
The Future of Industrial Networking:
Embracing TSN Protocols in the

Wireless Era

Andrea Garbugli, Armir Bujari

Department of Computer Science and Engineering (DISI)

University of Bologna – Italy

2

Industry 4.0

A large spread phenomenon and trend to
consider an evolution of traditional industrial
processes

Industry 4.0 (I4.0) has multiple meanings:

▪ Connects/merges production with ICT

▪ Merges customer data with machine data

▪ Goes M2M: Machines communicate with
machines

▪ Components and machines autonomously

manage production in a flexible, efficient, and
resource-saving manner

3

From Industry 3.0 to Industry 4.0

4

Industry 4.0: Technological Enablers

5

Industrial Communication Requirements

Service requirements range from best-effort
traffic to critical real-time traffic

Several organizations (e. g., 3GPP, IEC, IEEE,
IIC) have defined traffic types and
corresponding requirements of relevance
to industrial automation

Needs for appropriate QoS mechanisms for
the application’s data transmission

Need for (and convergence of) wireless
& wired communication technologies

6

Ethernet Rules Industrial Networked Environments

Ethernet has become a new standard for future industrial and automation applications,
surpassing Fieldbus technologies

7

Networking Enabler (1/3): Time-Sensitive Networking (TSN)

Many Industrial Ethernet variants,
e.g., PROFINET and EtherCAT. Most
of them suffer incompatibility
problems

IEEE introduced a suite of
standards called Time-Sensitive
Networking (TSN) a.k.a
Deterministic Ethernet

IEEE
Standards

Title Description

IEEE 802.1AS, IEEE
1588

Timing Synchronization for Time-Sensitive

Appl ications

Specialized version of the generic Precision Time Protocol
(gPTP) to synchronizes clocks between network devices

IEEE 802.1Qbv
Enhancements to Traffic Scheduling Time-
Aware Shaper (TAS)

Enables Ethernet frames to be transmitted on a schedule
(guaranteed), while allowing [non-] time-sensitive frames to
be transmitted on a best-effort basis (no guarantee). Each
frame is assigned a queue based on QoS priority

IEEE 802.1Qbu Frame Preemption
Enables frame pre-emption to interrupt the transmission of
frames in favor of high priority frames

IEEE 802.1CB
Frame Replication and Elimination for
Rel iability

Provides for capabilities to recover from dropped Ethernet
frames or broken switches in a TSN network by inserting
dupl icating frames at the sender and then discarding the
dupl icate

IEEE 802.1Qat Stream Reservation Protocol (SRP)
Speci fies the admission control framework for admitting or
rejecting flows based on flow resource requirements and the
available network resources.

IEEE 802.1Qav
Forwarding and Queuing of Time-Sensitive
Streams.

Speci fies bridge operations that provide guarantees for time-
sensitive lossless real-time audio/video (A/V) traffic (i.e.
bounded latency and jitter).

Other protocols:

‐ IEEE 802.1Qcc: Enhancements and Performance Improvements

‐ IEEE 802.1Qci: Per Stream Filtering and Policing

‐ IEEE 802.1Qch: Cycling Queuing and Forwarding

8

Networking Enabler (1/3): Synchronization and Packet Scheduling in TSN

A set of standards that make Ethernet networks deterministic, to
support real-time industrial traffic

▪ Synchronization (IEEE 802.1AS) via a specific profile of the

Precision Time Protocol (PTP): generic PTP (gPTP) [1]

▪ Clock Master (CM), selected during the election phase

▪ Clock Slave (CS)

▪ Enhancements to Traffic Scheduling Time-Aware Shaper (TAS) [1]

▪ Algorithms for selecting the packet to be sent and Gate

Control List (GCL) to create cyclical Time-aware
Windows

▪ Each frame is assigned a queue based on QoS priority

TSN REQUIRES A NIC THAT SUPPORTS

▪ Hardware clock → Precise synchronization

▪ Multi-queues → Traffic classes associated to NIC queue

S
w

itc
hi

n
g

F
ab

ri
c

Queue 0

Control

Traffic

Queue 1

Audio/Video

Traffic

Queue 2

Best Effort

Traffic

Earliest

TxTime

First

Credit

Based

Shaper

TX

Selection

Algorithm

T
im

e-
aw

ar
e

G
at

e

T
im

e-
aw

ar
e

G
at

e

T
im

e-
aw

ar
e

G
at

e T
ra

ns
m

is
si

o
n

S
el

ec
tio

n

Gate Control List

T0: 00000001

T1: 00000000

T2: 00000010

T3: 00000001

T4: 00000110

T5: REPEAT

gPTP Domain

Talker

NIC

Listener

NICCS CS

Switch

TSN 1

Switch

TSN 2

CM CS

[1] Nasrallah, Ahmed, et al. "Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research." IEEE Communications Surveys & Tutorials 21.1

(2018): 88-145.

9

Networking Enabler (2/3): Upcoming Industrial Wi-Fi (IEEE 802.1be – Wi-Fi 7)

10

Networking Enabler (3/3): 5G

5G revolutionizes connectivity beyond 4G with

three key use cases:

▪ Enhanced Mobile Broadband (eMBB)

▪ Massive Machine Type Communications

(mMTC)

▪ Ultra-Reliable Low-Latency Communications

(URLLC)

11

Enhanced Mobile Broadband (eMBB)

OBJECTIVE: Efficient communication across a vast

number of devices

APPLICATIONS: HD video streaming,

virtual/augmented reality, and large data

downloads

KEY FEATURES: High data rates, improved capacity,
and enhanced connectivity in densely populated

areas

5G Use Cases

▪ 1000 × Capacity/km2

▪ >10 Gbps Peak
▪ 100 Mbps for Every User
▪ Spectrum Efficiency

12

Massive Machine Type Communications (mMTC)

OBJECTIVE: High-speed internet access for data-

intensive applications

APPLICATIONS: IoT networks, smart cities,

environmental monitoring

KEY FEATURES: Low power usage, high scalability,

and support for many low-throughput devices

5G Use Cases

▪ Sporadic Access
▪ Energy Optimized (10yr)
▪ Signaling Reduction
▪ 1000 × Connected Devices

13

Ultra-Reliable Low-Latency Communications (URLLC)

OBJECTIVE: Provide reliable and instant

communication for critical applications

APPLICATIONS: Autonomous vehicles, remote

surgery, industrial automation, and emergency

response

KEY FEATURES: Ultra-low latency, high reliability, and
immediate data transfer

5G Use Cases

▪ Low Latency (< 1ms)
▪ High Reliability (99.99999%)
▪ High Availability
▪ Reduce Cost per bit

14

The Future foresees an Integrated Industrial Computing Environment

[1] 5G TSN - integrating for industrial automation - Ericsson

[2] 5G-ACIA, White Paper Integration of 5G with Time-Sensitive Networking for Industrial Communications, 2021

https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-tsn-integration-for-industrial-automation

15

The Computing Continuum and the Next-generation Applications

Vast landscape of application domains: Industrial IoT, Vehicular
Networks, Smart Cities, AI, and VR/AR.

Coexistence of applications with very different QoS requirements:

▪ High throughput,

▪ Ultra-low latency,

▪ Deterministic communication,

▪ and more…

The Computing Continuum takes center stage, representing a

more fluid and adaptive cloud environment

▪ Heterogeneous Physical and virtual resources

▪ Heterogeneous communication technologies

16

INSANE:

A Unified Middleware for

QoS-aware Network Acceleration

17

Statement (1/2): Evolution Towards Specialized Hardware Solutions

▪ The network devices landscape has evolved to cater
the demands of intensive distributed data applications

and time-sensitive tasks.

▪ Unprecedented network speed: from Gbps to offering
hundreds of Gbps

→ also maintaining low latency profiles

▪ Moving towards a data-centric network architecture

▪ DPU for efficient packet/data processing.

▪ GPU to accelerate for Machine Learning tasks.

▪ CPU free for compute (application) execution.

▪ However, these technologies present heterogeneous
APIs and low-level primitives adding to the complexity.

Data-centric network architecture

19

Statement (1/2): Overhead in the (Linux) Software Networking Stack​

[1] Cai, Qizhe, et al. "Understanding host network stack overheads." Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 2021.

Linux network stack overheads [1]

Linux Networking Stack:

▪ Robust and efficient* networking infrastructure.

▪ Integrated into the Linux kernel, providing essential networking services.

▪ Enables communication between devices over various network protocols.

Sockets API:

▪ Abstraction layer for network communication.

▪ Provides a unified interface for applications to interact with the
networking stack.

▪ Facilitates communication over TCP/IP, UDP, and other protocols.

Various sources of overhead:

▪ Data Copies

▪ Context Switching

→ impossible to fully utilize the network bandwidth or achieve
ultra-low latency supported by modern hardware technologies

20

Novel acceleration options and kernel bypassing techniques: e.g., RDMA, XDP, DPDK.

Hardware and Software Acceleration Technologies

Kernel TCP/IP

Netfilter

TC

Device Driver

TCP/IP

Netfilter

TC

Buffers

Device Driver

DPDK API

Buffers

RDMA Verbs API

Buffers

XDP API

Buffers

Socket API

skb

skb

skb K
e

rn
e

l b
y

p
a

ss
in

g

K
er

n
el

 b
yp

as
si

n
g

In
-k

e
rn

e
l

e
xp

re
ss

 d
at

ap
at

h

Userspace

Application

Network Hardware

Different APIs and hardware support between technologies…

21

… Similarities between the different approaches to achieve network acceleration

▪ SOLUTION: An edge-cloud data distribution middleware offering
developers to selectively accelerate crit ical parts of their
applications

▪ Associate different data flows to different Quality of Service (QoS)
levels...

...direct mapping to the most appropriate network accelerat ion

technology

▪ Innovative contributions:

▪ A uniform API for data distribut ion, based on the data stream
abstraction

▪ Technology-independent framework for memory
management, zero-copy transfers and efficient packet
processing

▪ User-space scheduler

INSANE: INtegrated Selective Acceleration at the Network Edge​

LUNAR
App

LUNAR
App

…MQTT DDSAMPQ

INSANE APIs (client library)

INSANE
RuntimeMemory Manager

Packet
Processing

Engine

Packet Scheduler

Polling Thread Pool

TCP/IP XDP DPDK RDMA

Hardware

K
e

rn
e

l
U

se
rs

pa
ce

22

INSANE: Latency and Throughput Evaluation Results and Comparison

Two nodes directly interconnected

→ to minimize network operations overhead

▪ OS: Ubuntu 22.04

▪ CPU: 18-core Intel 19-10980XE @ 3.00Ghz

▪ RAM: 64GB

▪ NIC: Mellanox DX-6 100Gbps

Evaluation running a ping-pong application for the RTT,
and one-way source to sink for the Throughput.

Comparison with other State-of-the-Art solut ion:
Demikernel [1](Catnip and Cat nap)

▪ INSANE has a slight ly higher latency (ns-scale), but…

▪ … Elevated Throughput

INSANE achieves a good balance between high
throughput and low latency.

[1] Zhang, Irene, et al. "The Demikernel Datapath OS Architecture for Microsecond-scale Datacenter Systems." Proceedings of the ACM SIGOPS 28th Sym posium on
Operating System s Principles. 2021.

23

INSANE: Comparison between Insane-based MOM (Lunar), DDS and ZeroMQ

Lunar MOM is implemented on top of INSANE

Two nodes directly interconnected

→ to minimize network operations overhead

▪ OS: Ubuntu 22.04

▪ CPU: 18-core Intel 19-10980XE @ 3.00Ghz

▪ RAM: 64GB

▪ NIC: Mellanox DX-6 100Gbps

Evaluation running a lunar-based ping-pong application for the
RTT, and one publisher to one subscriber for the throughput

Comparison with other State-of-the-Art MOM: Cyclone DDS [1] and

ZeroMQ [2]

In the accelerated case (Lunar fast) Lunar MOM outperforms the

other solutions in both RTT and throughput tests.

[1] https://cyclonedds.io/

[2] https://zeromq.org/

ZeroMQ is

excluded as it

showed unstable

performance

during the tests

24

Future Work (1/2): Are those Approaches Just for the Network? Considering
the Infrastructure

https://developer.nvidia.com/networking/doca
https://ipdk.io/

25

Future Work (2/2): Extensions towards full programmability

▪ Architectural enhancements:

▪ Transition from context-specific

memory pools to a pool of Generic

Data Buffers

▪ Incorporate different acceleration

technologies as loadable modules
on-demand.

▪ Programmability: exploiting compute

resources for in-network processing and

observability

Applications

INSANE APIs (client library)

INSANE
Runtime

Memory
Manager

Packet
Processing

Engine

Data Packet Scheduler

Thread Pool

Hardware

Generic
Data Buffers

SHM

Module Loader

TX Queue

Rx 1 Queue

Rx n Queue

Kernel
TCP/IP

DPDK RDMA SPDK GPUDirect DOCA …

26

E2E TSN Orchestration

&

TSN-enabled Virtual Environments

27

Statement: A Cloud Perspective – Everything-as-a-Service

▪ Cloud computing benefits from scale economy of
general-purpose technologies offered as-a-Service.

▪ Best suited for elastic workloads, e.g., big data
batches.

▪ Paid in terms of many software layers, introducing
unacceptable overhead, especially for URLLC
environments.

▪ Lack of as-a-Serviceoffers supporting URLLC
solutions in phy/virtualized (commodity) soft-real
time environments.

28

Ultra-Low Latency 5G applications in VM-based Environments

ULL applications require sub-millisecond end-to-end latency. Most of this budget must be allocated for external provider

operations: end-host processing must be extremely efficient [1]

To fulfil these constraints, application rely on networking technology that are at odds with virtualization

Provider-controlled systems (0.6 ms)User-controlled systems (0.4 ms)

Subscriber

app

5G Subscriber

Publisher

app

5G Transmitter

Provider

infrastructure

< 25 km

5G Subscriber

5G Transmitter

< 25 km

[1] Xiang, Zuo, et al. "Reducing latency in virtual machines: Enabling tactile Internet for human-machine co-working." IEEE Journal on Selected Areas in Communications 37.5 (2019): 1098-

1116.

29

TSN-enabled Virtual Environments for URLLC: Virtual PTP clocks

To run unmodified TSN applications in VM, we provide

each VM with a virtualized clock that tracks the host’s

system clock

SYNCHRONIZATION STEPS

Host NIC sync with the rest of the network via PTP

The PTP process synchronizes the NIC clock with the

host system clock

VMs virtual clocks sync with host clocks

A Network Time Protocol (NTP) process synchronize

the VM’s system clock using the virtual clock as a

reference

1

2

3

4

Host

NIC
gPTP Domain

HARDWARE

CLOCK

VIRTUAL

CLOCK

REAL-TIME

CLOCK

Linux

Bridge

PTP

VM2

vNIC2vPTP2

NTP

VM1

vNIC1vPTP1

NTP

1

2

3

4

30

TSN-enabled Virtual Environments for URLLC: Optimizing the Datapath

Main sources of datapath overhead are in the

kernel networking stack: data copies, context

switches, etc. [1]

However, TSN scheduling is performed by the

guest networking stack

OUR SOLUTION

▪ Guest kernel is untouched

▪ Host kernel is bypassed using DPDK, a library for

userspace packet processing.

frontend driver

eth0

H
o
st

 u
se

rs
p
ac

e
H

o
st

 k
er

ne
l

VM 1

eth1

backend driver

tap0

virtual switch

Kernel-based

paravirtualization

eth2

frontend driver

VM 2

eth0

backend driver

vhost-user-0

virtual switch

DPDK library

Userspace

paravirtualization

[1] Cai, Qizhe, et al. "Understanding host network stack overheads." Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 2021.

31

TSN-enabled Virtual Environments for URLLC: Evaluation Setup

GOAL Show that virtualized TSN applications preserve sub-millisecond

E2E latency and good determinism.

Assuming 60% of the budget reserved for 5G WAN propagation, we set the

latency threshold to 0.4 ms

TESTBED SETUP

▪ 2 UP Xtreme boards (Talker and Listener)

▪ 4 1Gbit TSN NICs (Intel I210)

▪ Intel Core i3-8145UE CPU with 2/4 cores

▪ 8GB of RAM

▪ OS - Ubuntu 20.04 with Linux kernel 5.4.0

▪ 1 TSN-compliant RelyumRELY-TSN-BRIDGE switch

TEST APPLICATION One publisher, one subscriber, each running

baremetal or in VMs on a separate hosts. Exchange UDP packets with 1ms
publishing cycle

Talker Host

N
IC

Talker VM

O
V

S

K
er

n
el

vNICvPTP

PTP

Listener Host

N
IC

Listener VM

O
V

S

K
er

n
el

vPTPvNIC

PTPSwitch

TSN

Talker Host

N
IC

Talker VM

O
V

S

D
P

D
K

vNICvPTP

PTP

Listener Host

N
IC

Listener VM

O
V

S

D
P

D
K

vPTPvNIC

PTPSwitch

TSN

Talker

NIC

Listener

NICPTP PTP

Switch

TSN

32

TSN-enabled Virtual Environments for URLLC: E2E Latency and Jitter Evaluation

The experiment demonstrates our solution's ability to support TSN applications in virtual environments, with
latency stable < 400us

→ The OVS-DPDK setup performs even better than bare-metal thanks to kernel bypassing

33

TSN-enabled Virtual Environments for URLLC: 5G RAN Disaggregation

34

Resource disaggregation and containerization in the C2TC

Typical C2TC applications are disaggregated and containerized:

▪ Applications are designed as interacting components

▪ Each component lives in an isolated container

Orchestrators (e.g., Kubernetes) can optimize the placement of
these components based on:

▪ Application requirements

▪ Edge node capabilities (e.g., CPU available)

However, orchestrators currently do NOT consider networking in
their placement decision, even if network delays might disrupt the
operations of application requiring:

1. Ultra-Low Latency

2. Deterministic behavior

35

Flannel and the overhead of container overlay network

Kubernetes can create overlay networks among
containers through a set of Container Network Interface

(CNI) plugins

There are many CNI plugins, e.g., Flannel

Although with different tools and mechanisms, they set

up the same network configuration, introducing two

crucial issues for mission-critical applications:

1. Multiple instances of the kernel-based network stack

2. Impossibility to configure TSN protocol parameters

APPLICATION

Linux

KernelContainer UDP/IP

Virtual

Switch

Host UDP/IP

TSN scheduler

Physical

Network

36

KuberneTSN is a new Kubernetes CNI that allows deterministic communication between containers through a

new userspace TSN scheduler and achieves ULL through a kernel-bypassing, zero-copy datapath

KuberneTSN: A CNI for Time-Sensitive Applications in the Computing Continuum

Flannel

tsn-cni

Physical Network

APPLICATION

LibKTSN

Userspace

Virtual Switch

UDP/IP

Physical Network

Linux

KernelContainer UDP/IP

Virtual Switch

Host UDP/IP

TSN scheduler

UDP/IP

KTSNd

Shared

Memory

37

KuberneTSN: Evaluation Setup

GOAL Show that tsn-cni can configure the network to
achieve low-latency and a deterministic behavior

TESTBED SETUP

▪ 2 machines equipped with

▪ 2.5Gbit Intel I225 NIC

▪ Intel i9-10980XE 18/36 CPU

▪ 64GB RAM

▪ 1 TSN-compliant switch

TEST APPLICATION 1 pub, 1 sub, running in containers on

separate hosts, exchange UDP packets with 1ms publishing
cycle

Host 1

N
IC

TSN

Publisher

F
la

n
n

e
l

Host 2

N
IC

TSN

Subscriber

F
la

n
n

e
l

Switch

TSN

Talker Host

N
IC

TSN

Publisher

ts
n
-c

i

Listener Host

N
IC

TSN

Subscriber

ts
n
-c

n
i

Switch

TSN

Host 1

TSN

Publisher
NIC

Host 2

TSN

Subscriber
NIC

Switch

TSN

38

KuberneTSN: End-to-End Latency & Determinism Evaluation

We consider different data sizes (64, 256, 1024 bytes) and compare the results to

a bare-metal deployment and a typical Flannel configuration

21.2 us

41.7 us

-12% latency on

average over Flannel

C
D
F 99% at 28.1 us

99% at 30.7 us

KuberneTSN is the most

precise option

39

KuberneTSN: Future Work

▪ Kubernetes can create overlay networks among containers through

a set of Container Network Interface (CNI) plugins

▪ Currently do not consider networking for placement decision, even if

network delays might disrupt the operations of application requiring:
ULL, deterministic behavior

▪ PROBLEM: two crucial issues for mission-critical applications

▪ Multiple instances of the kernel-based network stack

▪ Impossibility to configure TSN protocol parameters

▪ POSSIBLE SOLUTION:

▪ KuberneTSN defines a new Kubernetes CNI plugin: kernel-

bypassing zero-copy datapath, userspace TSN scheduler

▪ Integration of Multus CNI → Kubernetes plugin that enables
attaching multiple network interfaces to pods.

▪ Layered orchestrator for network/compute resources

[1] A. Garbugli, L. Rosa, A. Bujari and L. Foschini, "KuberneTSN: a Deterministic Overlay Network for Time-Sensitive Containerized Environments,"

ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023, pp. 1494-1499, doi: 10.1109/ICC45041.2023.10279214.

40

E2E TSN Orchestration: QoS-Aware Management and Control

The Centralized Network Configuration (CNC): Manages
the networked devices enforcing QoS as requested by

TSN communication endpoint: time synchronization,

VLAN setup, and network schedule

The Centralized User Configuration (CUC): Cooperate

with the TSN agent to manage the TSN stream required
by the end devices

The Knowledge Base: Stores information regarding
managed elements. Information can be sent by the

participants or requested directly from the knowledge

base.

The TSN Agent: Query the CUC to request valid QoS-

aware TSN flows and uses Netlink as a protocol to
manage and monitor the status of a TSN stream

Talker

TSN Agent

NIC T1

NIC T2
Listener

TSN Agent

NIC L1

NIC L2

TSN
Switch

2

TSN
Switch

3

TSN
Switch

1

CUC

CNC
Knowledge

Base

OPC-UA | DDS | Zenoh OPC-UA | DDS | Zenoh

NETCONF/YANG

41

We used a UDP-based traffic with a payload varying from 32, 64, 128 and 256 bytes, and with a regular interval of 1 ms

TESTBED SETUP

▪ 3 UP Xtreme boards (Talker, Listener, and CUC+CNC+Knowledge Base)

▪ 4 1Gbit TSN NICs (Intel I210)

▪ Intel Core i3-8145UE CPU with 2/4 cores

▪ 8GB of RAM

▪ OS - Ubuntu 20.04 with Linux kernel 5.4.0

▪ 3 TSN-compliant RelyumRELY-TSN-BRIDGE switches

▪ Each switch has 4 1Gbit ports

E2E TSN Orchestration: Latency and Jitter Evaluation

42

E2E TSN Orchestration: Reconfiguration Scenario

The experiment demonstrates the ability of TSN agents to handle reconfiguration events.

→ The communication is initially serviced via the S1 and, following a link-drop event, goes

through S2 with a downtime period due to the reconfiguration of about 150 ms

43

Future Work: Extending with Wi-Fi

▪ Increased Mobility in Industrial Automation: Reducing wiring
complexity, enabling versatile network topologies

▪ Applications in Robotics and AGVs: Supporting real-time applications

in automated vehicles and industrial robotics

▪ Integrating deterministic networking over Ethernet and wireless

infrastructure

[1] open-sdr/openwifi: open-source IEEE 802.11 WiFi baseband FPGA (chip) design: driver, software (github.com)

▪ Wi-Fi Integration for Wireless TSN: Increasing

network range and flexibility, addressing

latency and jitter challenges

▪ SOLUTION: Utilizing an open-source Wi-Fi

stack for adaptable and customizable
TSN solutions, e.g., openwifi [1]

https://github.com/open-sdr/openwifi

44

Concluding Remarks: The Future of Industrial Networking

Integration of TSN in Industrial Networks → TSN is revolutionizing industrial network communications,

ensuring high reliability, and deterministic data delivery

Synergy with Emerging Technologies → TSN, in conjunction with advancements in 5G, Wi-Fi 7, and

cutting-edge hardware solutions, can lead to more efficient, flexible, and scalable industrial

networks

Future Directions → Anticipate further integration of TSN with emerging wireless technologies,

enhancing the capabilities of Industrial IoT, Smart Cities, and Automated Vehicles. The move

towards a data-centric network architecture and specialized hardware acceleration opens new

possibilities for innovation and efficiency in industrial applications

Challenges and Opportunities → Challenges in standardizing and deploying these technologies on
a large scale. However, significant opportunities for research, development, and innovation in the

field of industrial networking

www.unibo.it

Andrea Garbugli

Armir Bujari

Department of Computer Science and Engineering (DISI)

University of Bologna – Italy ​

andrea.garbugli@unibo.it

armir.bujari@unibo.it

mailto:andrea.garbugli@unibo.it
mailto:Armir.bujari@unibo.it

46

Introduction to eBPF Technology

▪ The operating system kernel is crucial for
implementing observability, security, and

networking due to its comprehensive system

control.

▪ However, kernel evolution is challenging due to

its central role and the need for high stability and
security

→ eBPF, is a technology that allows running

sandboxed programs in privileged contexts
like the Linux kernel (now also in Windows)

▪ eBPF enables extending kernel capabilities
without altering kernel source code or loading

kernel modules

47

What’s possible with eBPF?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

