { 3 } \leqslant y \leqslant 3 , }
\end{array} \Longleftrightarrow \left\{\begin{array} { l } 
{ ( \frac { v - u } { 2 } ) ^ { 1 / 3 } \geqslant 1 , } \\
{ \frac { v - u } { 2 } \leqslant \frac { u + v } { 2 } \leqslant 3 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
v-u \geqslant 2, \\
v-u \leqslant v+u \leqslant 6
\end{array}\right.\right.\right.
$$

that is

$$
\Phi(D)=\{(u, v): 2 \leqslant v-u \leqslant v+u \leqslant 6\} .
$$

Now, to be $v-u \leqslant v+u$ it must be $u \geqslant 0$, and from $2 \leqslant v-u \leqslant v+u \leqslant 6$ we get $2+u \leqslant v \leqslant 6-u$ provided $2+u \leqslant 6-u$, that is $u \leqslant 2$. In conclusion

$$
\Phi(D)=\{(u, v): 0 \leqslant u \leqslant 2,2+u \leqslant v \leqslant 6-u\} .
$$

About $f$, in coordinates $(u, v)$ we have

$$
f\left(\Phi^{-1}(u, v)\right)=\left(\frac{v-u}{2}\right)^{2 / 3} u e^{v},
$$

while

$$
\operatorname{det}\left(\Phi^{-1}\right)^{\prime}=\operatorname{det}\left[\begin{array}{cc}
\frac{1}{3}\left(\frac{v-u}{2}\right)^{-2 / 3}\left(-\frac{1}{2}\right) & \frac{1}{3}\left(\frac{v-u}{2}\right)^{-2 / 3}\left(+\frac{1}{2}\right) \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]=-\frac{1}{6}\left(\frac{v-u}{2}\right)^{-2 / 3}
$$

In conclusion

$$
\begin{aligned}
\int_{D} f d x d y & =\int_{0 \leqslant u \leqslant 2,2+u \leqslant v \leqslant 6-u}\left(\frac{v-u}{2}\right)^{2 / 3} u e^{v} \frac{1}{6}\left(\frac{v-u}{2}\right)^{-2 / 3} d u d v=\frac{1}{6} \int_{0 \leqslant u \leqslant 2,2+u \leqslant v \leqslant 6-u} u e^{v} d u d v \\
& \stackrel{R F}{=} \frac{1}{6} \int_{0}^{2} \int_{2+u}^{6-u} u e^{v} d v d u=\frac{1}{6} \int_{0}^{2} u \int_{2+u}^{6-u} e^{v} d v d u=\frac{1}{6} \int_{0}^{2} u\left[e^{v}\right]_{v=2+u}^{v=6-u} d u \\
& =\frac{1}{6} \int_{0}^{2} u\left(e^{6-u}-e^{2+u}\right) d u=\frac{1}{6}\left(e^{6} \int_{0}^{2} u e^{-u} d u-e^{2} \int_{0}^{2} u e^{u} d u\right) \\
& =\frac{1}{6}\left(e^{6}\left(\left[-u e^{-u}\right]_{u=0}^{u=2}+\int_{0}^{2} e^{-u} d u\right)-e^{2}\left(\left[u e^{u}\right]_{u=0}^{u=2}-\int_{0}^{2} e^{u} d u\right)\right) \\
& =\frac{1}{6}\left(e^{6}\left(-2 e^{-2}-\left(e^{-2}-1\right)\right)-e^{2}\left(2 e^{2}-\left(e^{2}-1\right)\right)\right) \\
& =\frac{e^{2}}{6}\left(-2 e^{2}+e^{4}-1\right) .
\end{aligned}
$$

Exercise 29. In order $f=u+i v$ be holomorphic, we need that $u, v$ are both $\mathbb{R}$-differentiable (and certainly $v$ it is), and they verify the CR equations,

$$
\left\{\begin{array}{l}
\partial_{x} u=\partial_{y} v, \\
\partial_{y} u=-\partial_{x} v .
\end{array}\right.
$$

Thus we have to look for an $\mathbb{R}$-differentiable $u$ such that

$$
\left\{\begin{array}{l}
\partial_{x} u=3 y^{2}-3 x^{2}+4 x \\
\partial_{y} u=-(-6 x y+4 y-1)
\end{array}\right.
$$

From the first equation we get,

$$
u(x, y)=\int\left(3 y^{2}-3 x^{2}+4 x\right) d x+k(y)=3 y^{2} x-x^{3}+2 x^{2}+k(y)
$$

Plugging this into the second equation we have

$$
6 x y+k^{\prime}(y)=6 x y-4 y+1, \Longleftrightarrow k^{\prime}(y)=-4 y+1, \Longleftrightarrow k(y)=-2 y^{2}+y+k, k \in \mathbb{R} .
$$

Thus, all the possible $u$ that verify the CR eqns together with $v$ are

$$
u(x, y)=3 y^{2} x-x^{3}+2 x^{2}-2 y^{2}+y+k .
$$

Since such $u$ are clearly $\mathbb{R}$-differentiable, $f=u+i v$ is $\mathbb{C}$-differentiable (holomorphic) on $\mathbb{R}^{2}$.

To determine the analytical expression for $f$ as a function of complex variable $z=x+i y$, we may notice that

$$
\begin{aligned}
f & =u+i v=3 y^{2} x-x^{3}+2 x^{2}-2 y^{2}+y+k+i\left(y^{3}-3 x^{2} y+4 x y-x\right) \\
& =-i \underbrace{(x+i y)}_{z}+2 \underbrace{\left(x^{2}-y^{2}+i 2 x y\right)}_{z^{3}}-\underbrace{\left(x^{3}-i y^{3}-3 y^{2} x+i 3 x^{2} y\right)}_{z^{2}}+k \\
& =-z^{3}+2 z^{2}-i z+k .
\end{aligned}
$$

Exercise 30. See notes for definitions and characterizations.
Let's focus on the resuire property. We first notice that is $\partial S=\varnothing, \partial S$ is closed. We assume then that $\partial S \neq \varnothing$. To verify that $\partial S$ is closed, we use the Cantor characterization. Let $\left(\vec{x}_{n}\right) \subset \partial S$ be such that $\vec{x}_{n} \longrightarrow \vec{x} \in \mathbb{R}^{d}$. We prove that $\vec{x} \in \partial S$. Fix $r>0$. Since $\vec{x}_{n} \longrightarrow \vec{x}$, we have that for $n \geqslant N\left\|\vec{x}_{n}-\vec{x}\right\| \leqslant \frac{r}{2}$. Now, since $\vec{x}_{n} \in \partial S$,

$$
B\left(\vec{x}_{n}, r / 2\right] \cap S \neq \varnothing, \wedge B\left(\vec{x}_{n}, r / 2\right] \cap S^{c} \neq \varnothing .
$$

Since $\left\|\vec{x}_{n}-\vec{x}\right\| \leqslant \frac{r}{2}$, we have that

$$
B\left(\vec{x}_{n}, r / 2\right] \subset B(\vec{x}, r],
$$

therefore

$$
B(\vec{x}, r] \cap S \supset B\left(\vec{x}_{n}, r / 2\right] \cap S \neq \varnothing,
$$

and, similarly, $B(\vec{x}, r] \cap S^{c} \neq \varnothing$. We conclude that $\vec{x} \in \partial S$, thus $\partial S$ is closed.
Exercise 31. First of all let $z \neq 0$. Setting $w=\frac{1}{z}$, we have to solve
$\sinh w=0, \Longleftrightarrow \frac{e^{w}-e^{-w}}{2}=0, \Longleftrightarrow e^{2 w}=1, \Longleftrightarrow 2 w=\log |1|+i(0+k 2 \pi)=i k 2 \pi, k \in \mathbb{Z}$.
Thus

$$
\frac{1}{z}=w=i k \pi, \quad \Longleftrightarrow \quad z=\frac{1}{i k \pi}=\frac{-i}{k \pi}=\frac{i}{k \pi}, k \in \mathbb{Z} \backslash\{0\} .
$$

Exercise 32. The problem asks to determine

$$
\min / \max _{(x, y, z) \in D} \sqrt{(x-1)^{2}+(y-2)^{2}+(z+3)^{2}} .
$$

Previous problem has the same min/max points (if any) of

$$
\min / \max _{(x, y, z) \in D}\left((x-1)^{2}+(y-2)^{2}+(z+3)^{2}\right)
$$

which is the problem we solve here.
We start discussing existence. $D$ is certainly a closed set (defined by an equality of a continuous function). Let's see if $D$ is also bounded. Since no condition on $z$ is given, it means that if ( $x, y, z_{0}$ ) $\in D$ then $(x, y, z) \in D$ for every $z \in \mathbb{R}$. In paricular $(x, x, z) \in D$ for every $x, z \in \mathbb{R}$. We deduce that $D$ is unbounded. Thus, $D$ is not compact. The function $f(x, y, z)=\|(x-1, y-2, z+3)\|^{2}$ is clearly continuous, and since

$$
\lim _{(x, y, z) \rightarrow \infty_{3}} f=+\infty,
$$

we conclude that $f$ has no maximum on $D$ but it has global minimum on $D$.
To determine the minimum, we wish to apply the Lagrange multipliers' theorem. To this aim, we need first to check if $D$ is the zero set of a submersion on $D$ itself. Now, $D=\{g=0\}$ where $g=(x-y)^{2}+(x-y)$, and $g$ is a submersion on $D$ iff $\nabla g \neq \overrightarrow{0}$ on $D$. We have

$$
\nabla g=\left(2(x-y)-1,-2(x-y+1,0)=\overrightarrow{0}, \quad \Longleftrightarrow \quad 2(x-y)-1=0, \quad \Longleftrightarrow \quad x-y=\frac{1}{2} .\right.
$$

However, if $x-y=\frac{1}{2}$ we easily see that the condition characterizing $D$ is not fulfilled. Thus, $\nabla g \neq 0$ always. Thus, in particular, $g$ is a submersion on $D$. Therefore, according to Lagrange multipliers' theorem, at $(x, y, z) \in D$ min point for $f$,

$$
\nabla f=\lambda \nabla g, \Longleftrightarrow \mathrm{rk}\left[\begin{array}{c}
\nabla f \\
\nabla g
\end{array}\right]=\mathrm{rk}\left[\begin{array}{ccc}
2(x-1) & 2(y-2) & 2(z+3) \\
2(x-y)-1 & -2(x-y)+1 & 0
\end{array}\right]<2 .
$$

This happens iff all $2 \times 2$ sub-determinants vanish, that is

$$
\left\{\begin{array}{l}
(1-2(x-y))(x+y-3)=0 \\
2(z+3)(2(x-y)-1)=0, \\
2(z+3)(1-2(x-y))=0
\end{array}\right.
$$

The first equation yields to the alternative $x-y=\frac{1}{2}$, and plugging this into the other two equations we get identities $0=0$. Thus, we get points $\left(x, x-\frac{1}{2}, z\right)$. Now these points belong to $D$ iff $\frac{1}{4}-\frac{1}{2}=0$, which is false.

In the second case, $x+y=3$, and plugging this into the other two equations we get $z=-3$, thus points ( $x, 3-x,-3$ ). Now,
$(x, 3-x,-3) \in D, \Longleftrightarrow(2 x-3)^{2}-(2 x-3)=0, \Longleftrightarrow(2 x-3)(2 x-4)=0, \Longleftrightarrow x=\frac{3}{2}, \vee x=2$.
We get points $\left(\frac{3}{2}, \frac{3}{2},-3\right)$ and $(2,1,-3)$. Since $f\left(\frac{3}{2}, \frac{3}{2},-3\right)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ and $f(2,1,-3)=1+1=2$, we see that the points od $D$ at minimum distance to $(1,2,-3)$ is $\left(\frac{3}{2}, \frac{3}{2},-3\right)$.

Exercise 33. i) $D$ is closed because it is defined by large inequalities. It is not open because $D \neq \varnothing, \mathbb{R}^{3}$. It is unbounded since $\left(n, n, \frac{1}{\cosh \left(2 n^{2}\right)}\right) \in D$ for every $n \in \mathbb{N}$, therefore it is not compact.
ii) We have

$$
\lambda_{3}(D)=\int_{D} 1 d x d y d z \stackrel{R F}{=} \int_{\mathbb{R}^{2}}\left(\int_{0}^{1 / \cosh \left(x^{2}+y^{2}\right)} d z\right) d x d y=\int_{\mathbb{R}^{2}} \frac{1}{\cosh \left(x^{2}+y^{2}\right)} d x d y
$$

By introducing polar coordinates,

$$
\lambda_{3}(D)=\int_{\rho \geqslant 0,0 \leqslant \theta \leqslant 2 \pi} \frac{1}{\cosh \rho^{2}} \rho d \rho d \theta=2 \pi \int_{0}^{+\infty} \frac{\rho}{\cosh \rho^{2}} d \rho .
$$

Notice that

$$
\frac{\rho}{\cosh \rho^{2}}=\frac{2 \rho}{e^{\rho^{2}}+e^{-\rho^{2}}}=\frac{2 \rho e^{\rho^{2}}}{1+e^{2 \rho^{2}}}=\partial_{\rho} \arctan \left(e^{\rho^{2}}\right),
$$

thus

$$
\lambda_{3}(D)=2 \pi\left[\arctan \left(e^{\rho^{2}}\right)\right]_{\rho=0}^{\rho=+\infty}=2 \pi\left(\frac{\pi}{2}-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}
$$

iii) Proceeding as in ii), we have

$$
I_{\alpha}:=\int_{D} e^{\alpha\left(x^{2}+y^{2}\right)} d x d y d z \stackrel{R F}{=} \int_{\mathbb{R}^{2}}\left(\int_{0}^{1 / \cosh \left(x^{2}+y^{2}\right)} e^{\alpha\left(x^{2}+y^{2}\right)} d z\right) d x d y=\int_{\mathbb{R}^{2}} \frac{e^{\alpha\left(x^{2}+y^{2}\right)}}{\cosh \left(x^{2}+y^{2}\right)} d x d y
$$

Changing vars to polar coords,

$$
I_{\alpha}=\int_{\rho \geqslant 0,0 \leqslant \theta \leqslant 2 \pi} \frac{e^{\alpha \rho^{2}}}{\cosh \rho^{2}} \rho d \rho d \theta=2 \pi \int_{0}^{+\infty} \frac{2 \rho e^{(\alpha+1) \rho^{2}}}{1+e^{2 \rho^{2}}} d \rho
$$

Notice that

$$
\frac{2 \rho e^{(\alpha+1) \rho^{2}}}{1+e^{2 \rho^{2}}} \sim_{+\infty} 2 \rho \frac{e^{(\alpha+1) \rho^{2}}}{e^{2 \rho^{2}}}=2 \rho e^{(\alpha-1) \rho^{2}}
$$

and

$$
\exists \int_{0}^{+\infty} \rho e^{(\alpha-1) \rho^{2}} d \rho \quad \Longleftrightarrow \quad \alpha-1<0, \quad \Longleftrightarrow \quad \alpha<1
$$

Exercise 34. i) In order $f=u+i v$ be $\mathbb{C}$-differentiable on $\mathbb{C}$ we need 1 . that $u, v$ are $\mathbb{R}$ differentiable on $\mathbb{R}^{2}$ (which is true, being $u, v$ polynomials) and 2. $u, v$ fulfil the CR equations, namely

$$
\left\{\begin{array} { l } 
{ \partial _ { x } u \equiv \partial _ { y } v , } \\
{ \partial _ { y } u \equiv - \partial _ { x } v , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
3 x^{2}+a y^{2} \equiv b x^{2}-3 y^{2}, \\
2 a x y \equiv-2 b x y,
\end{array} \Longleftrightarrow b=3, a=-3\right.\right.
$$

ii) We have

$$
f=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=(x+i y)^{3}=z^{3}
$$

Exercise 35. i) To prove that $\phi(t):=E\left(y(t), y^{\prime}(t)\right)$ is constant we show that the derivative of $\phi$ w.r.t. $t$ vanishes. According to the total derivative formula, we have

$$
\phi^{\prime}(t)=\frac{d}{d t} E\left(y, y^{\prime}\right)=\partial_{y} E\left(y, y^{\prime}\right) y^{\prime}+\partial_{v} E\left(y, y^{\prime}\right) y^{\prime \prime}
$$

Now,

$$
E(y, v)=\frac{1}{2} m v^{2}-f(y), \Longrightarrow \partial_{y} E=-f^{\prime}(y)=-F(y), \quad \partial_{v} E=m v
$$

thus

$$
\phi^{\prime}(t)=-F(y) y^{\prime}+m y^{\prime} y^{\prime \prime}=y^{\prime}(\underbrace{m y^{\prime \prime}-F(y)}_{=0 \text { by eqn }}) \equiv 0 .
$$

Therefore
$\left.E\left(y, y^{\prime}\right) \equiv k, \Longleftrightarrow \frac{1}{2} m\left(y^{\prime}\right)^{2}-f(y) \equiv k, \Longleftrightarrow y^{\prime}\right)^{2}=\frac{2}{m}(f(y)+k), \Longleftrightarrow y^{\prime}= \pm \sqrt{\frac{2}{m}(f(y)+k)}$.
The last one is a separable variables equation.
ii) If $m=1$ and $F(y)=-2 y-3 y^{2}$, then $f(y)=\int F(y)^{\prime} d y=\int\left(-2 y-3 y^{2}\right)=-y^{2}-y^{3}$. Therefore

$$
y^{\prime}= \pm \sqrt{2\left(k-y^{2}-y^{3}\right)}
$$

where $E\left(y, y^{\prime}\right) \equiv k$. In particular, $E\left(y(0), y^{\prime}(0)\right)=k$, and since $y(0)=-2, y^{\prime}(0)=\sqrt{8}$ we have

$$
E(-2, \sqrt{8})=\frac{1}{2}(\sqrt{8})^{2}-\left(-(-2)^{2}-(-2)^{3}\right)=4-(-4+8)=0
$$

Thus $k=0$ and $y$ solves the equation

$$
y^{\prime}= \pm \sqrt{-2\left(y^{3}+y^{2}\right)}= \pm \sqrt{-2 y^{2}(y+1)}= \pm \sqrt{2} y \sqrt{-y-1}
$$

Since at $t=0$ we have $y^{\prime}(0)=\sqrt{8}>0, y(0)=-2<0$ the previous equation is

$$
y^{\prime}=\sqrt{2} y \sqrt{-y-1}
$$

We can now solve this by separation of variables once we notice that $y$ is not a constant solution. We have

$$
\int \frac{y^{\prime}}{y \sqrt{-y-1}} d t=-\int \sqrt{2} d t=-\sqrt{2} t+c
$$

We have

$$
\begin{aligned}
\int \frac{y^{\prime}}{y \sqrt{-y-1}} d t & u=y(t), d u=y^{\prime}(t) d t \\
= & \frac{1}{u \sqrt{-u-1}} d u \stackrel{v=\sqrt{-u-1}, u=-1-v^{2}, d u=-2 v d v}{=} \int \frac{1}{\left(-1-v^{2}\right) v}(-2 v) d v \\
& =2 \int \frac{1}{1+v^{2}} d v=2 \arctan v=2 \arctan \sqrt{-y-1}
\end{aligned}
$$

Therefore

$$
2 \arctan \sqrt{-y-1}=-\sqrt{2} t+c
$$

For $t=0$ we have

$$
2 \arctan \sqrt{1}=c, \quad \Longleftrightarrow \quad c=\frac{\pi}{2}
$$

We conclude that
$2 \arctan \sqrt{-y-1}=-\sqrt{2} t+\frac{\pi}{2}, \Longleftrightarrow \sqrt{-y-1}=\tan \left(-\frac{t}{\sqrt{2}}+\frac{\pi}{4}\right), \Longleftrightarrow y(t)=-1-\tan ^{2}\left(-\frac{t}{\sqrt{2}}+\frac{\pi}{4}\right)$.
Exercise 36. i) We have a second order linear equation

$$
y^{\prime \prime}+9 y=6 \sin (3 t)
$$

The homogeneous equation associated to this is $y^{\prime \prime}+9 y=0$, whose characteristic equation is $\lambda^{2}+9=0$, that is $\lambda= \pm i 3$. The fundamental system of solutions for the homogeneous equation is then $w_{1}(t)=\sin (3 t)$, $w_{2}(t)=\cos (3 t)$, whose wronskian is

$$
W(t)=\operatorname{det}\left[\begin{array}{ll}
w_{1} & w_{2} \\
w_{1}^{\prime} & w_{2}^{\prime}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
\sin (3 t) & \cos (3 t) \\
3 \cos (3 t) & -3 \sin (3 t)
\end{array}\right]=-3\left(\sin ^{2}(3 t)+\cos ^{2}(3 t)\right)=-3
$$

Therefore, the general solution for the original equation is

$$
y(t)=\left(c_{1}-\int \frac{w_{2}}{W} 6 \sin (3 t) d t\right) w_{1}+\left(c_{2}+\int \frac{w_{1}}{W} 6 \sin (3 t) d t\right) w_{2}
$$

We have

$$
\begin{aligned}
& 6 \int \frac{w_{2}}{W} \sin (3 t) d t=6 \int \frac{\cos (3 t)}{-3} \sin (3 t) d t=-\int \sin (6 t) d t=\frac{1}{6} \cos (6 t) \\
& 6 \int \frac{w_{1}}{W} \sin (3 t) d t=6 \int \frac{\sin (3 t)}{-3} \sin (3 t) d t=-2 \int \sin ^{2}(3 t) d t
\end{aligned}
$$

Now

$$
\begin{aligned}
\int \sin ^{2}(3 t) d t & =\int(\sin (3 t))\left(-\frac{\cos (3 t)}{3}\right)^{\prime} d t=-\frac{1}{3} \sin (3 t) \cos (3 t)+\int \cos ^{2}(3 t) d t \\
& =-\frac{1}{6} \sin (6 t)+\int 1-\sin ^{2}(3 t) d t=-\frac{1}{6} \sin (6 t)+t-\int \sin ^{2}(3 t) d t
\end{aligned}
$$

thus

$$
\int \sin ^{2}(3 t) d t=\frac{1}{2}\left(t-\frac{\sin (6 t)}{6}\right)
$$

In conclusion,

$$
y(t)=\left(c_{1}-\frac{\cos (6 t)}{6}\right) \sin (3 t)+\left(c_{2}-t+\frac{\sin (6 t)}{6}\right) \cos (3 t), c_{1}, c_{2} \in \mathbb{R}
$$

ii) Imposing $y(0)=0$ we get

$$
c_{2}=0
$$

thus

$$
y(t)=\left(c_{1}-\frac{\cos (6 t)}{6}\right) \sin (3 t)-\left(t-\frac{\sin (6 t)}{6}\right) \cos (3 t) .
$$

Computing $y^{\prime}(t)$ we have

$$
y^{\prime}(t)=\sin (6 t) \sin (3 t)+\left(c_{1}-\frac{\cos (6 t)}{6}\right) 3 \cos (3 t)-(1-\cos (6 t)) \cos (3 t)+\left(t-\frac{\sin (6 t)}{6}\right) 3 \sin (3 t)
$$

and, by imposing $y^{\prime}(0)=0$ we get

$$
3\left(c_{1}-\frac{1}{6}\right)=0, \quad \Longleftrightarrow \quad c_{1}=\frac{1}{6}
$$

The solution of the CP is then

$$
y(t)=\frac{1}{6}(1-\cos (6 t)) \sin (3 t)-\left(t-\frac{\sin (6 t)}{6}\right) \cos (3 t) .
$$

iii) We may write the general solution in the form

$$
y(t)=\underbrace{\left(c_{1}-\frac{\cos (6 t)}{6}\right) \sin (3 t)+\left(c_{2}+\frac{\sin (6 t)}{6}\right) \cos (3 t)}_{\text {bounded }}-\underbrace{t \cos (3 t)}_{\text {unbounded }}
$$

and since the unbounded component is independent of $c_{1}, c_{2}$ we deduce that all the solutions are unbounded for $t \longrightarrow \pm \infty$.

Exercise 37. i) $D$ is closed being defined by large inequalities involving continuous functions of $(x, y)$. It is not open since $D \neq \varnothing, \mathbb{R}^{2}$. It is bounded because $x \geqslant 0$ and from $0 \leqslant y \leqslant 1-x$, in particular $1-x \geqslant 0$, that is $x \leqslant 1$, so $0 \leqslant x \leqslant 1$ and, at same time, $0 \leqslant y \leqslant 1-x \leqslant 1$. Thus $0 \leqslant x, y \leqslant 1$ and this implies that $D$ is bounded. Since $D$ is closed and bounded it is also compact.
ii) Since $f$ is clearly continuous on $D$ and $D$ is compact, $f$ admits both global min $/ \max$ on $D$. To determine $\mathrm{min} / \mathrm{max}$ points, we may argue in the following way. If $(x, y) \in D$ is a $\min / \max$ point for $f$ then

- either $(x, y) \in \operatorname{Int} D$
- or $(x, y) \in D \backslash$ Int $D=\partial D$.

In the first case, since

$$
\partial_{x} f=3 y+2 x y+y^{2}, \quad \partial_{y} f=3 x+x^{2}+2 x y
$$

so $\partial_{x} f, \partial_{y} f \in \mathscr{C}(D), f$ is then differentiable on $D$, according to Fermat theorem, at min/max points

$$
\nabla f(x, y)=\overrightarrow{0}, \Longleftrightarrow\left\{\begin{array} { l } 
{ 3 y + 2 x y + y ^ { 2 } = 0 , } \\
{ 3 x + x ^ { 2 } + 2 x y = 0 . }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y(3+2 x+y)=0, \\
x(3+2 y+x)=0 .
\end{array}\right.\right.
$$

The first equation leads to the alternative $y=0$ or $3+2 x+y=0$. In the first case, the second equation becomes $x(3+x)=0$. whose solutions are $x=0$ and $x=-3$. This produces points $(0,0)$ and $(-3,0)$. In any case these do not belong to Int $D$. In the second case, $y=-2 x-3$, from the second equation we obtain $x(-3-3 x)=0$, that is $x=0$ or $x=-1$. This yields points $(0,-3),(-1,-1) \notin D$. In conclusion, no stationary point for $f$ is in the interior of $D$.

Thus, min/max points for $f$ are on $\partial D=A \cup B \cup C$ where $A=\{(0, y): 0 \leqslant y \leqslant 1\}, B=\{(x, 0)$ : $0 \leqslant x \leqslant 1\}$ and, finally, $C=\{(x, 1-x): 0 \leqslant x \leqslant 1\}$. On $A$ we have

$$
f(0, y) \equiv 0
$$

thus every point is $\min /$ max point for $f$ on $A$. On $B$, similarly, we have $f(x, 0) \equiv 0$, thus every point of $B$ is at same time $\min / \max$ for $f$ on $B$. Finally, on $C$
$f(x, 1-x)=3 x(1-x)+x^{2}(1-x)+x(1-x)^{2}=3 x-3 x^{2}+x^{2}-x^{3}+x-2 x^{2}+x^{3}=-4 x^{2}+4 x=: g(x)$.
Let's determine $\min / \max$ points for $g$ with $x \in[0,1]$. We have $g^{\prime}(x)=-8 x+4 \geqslant 0$ iff $x \leqslant \frac{1}{2}$. Thus $x=\frac{1}{2}$ is max point for $g$ and $x=0,1$ are min points for $g$. This means that

- $\left(\frac{1}{2}, \frac{1}{2}\right)$ is max point for $f$ on $C$
- $(0,1),(1,0)$ are min points for $f$ on $C$.

We can now draw the conclusion:

- for minimum, candidates are points $(x, 0),(0, y)$ with $0 \leqslant x, y \leqslant 1$ where $f=0$. All these are min points for $f$ on $D$;
- for maximum, candidates are points $\left(\frac{1}{2}, \frac{1}{2}\right)$ (where $\left.f=1\right)$ and $(x, 0)$ and $(0, y)$ with $0 \leqslant x, y \leqslant 1$ (where $f=0$ ). Thus, the max point is $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Exercise 38. i) Let $\vec{F}=(\phi, \psi)$. In order $\vec{F}$ be irrotational on $D$ we need

$$
\partial_{y} \phi \equiv \partial_{x} \psi, \text { on } D
$$

We have

$$
\begin{aligned}
& \partial_{y} \phi=\frac{b\left(x^{2}+y^{2}\right)^{2}-(a x+b y) 2\left(x^{2}+y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{4}}=\frac{b\left(x^{2}+y^{2}\right)-4 y(a x+b y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{b x^{2}-4 a x y-3 b y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \\
& \partial_{x} \psi=\frac{c\left(x^{2}+y^{2}\right)^{2}-(c x+d y) 2\left(x^{2}+y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{4}}=\frac{c\left(x^{2}+y^{2}\right)-4 x(c x+d y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-3 c x^{2}-4 d x y+c y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

Hence,

$$
\partial_{y} \phi \equiv \partial_{x} \psi, \quad \Longleftrightarrow \quad b x^{2}-4 a x y-3 b y^{2} \equiv-3 c x^{2}-4 d x y+c y^{2}, \quad \Longleftrightarrow\left\{\begin{array}{l}
b=-3 c \\
a=d \\
-3 b=c
\end{array}\right.
$$

from which $b=c=0$ and $a=d \in \mathbb{R}$. Thus

$$
\vec{F}=\left(\frac{a x}{\left(x^{2}+y^{2}\right)^{2}}, \frac{a y}{\left(x^{2}+y^{2}\right)^{2}}\right), \forall(x, y) \in D
$$

ii) Necessary condition to be conservative is that $\vec{F}$ be irrotational, thus $\vec{F}$ is given as at the end of i). Now, such $\vec{F}$ is conservative iff $\vec{F}=\nabla f$, that is

$$
\left\{\begin{array}{l}
\partial_{x} f=\frac{a x}{\left(x^{2}+y^{2}\right)^{2}}, \\
\partial_{y} f=\frac{a y}{\left(x^{2}+y^{2}\right)^{2}}
\end{array}\right.
$$

From the first equation

$$
f(x, y)=\int \frac{a x}{\left(x^{2}+y^{2}\right)^{2}} d x+k(y)=\frac{a}{2} \int \partial_{x}-\left(x^{2}+y^{2}\right)^{-1} d x+k(y)=-\frac{a}{2}\left(x^{2}+y^{2}\right)^{-1}+k(y) .
$$

Plugging this into the second equation we have
$\partial_{y} f=\frac{a y}{\left(x^{2}+y^{2}\right)^{2}}, \Longleftrightarrow \frac{a y}{\left(x^{2}+y^{2}\right)^{2}}+k^{\prime}(y)=\frac{a y}{\left(x^{2}+y^{2}\right)^{2}}, \Longleftrightarrow k^{\prime}(y)=0, \quad \Longleftrightarrow \ldots k(y)=k \in \mathbb{R}$.
Thus, $\vec{F}$ is conservative with potentials

$$
f(x, y)=-\frac{a}{2}\left(x^{2}+y^{2}\right)^{-1}+k, k \in \mathbb{R}
$$

iii) By previous discussion, when $(a, b, c, d)=(2,0,0,2)$, field $\vec{F}$ is conservative. Thus

$$
\int_{\gamma} \vec{F}=f(0,2)-f(1,0)=-\frac{1}{4}-(-1)=\frac{3}{4}
$$

Exercise 39. i) Since $x^{2}+z^{2}$ is invariant by rotations around the $y$-axis, $D$ is invariant by rotations around such axis. We can draw any section containing the $y$ axis, for instance $D \cap\{x=0\}$ (section of $D$ in plane $y z$ ). We have

$$
D \cap\{x=0\}=\left\{(0, y, z): 1-z^{2} \geqslant y \leqslant \sqrt{1-z^{2}}\right\} .
$$

Figure:
ii) Notice that

$$
\begin{aligned}
\lambda_{3}(D) & =\int_{D} 1 d x d y d z \stackrel{R F}{=} \int_{1-\left(x^{2}+z^{2}\right) \leqslant \sqrt{1-\left(x^{2}+y^{2}\right)}}\left(\int_{1-\left(x^{2}+z^{2}\right)}^{\sqrt{1-\left(x^{2}\right)}} 1 d y\right) d x d z \\
& =\int_{1-\left(x^{2}+z^{2}\right) \leqslant \sqrt{1-\left(x^{2}+z^{2}\right)}}\left(\sqrt{1-\left(x^{2}+z^{2}\right)}-\left(1-\left(x^{2}+z^{2}\right)\right)\right) d x d z \\
& \text { pol. coords } \\
= & \int_{1-\rho^{2} \leqslant \sqrt{1-\rho^{2}}, 0 \leqslant \theta \leqslant 2 \pi} \rho\left(\sqrt{1-\rho^{2}}-\left(1-\rho^{2}\right)\right) d \rho d \theta \\
& \stackrel{R F}{=} 2 \pi \int_{1-\rho^{2} \leqslant \sqrt{1-\rho^{2}}} \rho\left(\sqrt{1-\rho^{2}}-\left(1-\rho^{2}\right)\right) d \rho .
\end{aligned}
$$

Now, $1-\rho^{2} \leqslant \sqrt{1-\rho^{2}}$ iff (being $1-\rho^{2} \geqslant 0$ for the root), $\sqrt{1-\rho^{2}} \leqslant 1$ always true, the condition on $\rho$ is $\rho^{2} \leqslant 1$, that is $0 \leqslant \rho \leqslant 1$. In conclusion,

$$
\begin{aligned}
\lambda_{3}(D) & =2 \pi \int_{0}^{1} \rho\left(\sqrt{1-\rho^{2}}-\left(1-\rho^{2}\right)\right) d \rho=2 \pi \int_{0}^{1} \rho\left(1-\rho^{2}\right)^{1 / 2}-\rho+\rho^{3} d \rho \\
& =2 \pi\left(\left[-\frac{1}{3}\left(1-\rho^{2}\right)^{3 / 2}\right]_{\rho=0}^{\rho=1}-\left[\frac{\rho^{2}}{2}\right]_{\rho=0}^{\rho=1}+\left[\frac{\rho^{4}}{4}\right]_{\rho=0}^{\rho=1}\right)=2 \pi\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{4}\right)=\frac{\pi}{6}
\end{aligned}
$$

Exercise 40. See notes for CR equations and connection with $\mathbb{C}$-differentiability.
i) If $f=u+i v$ with, for example, $u$ constant, then, by the CR eqns,

$$
\left\{\begin{array} { l } 
{ 0 \equiv \partial _ { x } u \equiv \partial _ { y } v , } \\
{ 0 = \partial _ { y } u \equiv - \partial _ { x } v , }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\partial_{x} v \equiv 0, \\
\partial_{y} v \equiv 0
\end{array}\right.\right.
$$

From this it follows that $v$ is constant.
iii) Suppose now that $f=u+i v$ be $\mathbb{C}$-differentiable and such that $|f|=\sqrt{u^{2}+v^{2}}=k$ or, equivalently, $u^{2}+v^{2} \equiv k^{2}$. If $k=0$ the conclusion is trivial. Assume $k \neq 0$. By computing $\partial_{x}$ we have

$$
2 u \partial_{x} u+2 v \partial_{x} v \equiv 0
$$

and because of CR equations

$$
u \partial_{x} u-v \partial_{y} u=0
$$

Similarly, computing $\partial_{y}$

$$
2 u \partial_{y} u+2 v \partial_{y} v=0, \quad \Longleftrightarrow u \partial_{y} u+v \partial_{x} u=0
$$

Multiplying the first relation by $\partial_{x} u$ and the second by $\partial_{y} u$ we obtain

$$
u\left(\partial_{x} u\right)^{2} \equiv v \partial_{y} u \partial_{x} u=-u\left(\partial_{y} u\right)^{2}, \Longleftrightarrow u\left(\left(\partial_{x} u\right)^{2}+\left(\partial_{y} u\right)^{2}\right) \equiv 0 . \quad \Longleftrightarrow u^{2}\left(\left(\partial_{x} u\right)^{2}+\left(\partial_{y} u\right)^{2}\right) \equiv 0
$$

Similarly,

$$
v^{2}\left(\left(\partial_{x} v\right)^{2}+\left(\partial_{y} v\right)^{2}\right) \equiv 0
$$

By CR eqns, $\left(\partial_{x} u\right)^{2}+\left(\partial_{y} u\right)^{2} \equiv\left(\partial_{x} v\right)^{2}+\left(\partial_{y} v\right)^{2}$, thu summing up the two previous relations we get

$$
\left(u^{2}+v^{2}\right)\left(\left(\partial_{x} u\right)^{2}+\left(\partial_{y} u\right)^{2}\right) \equiv 0, \quad \Longleftrightarrow \quad k^{2}\left(\left(\partial_{x} u\right)^{2}+\left(\partial_{y} u\right)^{2}\right) \equiv 0, \quad \Longleftrightarrow \quad\left(\partial_{x} u\right)^{2}+\left(\partial_{y} u\right)^{2} \equiv 0
$$

which means $\partial_{x} u \equiv \partial_{y} u \equiv 0$. Thus $u$ is constant and we can now conclude by ii).
Exercise 41. i) We have a separable variables equation. Solutions are either constant or obtained by separation of variables. In the first case, $y \equiv C$ is a solution iff $C\left(C^{2}+1\right)=0$, that is $C=0$. Other solution are obtained by separation of variables:

$$
y^{\prime}=y\left(y^{2}+1\right), \quad \Longleftrightarrow \frac{y^{\prime}}{y\left(y^{2}+1\right)}=1, \quad \Longleftrightarrow \int \frac{y^{\prime}}{y\left(y^{2}+1\right)} d t=t+k
$$

Now,

$$
\int \frac{y^{\prime}}{y\left(y^{2}+1\right)} d t \stackrel{u=y(t), d u=y^{\prime}(t) d t}{=} \int \frac{1}{u\left(u^{2}+1\right)} d u
$$

According to Hermite decomposition,

$$
\frac{1}{u\left(u^{2}+1\right)}=\frac{A}{u}+\frac{B u+C}{u^{2}+1}
$$

from which $A=1, B=-1$ and $C=0$. Therefore

$$
\int \frac{1}{u\left(u^{2}+1\right)} d u=\log |u|-\frac{1}{2} \log \left(u^{2}+1\right)=\log \frac{|u|}{\sqrt{u^{2}+1}}
$$

Thus we have

$$
\log \frac{|y|}{\sqrt{y^{2}+1}}=t+k
$$

that is

$$
\frac{|y|}{\sqrt{y^{2}+1}}=k e^{t}, \quad \Longleftrightarrow \frac{y^{2}}{y^{2}+1}=k e^{2 t},(k>0) \quad \Longleftrightarrow y^{2}=\frac{k e^{2 t}}{1-k e^{2 t}}, \quad \Longleftrightarrow \quad y= \pm \sqrt{\frac{k e^{2 t}}{1-k e^{2 t}}}
$$

ii) The solution for which $y(0)=1$ cannot be a constant solution. Since $y(0)=1$, we have

$$
y(t)=\sqrt{\frac{k e^{2 t}}{1-k e^{2 t}}}
$$

and $y(0)=1$ means $\sqrt{\frac{k}{1-k}}=1$, that is $k=\frac{1}{2}$.
Exercise 42. i) Let $\left(g_{1}, g_{2}\right):=\left(x^{2}+y^{2}-1, x+y+z-1\right)$ in such a way $D=\left\{g_{1}=0, g_{2}=0\right\}$. To check that $\left(g_{1}, g_{2}\right)$ is a submersion on $D$ we have to verify that

$$
\operatorname{rk}\left[\begin{array}{c}
g_{1} \\
\nabla g_{2}
\end{array}\right]=\operatorname{rk}\left[\begin{array}{ccc}
2 x & 2 y & 0 \\
1 & 1 & 1
\end{array}\right]=2, \forall(x, y, z) \in D
$$

Now, rank is $<2$ iff the two gradients are linearly dependent. This is manifestly impossible because of their third component.
ii) $D$ is closed being defined by equalities involving continuous functions. $D$ is also bounded: indeed, by first equation we have $x^{2}, y^{2} \leqslant 1$, thus $-1 \leqslant x, y \leqslant 1$, and by the secon

$$
-1 \geqslant z=1-(x+y) \leqslant 3
$$

thus $z^{2} \leqslant 9$ and $x^{2}+y^{2}+z^{2} \leqslant 11$.
iii) Function $f$ is continuous on $D$ compact: existence of $\min / m a x$ is ensured by Weierstrass thm. To determine these points, we apply Lagrange multipliers thm. By i), $D$ fulfils the assumption of the thm. Thus, at $(x, y, z) \mathrm{min} / \mathrm{max}$ point for $f$ on $D$ we must have

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}, \quad \Longleftrightarrow \quad \operatorname{rk}\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\operatorname{rk}\left[\begin{array}{ccc}
2 x+y-1 & 2 y+x+z-1 & y \\
2 x & 2 y & 0 \\
1 & 1 & 1
\end{array}\right]<3,
$$

that is iff the determinant of previous matrix vanishes. We get the condition

$$
2 y(x-y)+2(y(2 x+y-1)-x(2 y+x+z-1))=0
$$

from which, simplifying,

$$
y(y-x)+\left(y^{2}-y-x^{2}+x-x z\right)=0
$$

Since we are looking for solutions $(x, y, z) \in D$, we must have $z=1-x-y$, and plugging this into previous equation yields,

$$
y(2 y-1)=0, \quad \Longleftrightarrow \quad y=0, \vee y=\frac{1}{2}
$$

Thus we get points $(x, 0,1-x)$ and $\left(x, \frac{1}{2}, \frac{1}{2}-x\right)$, to which we have still to impose the condition $x^{2}+y^{2}=1$. In the first case $x^{2}+0^{2}=1$, thus $x= \pm 1$, that is points $( \pm 1,0, \mp 1)$ (two points). In the second case, $x^{2}+\frac{1}{4}=1$, thus $x^{2}=\frac{3}{4}$ and $x= \pm \frac{\sqrt{3}}{2}$, that is points $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{1-\sqrt{3}}{2}\right)$ and $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{1+\sqrt{3}}{2}\right)$. We have

- $f(1,0,-1)=0$
- $f(-1,0,1)=2$
- $f\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{1-\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}(\sqrt{3}-2)$
- $f\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{1+\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}(\sqrt{3}+2)$

From this we see that $(-1,0,1)$ is max point, $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{1-\sqrt{3}}{2}\right)$ is min point.
Exercise 43. i) $D$ is closed, being defined by large inequalities involving continuous functions. Let's check that $D$ is bounded (hence compact). Denoting by $\rho=\sqrt{x^{2}+y^{2}}=\|(x, y)\|$ we have

$$
(x, y) \in D, \Longrightarrow \rho^{2} \leqslant 2 \rho \cos \theta-\rho=\rho(2 \cos \theta-1), \quad \Longleftrightarrow \quad \rho \leqslant 2 \cos \theta-1 \leqslant 1
$$

Therefore, $D$ is bounded. In particular, $D$ cannot be be open: only $\varnothing, \mathbb{R}^{2}$ are both open and closed, and $(0,0) \in D$ (thus $D \neq \varnothing$ ), and $D$ is bounded, thus $D \subsetneq \mathbb{R}^{2}$.
ii) The area of $D$ is

$$
\lambda_{2}(D)=\int_{D} 1 d x d y=\int_{x^{2}+y^{2} \leqslant 2 x-\sqrt{x^{2}+y^{2}}} 1 d x d y \stackrel{\text { pol coords }}{=} \int_{\rho \leqslant 2 \cos \theta-1} \rho d \rho d \theta
$$

Now, notice that since $\rho \geqslant 0$, this imposes $2 \cos \theta-1 \geqslant 0$, that is $\cos \theta \geqslant \frac{1}{2}$. In one period this means $-\frac{\pi}{3} \leqslant \theta \leqslant \frac{\pi}{3}$. Thus

$$
\begin{aligned}
\lambda_{2}(D) & =\int_{\rho \leqslant 2 \cos \theta-1,-\frac{\pi}{3} \leqslant \theta \leqslant \frac{\pi}{3}} \rho d \rho d \theta \stackrel{R F}{=} \int_{-\pi / 3}^{\pi / 3} \int_{0}^{2 \cos \theta-1} \rho d \rho d \theta=\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos \theta-1)^{2} d \theta \\
& =\frac{1}{2}\left(\frac{2 \pi}{3}-4 \int_{-\pi / 3}^{\pi / 3} \cos \theta d \theta+4 \int_{-\pi / 3}^{\pi / 3}(\cos \theta)^{2} d \theta\right) \\
& =\frac{\pi}{3}-2 \sqrt{3}+2 \int_{-\pi / 3}^{\pi / 3}(\cos \theta)^{2} d \theta .
\end{aligned}
$$

About this last integral we have
$\int_{-\pi / 3}^{\pi / 3}(\cos \theta)^{2} d \theta=\int_{-\pi / 3}^{\pi / 3}(\cos \theta)(\sin \theta)^{\prime} d \theta=[\sin \theta \cos \theta]_{\theta=-\pi / 3}^{\theta=\pi / 3}+\int_{0}^{2 \pi}(\sin \theta)^{2} d \theta=\frac{\sqrt{3}}{2}-\int_{-\pi / 3}^{\pi / 3}(\cos \theta)^{2} d \theta$, from which $\int_{-\pi / 3}^{\pi / 3}(\cos \theta)^{2} d \theta=\frac{\sqrt{3}}{4}$. We conclude that $\lambda_{2}(D)=\frac{\pi}{3}-\frac{3 \sqrt{3}}{2}$.

Exercise 44. i) In order $f=u^{〔}+i v$ be $\mathbb{C}$-differentiable on $\mathbb{C}$, we need $u, v \mathbb{R}$-differentiable on $\mathbb{R}^{2}$ and fulfilling the CR equations. About $u$ it is clear that, being $\partial_{x} u, \partial_{y} u \in \mathscr{C}\left(\mathbb{R}^{2}\right), u$ is $\mathbb{R}$-differentiable on $\mathbb{R}^{2}$ by the differentiability test. Thus, we look for a $v$ differentiable such that

$$
\left\{\begin{array} { l } 
{ \partial _ { x } u \equiv \partial _ { y } v , } \\
{ \partial _ { y } u = - \partial _ { x } v , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\partial_{x} v=-\partial_{y} u=-\left(-20 x^{3} y+20 x y^{3}\right), \\
\partial_{y} v=\partial_{x} u=5 x^{4}-30 x^{2} y^{2}+5 y^{4} .
\end{array}\right.\right.
$$

From first equation,

$$
v(x, y)=\int 20 x^{3} y-20 x y^{3} d x+k(y)=5 x^{4} y-10 x^{2} y^{3}+k(y)
$$

and plugging this into the second equation we have

$$
5 x^{4}-30 x^{2} y^{2}+k^{\prime}(y)=5 x^{4}-30 x^{2} y^{2}+5 y^{4}, \Longleftrightarrow k^{\prime}(y)=5 y^{4}, \Longleftrightarrow k(y)=y^{5}+k,
$$

where $k$ is now a constant. Thus, the $v$ that fulfils CR eqns together with $u$ is

$$
v(x, y)=5 x^{4} y-10 x^{2} y^{3}+5 y^{4}+k,
$$

and since this is also differentiable (being $\partial_{x} v, \partial_{y} v \in \mathscr{C}\left(\mathbb{R}^{2}\right)$ ), we conclude that $f=u+i v$ is $\mathbb{C}$-differentiable.
ii) We have

$$
f=\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right)+i\left(5 x^{4} y-10 x^{2} y^{3}+5 y^{4}+k\right)
$$

Noticed that, for $z=x+i y$,

$$
z^{5}=(x+i y)^{5}=x^{5}+i 5 x^{4} y-10 x^{3} y^{2}-i 10 x^{2} y^{3}+5 x y^{4}+i y^{5}
$$

thus $f=z^{5}+i k, k \in \mathbb{R}$.
Exercise 45. See notes for definitions. We aim to prove that $f^{-1}(S)$ is open if $S$ it is. Suppose this is false. There exists then a point $x \in f^{-1}(S)$ for which

$$
\nexists B(x, r] \subset f^{-1}(S) .
$$

This means that:

$$
\forall r>0, B(x, r] \cap f^{-1}(S)^{c} \neq \varnothing .
$$

Taking $r=\frac{1}{n}$

$$
\forall n \in \mathbb{N}, n \geqslant 1, \exists x_{n} \in B(x, 1 / n] \cap f^{-1}(S)^{c} .
$$

This means that $\left\|x_{n}-x\right\| \leqslant \frac{1}{n}$, thus $x_{n} \longrightarrow x$. By continuity, $f\left(x_{n}\right) \longrightarrow f(x)$. Furthermore, by construction of $\left(x_{n}\right)$, we have that $x_{n} \in f^{-1}(S)^{c}$, that is $f\left(x_{n}\right) \notin S$ for every $n$. However, since $f(x) \in S$ (recall that $x \in f^{-1}(S)$ ), and $S$ is supposed to be open,

$$
\exists B(f(x), \rho] \subset S
$$

And since $f\left(x_{n}\right) \longrightarrow f(x)$, we have that

$$
\exists N: f\left(x_{n}\right) \in B(f(x), \rho] \subset S, \forall n \geqslant N,
$$

which is in contradiction with the construction of $\left(x_{n}\right)$. We deduce that the initial assumption must be false, that is $f^{-1}(S)$ is open.

Exercise 46. Notice first that $z \neq-i$. Furthermore, we have

$$
\cosh w=0, \quad \Longleftrightarrow \frac{e^{w}+e^{-w}}{2}=0, \quad \Longleftrightarrow e^{w}+\frac{1}{e^{w}}=0, \quad \Longleftrightarrow e^{2 w}=-1,
$$

that is,

$$
2 w=\log |-1|+i(\arg (-1)+2 k p i)=i(2 k+1) \pi, \quad \Longleftrightarrow \quad w=i(2 k+1) \frac{\pi}{2}, k \in \mathbb{Z} .
$$

Therefore,

$$
\cosh \frac{z}{z+i}=0, \Longleftrightarrow \frac{z}{z+i}=i(2 k+1) \frac{\pi}{2}, \Longleftrightarrow z=i(2 k+1) \frac{\pi}{2}(z+i), \Longleftrightarrow z=-\frac{(2 k+1) \pi}{2-i(2 k+1) \pi},
$$

$k \in \mathbb{Z}$. To check if these are all solutions, we need to verify if $\frac{(2 k+1) \pi}{2-i(2 k+1) \pi}=i$. We have

$$
\frac{(2 k+1) \pi}{2-i(2 k+1) \pi}=i, \quad \Longleftrightarrow \quad(2 k+1) \pi=i(2-i(2 k+1) \pi),
$$

which is impossible for every $k \in \mathbb{Z}$.
Exercise 47. i) Noticed that $y \neq 0$ for every solution for $t>0$, we have a separable variables equation

$$
y^{\prime}=\frac{1}{t} \frac{y^{2}+1}{y}=: a(t) f(y) .
$$

Constant solutions $y \equiv C$ are such that $0=\frac{1}{t} \frac{C^{2}+1}{C}$, which is impossible. So, there are no constant solutions. We can determine non constant solutions by separation of variables:

$$
\frac{y}{y^{2}+1} y^{\prime}=\frac{1}{t}, \Longleftrightarrow \int \frac{y}{y^{2}+1} y^{\prime} d t=\int \frac{1}{t} d t+k=\log |t|+k \stackrel{t>0}{=} \log t+k .
$$

On the lhs,

$$
\int \frac{y}{y^{2}+1} y^{\prime} d t \stackrel{u=y(t)}{=} \int \frac{u}{u^{2}+1} d u=\frac{1}{2} \log \left(u^{2}+1\right)=\frac{1}{2} \log \left(y(t)^{2}+1\right) .
$$

Therefore,

$$
\frac{1}{2} \log \left(y(t)^{2}+1\right)=\log t+k, \quad \Longleftrightarrow y(t)^{2}+1=e^{2 k} t^{2}=k t^{2}, k>0
$$

from which

$$
y(t)= \pm \sqrt{k t^{2}-1}, k>0
$$

ii) $y(1)=a$ iff $\pm \sqrt{k-1}=a$. Since $a>0, \sqrt{k-1}=a$, thus $k=1+a^{2}$ and the solution is

$$
y(t)=+\sqrt{\left(1+a^{2}\right) t^{2}-1}
$$

Clearly, this solution is defined for $\left(1+a^{2}\right) t-1 \geqslant 0$, that is $t \geqslant \frac{1}{1+a^{2}}$, thus the domain of definition is the interval $\left[\frac{1}{1+a^{2}},+\infty\left[\right.\right.$. Easily, limits are $y\left(\frac{1}{1+a^{2}}\right)=0$ while $y(+\infty)=+\infty$.


Exercise 48 We have $(0, y, z) \in S$ iff $z=y^{2}$ and $y+2 z=2$, that is, $y^{2}=1-\frac{y}{2}$ or $2 y^{2}+y-2=0$, which yields $y=\frac{-1 \pm \sqrt{17}}{4}$. Thus $\left(0, \frac{-1 \pm \sqrt{17}}{4},\left(\frac{-1 \pm \sqrt{17}}{4}\right)^{2}\right) \in S$ and $S \neq \varnothing$. To check if $S$ is the zero set of a submersion, we notice that $S=\left\{g_{1}=0, g_{2}=0\right\}$ where of course $g_{1}=x^{2}+y^{2}-z$ and $g_{2}=x+y+2 z-2$. The map $g=\left(g_{1}, g_{2}\right): \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is a submersion on $S$ iff rk $g^{\prime}=2$ on $S$. Now,

$$
g^{\prime}=\left[\begin{array}{c}
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 2 y & -1 \\
1 & 1 & 2
\end{array}\right]
$$

So

$$
\text { rk } g^{\prime}<2, \Longleftrightarrow\left\{\begin{array}{l}
2(x-y)=0=0, \\
4 x+1=0, \\
4 y+1=0,
\end{array} \Longleftrightarrow x=y=-\frac{1}{4}\right.
$$

Thus $\left(-\frac{1}{4},-\frac{1}{4}, z\right)$ are points where the rank of $g^{\prime}$ is $<2$. Now,

$$
\left(-\frac{1}{4},-\frac{1}{4}, z\right) \in S, \Longleftrightarrow\left\{\begin{array}{l}
z=\frac{1}{16}+\frac{1}{16}=\frac{1}{8}, \\
-\frac{1}{2}+2 z=2, \quad \Longleftrightarrow z=\frac{5}{4},
\end{array}\right.
$$

which is clearly impossible. Thus, the rank of $g^{\prime}$ is 2 on $S$, whence $g$ is a submersion on $S$.
ii) $S$ is defined by equations on continuous functions and thus is closed. By replacing the first condition with the second, we get

$$
(x, y, z) \in S, \Longrightarrow x+y+2\left(x^{2}+y^{2}\right)=2, \Longleftrightarrow x^{2}+y^{2}+\frac{1}{2}(x+y)-2=0,
$$

or

$$
\left(x+\frac{1}{4}\right)^{2}+\left(y+\frac{1}{4}\right)^{2}=\frac{17}{8}
$$

This implies that $(x, y)$ belongs to a circle centred at $\left(-\frac{1}{4},-\frac{1}{4}\right)$ and radius $\sqrt{\frac{17}{8}}$. In particular, $(x, y)$ are bounded, and since $(x, y, z) \in S$ implies $z=x^{2}+y^{2}$, also $z$ is bounded. We conclude that $S$ is closed and bounded, that is, compact.
iii) We have to minimise / maximise $\sqrt{x^{2}+y^{2}+z^{2}}$ or, equivalently, $f:=x^{2}+y^{2}+z^{2}$. By ii), $S$ is compact, and since $f$ is clearly continuous, by the Weierstrass theorem, we have the existence of min/max for $f$ on $S$ for granted.

To determine extreme points, we wish to apply the Lagrange theorem. Since $g$ is a submersion in $S$, the theorem applies. Thus, at any min/max for $f$ on $S$ we must have

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}, \Longleftrightarrow \text { rk }\left[\begin{array}{c}
\nabla f \\
\nabla g_{1} \\
\nabla g_{2}
\end{array}\right]=\mathrm{rk}\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
2 x & 2 y & -1 \\
1 & 1 & 2
\end{array}\right]<3,
$$

iff the determinant of previous matrix vanishes, that is

$$
x(4 y+1)-x(4 y-2 z)-y(1+2 z)=0, \quad \Longleftrightarrow \quad(x-y)(1+2 z)=0
$$

Thus, we get points $(x, x,, z)$ and $\left(x, y,-\frac{1}{2}\right)$. Now:

$$
(x, x, z) \in S, \Longleftrightarrow\left\{\begin{array} { l } 
{ z = 2 x ^ { 2 } , } \\
{ 2 x + 2 z = 2 , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
z=2 x^{2}, \\
2 x^{2}+x-1=0,
\end{array} \Longleftrightarrow x=\frac{-1 \pm \sqrt{9}}{2}=1,-2,\right.\right.
$$

from which $z=2,8$, thus we have points $(1,1,2)$ and $(-2,-2,8)$. We have $f(1,1,2)=6, f(-2,-2,8)=$ 72..

In the second case we have

$$
\left(x, y,-\frac{1}{2}\right) \in S, \Longleftrightarrow\left\{\begin{array}{l}
-\frac{1}{2}=x^{2}+y^{2} \\
x+y-1=2
\end{array}\right.
$$

which is manifestly impossible because of the first equation.
Conclusion: The min point is $(1,1,2)$, while the max point is $(-2,-2,8)$.
Exercise 49. Following the hint, we set $(x, y)=\left(u^{2}, v^{2}\right)$ in such a way that $(x, y)=\Phi(u, v)$. According to the change of variables formula

$$
\int_{D} f(x, y) d x d y=\int_{\Phi^{-1}(D)} f(\Phi(u, v))\left|\operatorname{det} \Phi^{\prime}(u, v)\right| d u d v
$$

Now, since $D=\left[0,+\infty\left[{ }^{2}, \Phi(u, v) \in D\right.\right.$ iff $\left(u^{2}, v^{2}\right) \in\left[0,+\infty\left[{ }^{2}\right.\right.$, that is, $(u, v) \in \mathbb{R}^{2}$, so $\Phi^{-1}(D)=\mathbb{R}^{2}$. Next,

$$
f(\Phi(u, v))=f\left(u^{2}, v^{2}\right)=\frac{e^{-\left(u^{2}+v^{2}\right)}}{\sqrt{u^{4} v^{2}+u^{2} v^{4}}}=\frac{e^{-\left(u^{2}+y^{2}\right)}}{\sqrt{u^{2} v^{2}\left(u^{2}+v^{2}\right)}}
$$

Finally,

$$
\operatorname{det} \Phi^{\prime}(u, v)=\operatorname{det}\left[\begin{array}{cc}
2 u & 0 \\
0 & 2 v
\end{array}\right]=4 u v
$$

Therefore,

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} \frac{e^{-(x+y)}}{\sqrt{x^{2} y+x y^{2}}} d x d y & =\int_{\mathbb{R}^{2}} \frac{e^{-\left(u^{2}+y^{2}\right)}}{\sqrt{u^{2} v^{2}\left(u^{2}+v^{2}\right)}}|4 u v| d u d v= \\
& =16 \int_{[0,+\infty[2} \frac{e^{-\left(u^{2}+v^{2}\right)}}{\sqrt{u^{2}+v^{2}}} d u d v \\
& =16 \int_{\rho \geqslant 0,0 \leqslant \theta \leqslant \frac{\pi}{2}} \frac{e^{-\rho^{2}}}{\rho} \rho d \rho d \theta \quad(u=\rho \cos \theta, v=\rho \sin \theta) \\
& \stackrel{R F}{=} 8 \pi \int_{0}^{+\infty} e^{-\rho^{2}} d \rho=8 \pi \frac{\sqrt{\pi}}{2}=4 \pi \sqrt{\pi} . \quad
\end{aligned}
$$

Exercise 50. A set $S$ is compact iff it is closed and bounded. Since $S$ is defined by a large inequality involving a continuous function $f$, it is closed. We have to check that it is also bounded. Suppose, by contradiction, that $S$ is unbounded. This means that

$$
\nexists M:\|\vec{x}\| \leqslant M, \forall \vec{x} \in S
$$

Equivalently,

$$
\forall n \in \mathbb{N}, \exists \vec{x}_{n} \in S:\left\|\vec{x}_{n}\right\| \geqslant n
$$

Thus $\vec{x}_{n} \longrightarrow \infty_{d}$. By assumtpion, $f\left(\vec{x}_{n}\right) \longrightarrow+\infty$, thus, in particular, $f\left(\vec{x}_{n}\right)>K$ for $n$ large. But this means that $\vec{x}_{n} \notin S$ for $n$ large, and this contradicts $\vec{x}_{n} \in S$ by construction. We conclude that $S$ must be bounded.

