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Industry 4.0

A large spread phenomenon and trend to 
consider an evolution of traditional industrial 
processes

Industry 4.0 (I4.0) has multiple meanings:

▪ Connects/merges production with ICT

▪ Merges customer data with machine data

▪ Goes M2M: Machines communicate with 
machines

▪ Components and machines autonomously 

manage production in a flexible, efficient, and 
resource-saving manner
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From Industry 3.0 to Industry 4.0
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Industry 4.0: Technological Enablers
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Industrial Communication Requirements

Service requirements range from best-effort 
traffic to critical real-time traffic

Several organizations (e. g., 3GPP, IEC, IEEE, 
IIC) have defined traffic types and 
corresponding requirements of relevance 
to industrial automation

Needs for appropriate QoS mechanisms for 
the application’s data transmission

Need for (and convergence of) wireless
& wired communication technologies
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Ethernet Rules Industrial Networked Environments

Ethernet has become a new standard for future industrial and automation applications, 
surpassing Fieldbus technologies
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Networking Enabler (1/3): Time-Sensitive Networking (TSN)

Many Industrial Ethernet variants, 
e.g., PROFINET and EtherCAT. Most 
of them suffer incompatibility 
problems

IEEE introduced a suite of 
standards called Time-Sensitive 
Networking (TSN) a.k.a
Deterministic Ethernet

IEEE 
Standards

Title Description

IEEE 802.1AS, IEEE 
1588

Timing Synchronization for Time-Sensitive 

Appl ications

Specialized version of the generic Precision Time Protocol 
(gPTP) to synchronizes clocks between network devices

IEEE 802.1Qbv
Enhancements to Traffic Scheduling Time-
Aware Shaper (TAS)

Enables Ethernet frames to be transmitted on a schedule 
(guaranteed), while allowing [non-] time-sensitive frames to 
be transmitted on a best-effort basis (no guarantee). Each 
frame is assigned a queue based on QoS priority

IEEE 802.1Qbu Frame Preemption
Enables frame pre-emption to interrupt the transmission of 
frames in favor of high priority frames

IEEE 802.1CB
Frame Replication and Elimination for 
Rel iability

Provides for capabilities to recover from dropped Ethernet 
frames or broken switches in a TSN network by inserting 
dupl icating frames at the sender and then discarding the 
dupl icate

IEEE 802.1Qat Stream Reservation Protocol (SRP)
Speci fies the admission control framework for admitting or 
rejecting flows based on flow resource requirements and the 
available network resources.

IEEE 802.1Qav
Forwarding and Queuing of Time-Sensitive 
Streams.

Speci fies bridge operations that provide guarantees for time-
sensitive lossless real-time audio/video (A/V) traffic (i.e. 
bounded latency and jitter).

Other protocols:

‐ IEEE 802.1Qcc: Enhancements and Performance Improvements

‐ IEEE 802.1Qci: Per Stream Filtering and Policing

‐ IEEE 802.1Qch: Cycling Queuing and Forwarding
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Networking Enabler (1/3): Synchronization and Packet Scheduling in TSN

A set of standards that make Ethernet networks deterministic, to 
support real-time industrial traffic

▪ Synchronization (IEEE 802.1AS) via a specific profile of the 

Precision Time Protocol (PTP): generic PTP (gPTP) [1]

▪ Clock Master (CM), selected during the election phase

▪ Clock Slave (CS)

▪ Enhancements to Traffic Scheduling Time-Aware Shaper (TAS) [1]

▪ Algorithms for selecting the packet to be sent and Gate 

Control List (GCL) to create cyclical Time-aware 
Windows

▪ Each frame is assigned a queue based on QoS priority

TSN REQUIRES A NIC THAT SUPPORTS

▪ Hardware clock → Precise synchronization

▪ Multi-queues → Traffic classes associated to NIC queue
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[1] Nasrallah, Ahmed, et al. "Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research." IEEE Communications Surveys & Tutorials 21.1 

(2018): 88-145.
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Networking Enabler (2/3): Upcoming Industrial Wi-Fi (IEEE 802.1be – Wi-Fi 7)
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Networking Enabler (3/3): 5G

5G revolutionizes connectivity beyond 4G with 

three key use cases:

▪ Enhanced Mobile Broadband (eMBB)

▪ Massive Machine Type Communications 

(mMTC)

▪ Ultra-Reliable Low-Latency Communications 

(URLLC)
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Enhanced Mobile Broadband (eMBB)

OBJECTIVE: Efficient communication across a vast 

number of devices

APPLICATIONS: HD video streaming, 

virtual/augmented reality, and large data 

downloads

KEY FEATURES: High data rates, improved capacity, 
and enhanced connectivity in densely populated 

areas

5G Use Cases

▪ 1000 × Capacity/km2

▪ >10 Gbps Peak
▪ 100 Mbps for Every User
▪ Spectrum Efficiency
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Massive Machine Type Communications (mMTC)

OBJECTIVE: High-speed internet access for data-

intensive applications

APPLICATIONS: IoT networks, smart cities, 

environmental monitoring

KEY FEATURES: Low power usage, high scalability, 

and support for many low-throughput devices

5G Use Cases

▪ Sporadic Access
▪ Energy Optimized (10yr)
▪ Signaling Reduction
▪ 1000 × Connected Devices
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Ultra-Reliable Low-Latency Communications (URLLC)

OBJECTIVE: Provide reliable and instant 

communication for critical applications

APPLICATIONS: Autonomous vehicles, remote 

surgery, industrial automation, and emergency 

response

KEY FEATURES:  Ultra-low latency, high reliability, and 
immediate data transfer

5G Use Cases

▪ Low Latency (< 1ms)
▪ High Reliability (99.99999%)
▪ High Availability
▪ Reduce Cost per bit
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The Future foresees an Integrated Industrial Computing Environment

[1] 5G TSN - integrating for industrial automation - Ericsson

[2] 5G-ACIA, White Paper Integration of 5G with Time-Sensitive Networking for Industrial Communications, 2021

https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-tsn-integration-for-industrial-automation
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The Computing Continuum and the Next-generation Applications

Vast landscape of application domains: Industrial IoT, Vehicular 
Networks, Smart Cities, AI, and VR/AR.

Coexistence of applications with very different QoS requirements:

▪ High throughput,

▪ Ultra-low latency,

▪ Deterministic communication,

▪ and more…

The Computing Continuum takes center stage, representing a 

more fluid and adaptive cloud environment

▪ Heterogeneous Physical and virtual resources

▪ Heterogeneous communication technologies
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INSANE: 

A Unified Middleware for 

QoS-aware Network Acceleration
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Statement (1/2): Evolution Towards Specialized Hardware Solutions

▪ The network devices landscape has evolved to cater 
the demands of intensive distributed data applications 

and time-sensitive tasks.

▪ Unprecedented network speed: from Gbps to offering 
hundreds of Gbps

→ also maintaining low latency profiles

▪ Moving towards a data-centric network architecture

▪ DPU for efficient packet/data processing.

▪ GPU to accelerate for Machine Learning tasks.

▪ CPU free for compute (application) execution.

▪ However, these technologies present heterogeneous 
APIs and low-level primitives adding to the complexity.

Data-centric network architecture
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Statement (1/2): Overhead in the (Linux) Software Networking Stack​

[1] Cai, Qizhe, et al. "Understanding host network stack overheads." Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 2021.

Linux network stack overheads [1]

Linux Networking Stack:

▪ Robust and efficient* networking infrastructure.

▪ Integrated into the Linux kernel, providing essential networking services.

▪ Enables communication between devices over various network protocols.

Sockets API:

▪ Abstraction layer for network communication.

▪ Provides a unified interface for applications to interact with the 
networking stack.

▪ Facilitates communication over TCP/IP, UDP, and other protocols.

Various sources of overhead:

▪ Data Copies

▪ Context Switching

→ impossible to fully utilize the network bandwidth or achieve 
ultra-low latency supported by modern hardware technologies
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Novel acceleration options and kernel bypassing techniques: e.g., RDMA, XDP, DPDK.

Hardware and Software Acceleration Technologies
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… Similarities between the different approaches to achieve network acceleration

▪ SOLUTION: An edge-cloud data distribution middleware offering 
developers to selectively accelerate crit ical parts of their 
applications

▪ Associate different data flows to different Quality of Service (QoS) 
levels...

...direct mapping to the most appropriate network accelerat ion 

technology

▪ Innovative contributions:

▪ A uniform API for data distribut ion, based on the data stream 
abstraction

▪ Technology-independent framework for memory 
management, zero-copy transfers and efficient packet 
processing

▪ User-space scheduler

INSANE: INtegrated Selective Acceleration at the Network Edge​

LUNAR
App

LUNAR
App

…MQTT DDSAMPQ

INSANE APIs (client library)

INSANE 
RuntimeMemory Manager

Packet
Processing

Engine

Packet Scheduler

Polling Thread Pool

TCP/IP XDP DPDK RDMA

Hardware

K
e

rn
e

l
U

se
rs

pa
ce



22

INSANE: Latency and Throughput Evaluation Results and Comparison

Two nodes directly interconnected 

→ to minimize network operations overhead

▪ OS: Ubuntu 22.04

▪ CPU: 18-core Intel 19-10980XE @ 3.00Ghz

▪ RAM: 64GB

▪ NIC: Mellanox DX-6 100Gbps

Evaluation running a ping-pong application for the RTT, 
and one-way source to sink for the Throughput.

Comparison with other State-of-the-Art solut ion: 
Demikernel [1](Catnip and Cat nap)

▪ INSANE has a slight ly higher latency (ns-scale), but…

▪ … Elevated Throughput

INSANE achieves a good balance between high 
throughput and low latency.

[1] Zhang, Irene, et al. "The Demikernel Datapath OS Architecture for Microsecond-scale Datacenter Systems." Proceedings of the ACM SIGOPS 28th Sym posium  on 
Operating System s Principles. 2021.
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INSANE: Comparison between Insane-based MOM (Lunar), DDS and ZeroMQ

Lunar MOM is implemented on top of INSANE

Two nodes directly interconnected 

→ to minimize network operations overhead

▪ OS: Ubuntu 22.04

▪ CPU: 18-core Intel 19-10980XE @ 3.00Ghz

▪ RAM: 64GB

▪ NIC: Mellanox DX-6 100Gbps

Evaluation running a lunar-based ping-pong application for the 
RTT, and one publisher to one subscriber for the throughput

Comparison with other State-of-the-Art MOM: Cyclone DDS [1] and 

ZeroMQ [2]

In the accelerated case (Lunar fast) Lunar MOM outperforms the 

other solutions in both RTT and throughput tests.

[1] https://cyclonedds.io/

[2] https://zeromq.org/

ZeroMQ is 

excluded as it 

showed unstable 

performance 

during the tests
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Future Work (1/2): Are those Approaches Just for the Network? Considering 
the Infrastructure

https://developer.nvidia.com/networking/doca
https://ipdk.io/
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Future Work (2/2): Extensions towards full programmability

▪ Architectural enhancements:

▪ Transition from context-specific 

memory pools to a pool of Generic 

Data Buffers

▪ Incorporate different acceleration 

technologies as loadable modules 
on-demand.

▪ Programmability: exploiting compute 

resources for in-network processing and 

observability
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E2E TSN Orchestration 

&

TSN-enabled Virtual Environments
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Statement: A Cloud Perspective – Everything-as-a-Service

▪ Cloud computing benefits from scale economy of 
general-purpose technologies offered as-a-Service.

▪ Best suited for elastic workloads, e.g., big data 
batches. 

▪ Paid in terms of many software layers, introducing 
unacceptable overhead, especially for URLLC 
environments. 

▪ Lack of as-a-Serviceoffers supporting URLLC 
solutions in phy/virtualized (commodity) soft-real 
time environments.
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Ultra-Low Latency 5G applications in VM-based Environments

ULL applications require sub-millisecond end-to-end latency. Most of this budget must be allocated for external provider 

operations: end-host processing must be extremely efficient [1]

To fulfil these constraints, application rely on networking technology that are at odds with virtualization
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[1] Xiang, Zuo, et al. "Reducing latency in virtual machines: Enabling tactile Internet for human-machine co-working." IEEE Journal on Selected Areas in Communications 37.5 (2019): 1098-

1116.
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TSN-enabled Virtual Environments for URLLC: Virtual PTP clocks

To run unmodified TSN applications in VM, we provide 

each VM with a virtualized clock that tracks the host’s 

system clock

SYNCHRONIZATION STEPS

Host  NIC sync with the rest of the network via PTP

The PTP process synchronizes the NIC clock with the 

host system clock

VMs virtual clocks sync with host clocks 

A  Network Time Protocol (NTP) process synchronize 

the VM’s system clock using the virtual clock as a 

reference
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TSN-enabled Virtual Environments for URLLC: Optimizing the Datapath

Main sources of datapath overhead are in the 

kernel networking stack: data copies, context 

switches, etc. [1]

However, TSN scheduling is performed by the 

guest networking stack

OUR SOLUTION

▪ Guest kernel is untouched

▪ Host kernel  is bypassed using DPDK, a library for 

userspace packet processing.
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[1] Cai, Qizhe, et al. "Understanding host network stack overheads." Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 2021.
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TSN-enabled Virtual Environments for URLLC: Evaluation Setup

GOAL Show that virtualized TSN applications preserve sub-millisecond

E2E latency and good determinism.

Assuming 60% of the budget reserved for 5G WAN propagation, we set the 

latency threshold to 0.4 ms

TESTBED SETUP

▪ 2 UP Xtreme boards (Talker and Listener)

▪ 4 1Gbit TSN NICs (Intel I210)

▪ Intel Core i3-8145UE CPU with 2/4 cores

▪ 8GB of RAM

▪ OS - Ubuntu 20.04 with Linux kernel 5.4.0

▪ 1 TSN-compliant RelyumRELY-TSN-BRIDGE switch

TEST APPLICATION One publisher, one subscriber, each running 

baremetal or in VMs on a separate hosts. Exchange UDP packets with 1ms 
publishing cycle
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TSN-enabled Virtual Environments for URLLC: E2E Latency and Jitter Evaluation

The experiment demonstrates our solution's ability to support TSN applications in virtual environments, with 
latency stable < 400us

→ The OVS-DPDK setup performs even better than bare-metal thanks to kernel bypassing
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TSN-enabled Virtual Environments for URLLC: 5G RAN Disaggregation
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Resource disaggregation and containerization in the C2TC

Typical C2TC applications are disaggregated and containerized:

▪ Applications are designed as interacting components

▪ Each component lives in an isolated container

Orchestrators (e.g., Kubernetes) can optimize the placement of 
these components based on:

▪ Application requirements

▪ Edge node capabilities (e.g., CPU available)

However, orchestrators currently do NOT consider networking in 
their placement decision, even if network delays might disrupt the 
operations of application requiring:

1. Ultra-Low Latency

2. Deterministic behavior
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Flannel and the overhead of container overlay network

Kubernetes can create overlay networks among 
containers through a set of Container Network Interface 

(CNI) plugins

There are many CNI plugins, e.g., Flannel

Although with different tools and mechanisms, they set 

up the same network configuration, introducing two 

crucial issues for mission-critical applications:

1. Multiple instances of the kernel-based network stack

2. Impossibility to configure TSN protocol parameters
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KuberneTSN is a new Kubernetes CNI that allows deterministic communication between containers through a 

new userspace TSN scheduler and achieves ULL through a kernel-bypassing, zero-copy datapath

KuberneTSN: A CNI for Time-Sensitive Applications in the Computing Continuum
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KuberneTSN: Evaluation Setup

GOAL Show that tsn-cni can configure the network to 
achieve low-latency and a deterministic behavior

TESTBED SETUP

▪ 2 machines equipped with

▪ 2.5Gbit Intel I225 NIC

▪ Intel i9-10980XE 18/36 CPU

▪ 64GB RAM

▪ 1 TSN-compliant switch

TEST APPLICATION 1 pub, 1 sub,  running in containers on  

separate hosts, exchange UDP packets with 1ms publishing 
cycle
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KuberneTSN: End-to-End Latency & Determinism Evaluation

We consider different data sizes (64, 256, 1024 bytes) and compare the results to 

a bare-metal deployment and a typical Flannel configuration

21.2 us

41.7 us

-12% latency on 

average over Flannel

C
D
F 99%  at 28.1 us

99%  at 30.7 us

KuberneTSN is the most 

precise option
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KuberneTSN: Future Work

▪ Kubernetes can create overlay networks among containers through 

a set of Container Network Interface (CNI) plugins

▪ Currently do not consider networking for placement decision, even if 

network delays might disrupt the operations of application requiring: 
ULL, deterministic behavior

▪ PROBLEM: two crucial issues for mission-critical applications

▪ Multiple instances of the kernel-based network stack

▪ Impossibility to configure TSN protocol parameters

▪ POSSIBLE SOLUTION:

▪ KuberneTSN defines a new Kubernetes CNI plugin: kernel-

bypassing zero-copy datapath, userspace TSN scheduler

▪ Integration of Multus CNI → Kubernetes plugin that enables 
attaching multiple network interfaces to pods.

▪ Layered orchestrator for network/compute resources

[1] A. Garbugli, L. Rosa, A. Bujari and L. Foschini, "KuberneTSN: a Deterministic Overlay Network for Time-Sensitive Containerized Environments," 

ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023, pp. 1494-1499, doi: 10.1109/ICC45041.2023.10279214.
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E2E TSN Orchestration: QoS-Aware Management and Control

The Centralized Network Configuration (CNC): Manages 
the networked devices enforcing QoS as requested by 

TSN communication endpoint: time synchronization, 

VLAN setup, and network schedule

The Centralized User Configuration (CUC): Cooperate 

with the TSN agent to manage the TSN stream required 
by the end devices

The Knowledge Base: Stores information regarding 
managed elements. Information can be sent by the 

participants or requested directly from the knowledge 

base.

The TSN Agent: Query the CUC to request valid QoS-

aware TSN flows and uses Netlink as a protocol to 
manage and monitor the status of a TSN stream
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We used a UDP-based traffic with a payload varying from 32, 64, 128 and 256 bytes, and with a regular interval of 1 ms

TESTBED SETUP

▪ 3 UP Xtreme boards (Talker, Listener, and CUC+CNC+Knowledge Base)

▪ 4 1Gbit TSN NICs (Intel I210)

▪ Intel Core i3-8145UE CPU with 2/4 cores

▪ 8GB of RAM

▪ OS - Ubuntu 20.04 with Linux kernel 5.4.0

▪ 3 TSN-compliant RelyumRELY-TSN-BRIDGE switches

▪ Each switch has 4 1Gbit ports

E2E TSN Orchestration: Latency and Jitter Evaluation
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E2E TSN Orchestration: Reconfiguration Scenario

The experiment demonstrates the ability of TSN agents to handle reconfiguration events.

→ The communication is initially serviced via the S1 and, following a link-drop event, goes 

through S2 with a downtime period due to the reconfiguration of about 150 ms
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Future Work: Extending with Wi-Fi

▪ Increased Mobility in Industrial Automation: Reducing wiring 
complexity, enabling versatile network topologies

▪ Applications in Robotics and AGVs: Supporting real-time applications 

in automated vehicles and industrial robotics

▪ Integrating deterministic networking over Ethernet and wireless

infrastructure

[1] open-sdr/openwifi: open-source IEEE 802.11 WiFi baseband FPGA (chip) design: driver, software (github.com)

▪ Wi-Fi Integration for Wireless TSN: Increasing 

network range and flexibility, addressing 

latency and jitter challenges

▪ SOLUTION: Utilizing an open-source Wi-Fi 

stack for adaptable and customizable 
TSN solutions, e.g., openwifi [1]

https://github.com/open-sdr/openwifi
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Concluding Remarks: The Future of Industrial Networking

Integration of TSN in Industrial Networks → TSN is revolutionizing industrial network communications, 

ensuring high reliability, and deterministic data delivery

Synergy with Emerging Technologies → TSN, in conjunction with advancements in 5G, Wi-Fi 7, and 

cutting-edge hardware solutions, can lead to more efficient, flexible, and scalable industrial 

networks

Future Directions → Anticipate further integration of TSN with emerging wireless technologies, 

enhancing the capabilities of Industrial IoT, Smart Cities, and Automated Vehicles. The move 

towards a data-centric network architecture and specialized hardware acceleration opens new 

possibilities for innovation and efficiency in industrial applications

Challenges and Opportunities → Challenges in standardizing and deploying these technologies on 
a large scale. However, significant opportunities for research, development, and innovation in the 

field of industrial networking
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Introduction to eBPF Technology

▪ The operating system kernel is crucial for 
implementing observability, security, and 

networking due to its comprehensive system 

control.

▪ However, kernel evolution is challenging due to 

its central role and the need for high stability and 
security

→ eBPF, is a technology that allows running 

sandboxed programs in privileged contexts
like the Linux kernel (now also in Windows)

▪ eBPF enables extending kernel capabilities 
without altering kernel source code or loading 

kernel modules
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What’s possible with eBPF?
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