Master Degree in Computer Engineering

Natural Language Processing Final Exam

September 23rd, 2022

- 1. [2 points] State the so-called distributional hypothesis, and explain when and how it is used in natural language processing.
- 2. [5 points] With reference to 2-gram models, answer the following questions.
 - (a) Introduce the basic idea underlying Laplace smoothing, and provide its mathematical definition.
 - (b) Reformulate Laplace smoothing using the notion of adjusted count $C^*(w_t \mid w_{t-1})$, and define the notion of relative discount.
- 3. [6 points] Consider the following term-context matrix, providing co-occurrences for target words car, book, airport and library against contexts words school, travel, sport and movies.

	school	travel	sport	movies
car	15	105	27	8
book	107	22	13	12
airport	5	87	0	3
library	103	0	0	2

For all entries in the main diagonal, indicate how to compute the positive pointwise mutual information. Use fractions and logarithms in your answers **without** computing these operators. For the purpose of this exercise, assume that no other word/context pairs matter, and assume that each context word appears in the context of only one occurrence of a target word, and the other way around.

4. [2 points] Describe the notions of extrinsic and intrinsic evaluations. Discuss the disadvantages of extrinsic evaluation.

(see next page)

- 5. [5 points] With reference to the contextualized language models, answer the following questions.
 - (a) Introduce the basic architecture of BERT.
 - (b) Define and motivate the two training methodologies of masked language modeling and next sentence prediction.
- 6. [5 points] In the context of transition-based dependency parsing, consider the French sentence 'Une lettre avait été envoyée la semaine dernière aux salariés' along with the projective dependency tree consisting of the following unlabeled dependency relations.

head	lettre	envoyée	envoyée	envoyée	$\langle \text{ROOT} \rangle$	semaine	envoyée	semaine	envoyée	aux
dependent	Une	lettre	avait	été	envoyée	la	semaine	dernière	aux	salariés

Answer the following questions.

- (a) Draw a graphical representation of the dependency tree above, with arcs directed from the head to the dependent.
- (b) Apply to the above tree the oracle presented in class to construct a sequence of training instances for the arc-standard parser.
- 7. [6 points] Consider the end-to-end application of text-based question answering, and answer the following questions.
 - (a) Introduce the machine reading task and the notions of query, passage and span. Define the span probability $P(p_i, \ldots, p_j \mid q, p)$ and explain how this probability is approximated by means of start and end probabilities.
 - (b) Introduce the Stanford attentive reader for machine reading, and discuss the main representation and equations used by this neural model.
- 8. [2 points] With reference to the evaluation of language models, define and discuss the perplexity measure.