
Distributed
Systems

a.y. 2023/2024

Distributed Systems:

Time

Time and Clocks

Ø We need to measure time accurately:
Ø At what time an event occurred at a computer ?

Ø Algorithms for clock synchronization are
useful for
Ø concurrency control based on timestamp

ordering
Ø authenticity of requests
Ø avoiding duplicate updates

§ There is no global clock in a distributed
system, hence no absolute global time
§ clock accuracy and synchronisation

n Process state and global state
q Are there some states occuring “at the same

time” ?

n What clock properties are required by the
Unix make program when it uses local files?

n What clock properties are required by the
Unix make program when it uses distributed
files?

Clock Synchronization

n When each machine has its own clock, an
event that occurred after another event may
nevertheless be assigned an earlier time.

§ Logical time is an alternative
§ It focuses on ordering of events

Computation of the mean solar day

Coordinated Universal Time (UTC)

n International Atomic Time (TAI) is based on
very accurate physical clocks (drift rate 10-13)

n UTC is an international standard for time
keeping

n It is based on atomic time, but occasionally
adjusted to astronomical time

n It is broadcast from radio stations on land and
satellite (e.g. GPS)

•

…adjusting physical clock…

n TAI seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when
necessary to keep in phase with the sun.

n Computers with receivers can synchronize
their clocks with these timing signals

n Signals from land-based stations are
accurate to about 0.1-10 millisecond

n Signals from GPS are accurate to about 1
microsecond

…clock time and UTC…

• Each computer in a DS has its own internal
clock used by local processes to obtain the
value of the current time

• clocks on different computers may give
different times
q computer clocks drift from perfect time and their

drift rates differ from one another.
q clock drift rate: the relative amount that a

computer clock differs from a perfect clock

•

n Even if clocks on all computers in a DS are
set to the same time, their clocks will
eventually vary quite significantly unless
corrections are applied

Remind ...

n A distributed system is defined as a collection P of N
processes pi , i = 1,2,… N

n Processors do not share memory
n Each process pi has a state si consisting of its variables

(which it transforms as it executes)
n Processes communicate only by messages (via a

network)
n Actions of processes:

q Send, Receive, change their own (internal) state
n Event: the occurrence of a single action that a process

carries out as it executes

n Events at a single process pi can be placed
in a total ordering denoted by the relation ®i
between the events. i.e.

e ®i e’ � if and only if e occurs before e’ at pi

n A history of process pi: is a series of events
ordered by ®i

history(pi)= hi = <ei0, ei1, ei2, …>

•

Clocks

The computer’s clock (for timestamping events)

n the time on the computer’s hardware clock Hi(t)

n The software clock:

Ci(t)= aHi(t) + b

n Ci(t) is the reading of the software clock

Clock resolution < time interval between successive events

Skew between computer clocks

Skew: the difference between the times on two clocks (at any
instant)

Network

•

Network

§ Computer clocks are subject to clock drift (they count
time at different rates)

§ Clock drift rate: the difference per unit of time from
some ideal reference clock

§ Ordinary quartz clocks drift by about 1 sec in 11-12
days. (10-6 secs/sec).

§ High precision quartz clocks drift rate is about 10-7 or
10-8 secs/sec

Synchronizing (physical) clocks

n External synchronization
q A computer’s clock Ci is synchronized with an external authoritative

time source S, if:
q |S(t) - Ci(t)| < D for i = 1, 2, … N over an interval I
q The clocks Ci are accurate to within the bound D.

n Internal synchronization
q The clocks of a pair of computers are synchronized with one

another so that:
q | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval I
q The clocks Ci and Cj agree within the bound D.

n Internally synchronized clocks are not necessarily
externally synchronized, as they may drift collectively

n If the set of processes P is synchronized externally
within a bound D, it is also internally synchronized
within bound 2D

Clock correctness

n A hardware clock, H is said to be correct if its drift rate is
within a bound r > 0. (e.g. 10-6 secs/ sec)

n This means that the error in measuring the interval
between real times t and t’ is bounded:
q (1 - r) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + r) (t’ - t)

(where t’>t)
q Which forbids jumps in time readings of hardware

clocks

•

n Weaker condition of monotonicity
q t' > t Þ C(t’) > C(t)
q e.g. required by Unix make
q can achieve monotonicity with a hardware clock

that runs fast by adjusting the values of a ans
b (Ci(t)= aHi(t) + b)

n a faulty clock is one that does not obey its
correctness condition

n crash failure - a clock stops ticking
n arbitrary failure - any other failure e.g. jumps

in time

the 'Y2K bug' …

Clock synchronization in a synchronous system

n a synchronous distributed system is one in which :
q the time to execute each step of a process has known

lower and upper bounds
q each message transmitted over a channel is received

within a known bounded time
q each process has a local clock whose drift rate from

real time has a known bound

Internal synchronization

§ One process p1 sends its local time t to process p2 in a
message m,

§ p2 could set its clock to t + Ttrans where Ttrans is the time
to transmit m

§ Ttrans is unknown but min ≤ Ttrans ≤ max
§ uncertainty u = max-min. Set clock to t + (max + min)/2
then skew ≤ u/2

In the Internet, we can only say Ttrans = min + x where x >= 0

n Cristian’s algorithm -
q a single time server might fail, so they suggest the

use of a group of synchronized servers
q it does not deal with faulty servers

Cristian's Algorithm

n Getting the current time from a time server.

Cristian’s method for an asynchronous system

mr

mt
p Time server,S

Tround is the round trip time recorded by p

n A time server S receives signals from a UTC source
n Process p requests time at mr and receives t at mt

n p sets its clock to t + Tround/2

Cristian’s method (1989) for an
asynchronous system
n Accuracy ± (Tround/2 - min) :

q because the earliest time S puts t in message mt is
min after p sent mr.

q the latest time was min before mt arrived at p
q the time by S’s clock when mt arrives is in the range

[t+min, t + Tround - min]

•

min is an estimated minimum round trip time

Berkeley algorithm

n Berkeley algorithm
q An algorithm for internal synchronization of a group of

computers
q A master polls to collect clock values from the others

(slaves)
q The master uses round trip times to estimate the slaves’

clock values

•

The Berkeley Algorithm

The Berkeley Algorithm

n The time daemon
asks all the other
machines for their
clock values.

The Berkeley Algorithm

n The machines
answer.

The Berkeley Algorithm

n The time daemon
tells everyone how
to adjust their clock.

n It takes an average (eliminating any above some
average round trip time or with faulty clocks)

n It sends the required adjustment to the slaves
(better than sending the time which depends on the
round trip time)

n Measurements
q 15 computers, clock synchronization 20-25 millisecs drift

rate < 2x10-5

q If master fails, can elect a new master to take over (not in
bounded time)

Network Time Protocol (NTP)

1

2

3

2

3 3

n It synchronizes clients to UTC
q Reliability from redundant paths,
q scalable,
q authenticates time sources

•

Network Time Protocol (NTP)

1

2

3

2

3 3

Primary servers are connected to UTC
sources

Secondary servers are synchronized to
primary servers

Synchronization subnet - lowest level servers
in users’ computers

•

NTP - synchronisation of servers

n The synchronization subnet can reconfigure if failures occur, e.g.
q a primary that loses its UTC source can become a secondary
q a secondary that loses its primary can use another primary

•

NTP - synchronisation of servers
n Modes of synchronization:

q Multicast
q A server within a high speed LAN multicasts time to others which

set clocks assuming some delay (not very accurate)
q Procedure call

q A server accepts requests from other computers (like Cristian’s
algorithm). Higher accuracy.

q Symmetric
q Pairs of servers exchange messages containing time information
q Used where very high accuracies are needed (e.g. for higher

levels)

•

Messages exchanged between a pair of NTP peers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

Each message bears timestamps of recent events:
q Local times of Send and Receive of previous message
q Local times of Send of current message

•

Messages exchanged between a pair of
NTP peers

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

n Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)
n In symmetric mode there can be a non-negligible delay between

messages

Accuracy of NTP
n For each pair of messages between two servers,

NTP estimates an offset o, between the two clocks
and a delay di (total time for the two messages,
which take t and t’)
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o

n This gives us (by adding the equations) :
di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1

n Also (by subtracting the equations)
o = oi + (t’ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

•

Accuracy of NTP
n Using the fact that t, t’>0 it can be shown that

oi - di /2 ≤ o ≤ oi + di /2 .
q Thus oi is an estimate of the offset and di is a measure of

the accuracy
n NTP servers filter pairs <oi, di>, estimating reliability

from variation, allowing them to select peers
n Accuracy of 10s of millisecs over Internet paths (1

on LANs)

•

Logical time and logical clocks

n Instead of synchronizing clocks, event ordering can be used
1. For any two events occurred at the same process pi , they occurred in the

order observed by pi , that is ®i

2. when a message, m is sent between two processes, send(m) ®receive(m)
3. The happened before relation is transitive
4. the happened before relation is the relation of causal ordering

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Logical time and logical clocks

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

a® b (at p1) c®d (at p2) b ® c because of m1 also d® f because of m2

Not all events are related by ®
consider a and e (different processes and no chain of messages to relate them)
they are not related by ® ; they are said to be concurrent; write as a || e

Lamport’s logical clocks
n A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock.
n Each process pi has a logical clock, Li which can be used to apply logical

(Lamport) timestamps to events
q LC1: Li is incremented by 1 before each event at process pi

q LC2:
n (a) when process pi sends message m, it piggybacks t = Li

n (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport’s logical clocks

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

n each of p1, p2, p3 has its logical clock initialised to zero,
n the clock values are those immediately after the event.
n for m1, 2 is piggybacked and c gets max(0,2)+1 = 3
n e®e’ implies L(e)<L(e’)
n The converse is not true, that is L(e)<L(e’) does not imply e®e’

Lamport’s logical clocks
n A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock.
n Each process pi has a logical clock, Li which can be used to apply logical

(Lamport) timestamps to events
q LC1: Li is incremented by 1 before each event at process pi

q LC2:
n (a) when process pi sends message m, it piggybacks t = Li

n (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport’s Logical Clocks

n (a) Three processes, each with its own clock.
The clocks run at different rates.

Lamport’s Logical Clocks

n (b) Lamport’s algorithm corrects the clocks.

Lamport’s Logical Clocks

n The positioning of Lamport’s logical
clocks in distributed systems.

Example: Totally Ordered Multicasting

n Figure 6-11. Updating a replicated database and
leaving it in an inconsistent state.

Vector Clocks

Concurrent message transmission
using logical clocks.

Vector clocks

n Vector clocks overcome the shortcoming of Lamport logical
clocks (L(e) < L(e’) does not imply e®e’)

n Vector timestamps are used to timestamp local events
n Vi[i] is the number of events that pi has timestamped
n Vi[j] (j≠ i) is the number of events at pj that pi has been affected

by

Vector clocks

n Vector clock Vi at process pi is an array of N integers
q VC1: initially Vi[j] = 0 for i, j = 1, 2, …N
q VC2: before pi timestamps an event it sets Vi[i] := Vi[i] +1
q VC3: pi piggybacks t = Vi on every message it sends
q VC4: when pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j]) (a merge

operation)

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector clocks

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

n At p1 a(1,0,0) b (2,0,0) piggyback (2,0,0) on m1
n At p2 on receipt of m1 get max ((0,0,0), (2,0,0)) = (2, 0, 0), add 1

to own element = (2,1,0)
n Meaning of =, <=, max etc for vector timestamps - compare

elements pairwise
n Note that e® e’ implies V(e)<V(e’). The converse is also true.
n c || e(parallel) because neither V(c) <= V(e) nor V(e) <= V(c).

Enforcing Causal Communication

n Figure 6-13. Enforcing causal
communication.

Summary on time and clocks in DS

n accurate timekeeping is important for distributed systems.
n algorithms (e.g. Cristian’s and NTP) synchronize clocks in

spite of their drift and the variability of message delays.
n for ordering of an arbitrary pair of events at different

computers, clock synchronization is not always practical.
n the happened-before relation is a partial order on events

that reflects a flow of information between them.
n Lamport clocks are counters that are updated according to

the happened-before relationship between events.
n vector clocks are an improvement on Lamport clocks,

q we can tell whether two events are ordered by happened-before or
are concurrent by comparing their vector timestamps

•

…Distributed Systems…

End of lectures

