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Distributed Systems: 

Time



Time and Clocks

Ø We need to measure time accurately:
Ø At what time an event occurred at a computer ?

Ø Algorithms for clock synchronization are 
useful for
Ø concurrency control based on timestamp 

ordering
Ø authenticity of requests
Ø avoiding duplicate updates



§ There is no global clock in a distributed 
system, hence no absolute global time
§ clock accuracy and synchronisation

n Process state and global state
q Are there some states occuring “at the same 

time” ?



n What clock properties are required by the 
Unix make program when it uses local files?

n What clock properties are required by the 
Unix make program when it uses distributed 
files?



Clock Synchronization

n When each machine has its own clock, an 
event that occurred after another event may 
nevertheless be assigned an earlier time.



§ Logical time is an alternative
§ It focuses on ordering of events



Computation of the mean solar day



Coordinated Universal Time (UTC)

n International Atomic Time (TAI) is based on 
very accurate physical clocks (drift rate 10-13)

n UTC is an international standard for time 
keeping

n It is based on atomic time, but occasionally 
adjusted to astronomical time

n It is broadcast from radio stations on land and 
satellite (e.g. GPS)

•



…adjusting physical clock…

n TAI seconds are of constant length, unlike solar 
seconds.  Leap seconds are introduced when 
necessary to keep in phase with the sun.



n Computers with receivers can synchronize 
their clocks with these timing signals

n Signals from land-based stations are 
accurate to about 0.1-10 millisecond

n Signals from GPS are accurate to about 1 
microsecond



…clock time and UTC…



• Each computer in a DS has its own internal 
clock used by local processes to obtain the 
value of the current time

• clocks on different computers may give 
different times
q computer clocks drift from perfect time and their 

drift rates differ from one another. 
q clock drift rate: the relative amount that a 

computer clock differs from a perfect clock

•



n Even if clocks on all computers in a DS are 
set to the same time, their clocks will 
eventually vary quite significantly unless 
corrections are applied



Remind ...

n A distributed system is defined as a collection P of N 
processes pi  , i = 1,2,… N

n Processors do not share memory
n Each process pi has a state si consisting of its variables 

(which it transforms as it executes)
n Processes communicate only by messages (via a  

network)
n Actions of processes:

q Send, Receive, change their own (internal) state
n Event: the occurrence of a single action that a process 

carries out as it executes



n Events at a single process pi can be placed 
in a total ordering denoted by the relation ®i
between the events. i.e.

e ®i e’ � if and only if e occurs  before e’ at pi

n A history of process pi: is a series of events 
ordered by ®i 

history(pi)= hi = <ei0, ei1, ei2, …>

•



Clocks

The computer’s clock (for timestamping events)

n the time on the computer’s hardware clock Hi(t)

n The software clock:

Ci(t)= aHi(t) + b

n Ci(t) is the reading of the software clock

Clock resolution < time interval between successive events



Skew between computer clocks

Skew: the difference between the times on two clocks (at any 
instant)

Network

•

Network



§ Computer clocks are subject to clock drift (they count 
time at different rates)

§ Clock drift rate: the difference per unit of time from 
some ideal reference clock 

§ Ordinary quartz clocks drift by about 1 sec in 11-12 
days. (10-6 secs/sec).

§ High precision quartz clocks drift rate is about 10-7 or 
10-8 secs/sec



Synchronizing (physical) clocks

n External synchronization
q A computer’s clock Ci is synchronized with an external authoritative 

time source S, if:
q |S(t) - Ci(t)| < D for i = 1, 2, … N  over an interval I 
q The clocks Ci are accurate to within the bound D. 

n Internal synchronization
q The clocks of a pair of computers are synchronized with one 

another so that:
q | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval I
q The clocks Ci and Cj agree within the bound D.



n Internally synchronized clocks are not necessarily 
externally synchronized, as they may drift collectively

n If the set of processes P is synchronized externally 
within a bound D, it is also internally synchronized 
within bound 2D



Clock correctness

n A hardware clock, H is said to be correct if its drift rate is 
within a bound r > 0. (e.g. 10-6 secs/ sec)

n This means that the error in measuring the interval 
between real times t and t’ is bounded:
q (1 - r) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + r ) (t’ - t)

(where t’>t)
q Which forbids jumps in time readings of hardware 

clocks

•



n Weaker condition of monotonicity
q t' > t Þ C(t’) > C(t) 
q e.g. required by Unix make
q can achieve monotonicity with a hardware clock 

that runs fast by adjusting the values of a ans 
b ( Ci(t)= aHi(t) + b )



n a faulty clock is one that does not obey its 
correctness condition 

n crash failure - a clock stops ticking
n arbitrary failure - any other failure e.g. jumps 

in time

the 'Y2K bug' …



Clock synchronization in a synchronous system

n a synchronous distributed system is one in which :
q the time to execute each step of a process has known 

lower and upper bounds
q each message transmitted over a channel is received 

within a known bounded time
q each process has a local clock whose drift rate from 

real time has a known bound



Internal synchronization

§ One process p1 sends its local time t to process p2 in a 
message m,

§ p2 could set its clock to t + Ttrans where Ttrans is the time 
to transmit m

§ Ttrans is unknown but min ≤ Ttrans ≤ max
§ uncertainty u = max-min. Set clock to t + (max + min)/2 
then skew ≤ u/2

In the Internet, we can only say Ttrans = min + x where x >= 0



n Cristian’s algorithm -
q a single time server might fail, so they suggest the  

use of a group of synchronized servers
q it does not deal with faulty servers



Cristian's Algorithm

n Getting the current time from a time server.



Cristian’s method for an asynchronous system

mr

mt
p Time server,S

Tround is the round trip time recorded by p

n A time server S receives signals from a UTC source
n Process p requests time at mr and receives t at mt

n p sets its clock to t + Tround/2



Cristian’s method (1989) for an 
asynchronous system
n Accuracy ± (Tround/2 - min) :

q because the earliest time S puts t in message mt is 
min after p sent mr. 

q the latest time was min before mt arrived at p
q the time by S’s clock when mt arrives is in the range 

[t+min, t + Tround - min]

•

min is an estimated minimum round trip time



Berkeley algorithm

n Berkeley algorithm
q An algorithm for internal synchronization of a group of 

computers
q A master polls to collect clock values from the others 

(slaves)
q The master uses round trip times to estimate the slaves’

clock values

•



The Berkeley Algorithm



The Berkeley Algorithm

n The time daemon 
asks all the other 
machines for their 
clock values. 



The Berkeley Algorithm

n The machines 
answer.



The Berkeley Algorithm

n The time daemon 
tells everyone how 
to adjust their clock.



n It takes an average (eliminating any above some 
average round trip time or with faulty clocks)

n It sends the required adjustment to the slaves 
(better than sending the time which depends on the 
round trip time)

n Measurements
q 15 computers, clock synchronization 20-25 millisecs drift 

rate < 2x10-5

q If master fails, can elect a new master to take over (not in 
bounded time)



Network Time Protocol (NTP)
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n It synchronizes clients to UTC
q Reliability from redundant paths, 
q scalable,
q authenticates time sources

•



Network Time Protocol (NTP)
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Primary servers are connected to UTC 
sources

Secondary servers are synchronized to 
primary servers

Synchronization subnet - lowest level servers 
in users’ computers

•



NTP - synchronisation of servers

n The synchronization subnet can reconfigure if failures occur, e.g.
q a  primary that loses its UTC source can become a secondary
q a secondary that loses its primary can use another primary

•



NTP - synchronisation of servers
n Modes of synchronization:

q Multicast
q A server within a high speed LAN multicasts time to others which 

set clocks assuming some delay (not very accurate)
q Procedure call

q A server accepts requests from other computers (like Cristian’s 
algorithm). Higher accuracy.  

q Symmetric
q Pairs of servers exchange messages containing time information
q Used where very high accuracies are needed (e.g. for higher 

levels)

•



Messages exchanged between a pair of NTP peers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

Each message bears timestamps of recent events:
q Local times of Send and Receive of previous message
q Local times of Send of current message

•



Messages exchanged between a pair of 
NTP peers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

n Recipient notes the time of receipt Ti ( we have Ti-3, Ti-2, Ti-1, Ti)
n In symmetric mode there can be a non-negligible delay between 

messages



Accuracy of NTP
n For each pair of messages between two servers, 

NTP estimates an offset o, between the two clocks 
and a delay di (total time for the two messages, 
which take t and t’)
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o

n This gives us (by adding the equations) :
di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1

n Also (by subtracting the equations)
o = oi + (t’ - t )/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

•



Accuracy of NTP
n Using the fact that t, t’>0 it can be shown that 

oi - di /2 ≤ o ≤ oi + di /2 .
q Thus oi is an estimate of the offset and di is a measure of 

the accuracy
n NTP servers filter pairs <oi, di>, estimating reliability 

from variation, allowing them to select peers 
n Accuracy of 10s of millisecs over Internet paths (1 

on LANs)

•



Logical time and logical clocks

n Instead of synchronizing clocks, event ordering can be used
1. For any two events occurred at the same process pi , they occurred in the 

order observed by  pi , that is ®i

2. when a message, m is sent between two processes, send(m) ®receive(m)
3. The happened before relation is transitive
4. the happened before relation is the relation of causal ordering

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time



Logical time and logical clocks

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

a® b (at p1) c®d (at p2) b ® c because of m1 also d® f because of m2

Not all events are related by ®
consider a and e (different processes and no chain of messages to relate them)
they are not related by ® ; they are said to be concurrent; write as a || e



Lamport’s logical clocks
n A logical clock is a monotonically increasing software counter. It need not 

relate to a physical clock.
n Each process pi has a logical clock, Li which can be used to apply logical 

(Lamport) timestamps to events
q LC1: Li is incremented by 1 before each event at process pi

q LC2: 
n (a) when process pi sends message m, it piggybacks t =  Li 

n (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before 
timestamping the event receive (m)

a b

c d

e f

m1

m2
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p1

p2

p3

Physical 
time



Lamport’s logical clocks

a b

c d

e f
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time

n each of p1, p2, p3 has its logical clock initialised to zero, 
n the clock values are those immediately after the event.
n for m1, 2 is piggybacked and c gets max(0,2)+1 = 3 
n e®e’ implies L(e)<L(e’)
n The converse is not true, that is L(e)<L(e’) does not imply e®e’



Lamport’s logical clocks
n A logical clock is a monotonically increasing software counter. It need not 

relate to a physical clock.
n Each process pi has a logical clock, Li which can be used to apply logical 

(Lamport) timestamps to events
q LC1: Li is incremented by 1 before each event at process pi

q LC2: 
n (a) when process pi sends message m, it piggybacks t =  Li 

n (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before 
timestamping the event receive (m)
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Lamport’s Logical Clocks

n (a) Three processes, each with its own clock. 
The clocks run at different rates. 



Lamport’s Logical Clocks

n (b) Lamport’s algorithm corrects the clocks.



Lamport’s Logical Clocks

n The positioning of Lamport’s logical 
clocks in distributed systems.



Example: Totally Ordered Multicasting

n Figure 6-11. Updating a replicated database and 
leaving it in an inconsistent state.



Vector Clocks

Concurrent message transmission 
using logical clocks.



Vector clocks

n Vector clocks overcome the shortcoming of Lamport logical 
clocks (L(e) < L(e’) does not imply e®e’ )

n Vector timestamps are used to timestamp  local events
n Vi[i] is the number of events that pi has timestamped
n Vi[j] ( j≠ i) is the number of events at pj that pi has been affected 

by



Vector clocks

n Vector clock Vi at process pi is an array of N integers
q VC1: initially Vi[j] = 0 for i, j = 1, 2, …N
q VC2: before pi timestamps an event it sets Vi[i] := Vi[i] +1
q VC3: pi piggybacks t = Vi on every message it sends
q VC4: when pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j]) (a merge

operation)

a b

c d

e f

m1

m2
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(2,2,2)(0,0,1)
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Vector clocks

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)
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n At p1 a(1,0,0) b (2,0,0) piggyback (2,0,0) on m1
n At p2 on receipt of m1 get max ((0,0,0), (2,0,0)) = (2, 0, 0), add 1 

to own element = (2,1,0)
n Meaning of =, <=, max etc for vector timestamps - compare 

elements pairwise
n Note that e® e’ implies V(e)<V(e’). The converse is also true. 
n c || e( parallel) because neither V(c) <= V(e) nor V(e) <= V(c).



Enforcing Causal Communication

n Figure 6-13. Enforcing causal 
communication.



Summary on time and clocks in DS

n accurate timekeeping is important for distributed systems. 
n algorithms (e.g. Cristian’s and NTP) synchronize clocks in 

spite of their drift and the variability of message delays.
n for ordering of an arbitrary pair of events at different 

computers, clock synchronization is not always practical. 
n the happened-before relation is a partial order on events 

that reflects a flow of information between them. 
n Lamport clocks are counters that are updated according to 

the happened-before relationship between events. 
n vector clocks are an improvement on Lamport clocks,

q we can tell whether two events are ordered by happened-before or 
are concurrent by comparing their vector timestamps

•



…Distributed Systems…

End of lectures


