Master Degree in Computer Engineering

Natural Language Processing Final Exam

February 20th, 2023

- 1. [2 points] With reference to the task of part of speech tagging, define the notion of open class and closed class tags, providing some examples.
- 2. [6 points] Some text T has been tokenized based on white spaces. The resulting dictionary and word frequencies are reported in the following table

word	hug	pug	pun	bun	hugs
freq	10	5	12	4	5

Apply the byte pair encoding algorithm to derive subword tokens for T, using the character '-' to mark the end of each word. Report and comment each of the first eight iterations (merge operations) in a run of the algorithm, showing the frequency updates at each step.

3. [5 points] Let $x_{1:n} = x_1, x_2, \ldots, x_n$ be an input word sequence, and let $\mathcal{Y}(x_{1:n})$ be the set of all possible part of speech tag sequences $y_{1:n} = y_1, y_2, \ldots, y_n$ for $x_{1:n}$. Introduce the family of models called linear chain conditional random fields and explain how these models are used to solve the problem of finding the optimal sequence $\hat{y}_{1:n}$, defined as

 $\hat{y}_{1:n} = \operatorname*{argmax}_{y_{1:n} \in \mathcal{Y}(x_{1:n})} P(y_{1:n} \mid x_{1:n})$

4. [2 points] With reference to the task of syntactic analysis, introduce the notion of constituent, also called phrase. Provide some examples of constituency test, used to identify the constituent structure of a sentence.

(see next page)

- 5. **[5 points]** With reference to contextualized language models, also called pre-trained language models, answer the following questions.
 - (a) Briefly explain the notions of adaptation, feature extraction and fine tuning.
 - (b) Introduce and motivate the use of adapter modules in the transformer.
- 6. **[5 points]** In the context of transition-based dependency parsing, consider the English sentence 'these results suggest that Fli-1 is likely to regulate genes' along with the projective dependency tree consisting of the following unlabeled dependency relations:

head	results	suggest	$\langle \text{ROOT} \rangle$	is	is	suggest	is	regulate	is	regulate
dependent	these	results	suggest	that	Fli-1	is	likely	to	regulate	genes

- (a) Draw a graphical representation of the dependency tree above, with arcs directed from the head to the dependent.
- (b) Apply to the above tree the oracle presented in class to construct a sequence of training instances for the arc-standard parser.
- 7. [6 points] Let $x_{1:n} = x_1, x_2, \ldots, x_n$ be a source sentence and let $y_{1:n} = y_1, y_2, \ldots, y_m$ be the target translation.
 - (a) Explain how $P(y_{1:n} | x_{1:n})$ is modeled in neural machine translation.
 - (b) Explain how the encoder-decoder neural architecture is exploited to implement neural machine translation.
- 8. [2 points] Introduce the task of entity linking.