Distributed
Systems

a.y. 2023/2024

Distributed Systems:

Time

Time and Clocks

We need to measure time accurately:
» At what time an event occurred at a computer ?

Algorithms for clock synchronization are
useful for

» concurrency control based on timestamp
ordering

» authenticity of requests
» avoiding duplicate updates

There is no global clock in a distributed
system, hence no absolute global time

= clock accuracy and synchronisation

Process state and global state

o Are there some states occuring “at the same
time” ?

What clock properties are required by the
Unix make program when it uses local files?

What clock properties are required by the

Unix make program when it uses distributed
files?

Clock Synchronization

Computer on 2144 2145 2146 2147 «4— Time according
which compiler ¢ | | | to local clock
runs output.o created

Computer on 2142 2143 2144 2145 «— Time according
which editor | $ | | to local clock

runs
output.c created

When each machine has its own clock, an
event that occurred after another event may
nevertheless be assigned an earlier time.

Logical time is an alternative
= |t focuses on ordering of events

Computation of the mean solar day

A Earth's orbit

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

Earth on day O at the
transit of the sun

To distant galaxy

/

To distant galaxy

Earth on day n at the
transit of the sun

Coordinated Universal Time (UTC)

International Atomic Time (TAl) is based on
very accurate physical clocks (drift rate 10-13)

UTC is an international standard for time
Keeping

t is based on atomic time, but occasionally
adjusted to astronomical time

It is broadcast from radio stations on land and
satellite (e.g. GPS)

...adjusting physical clock...

TAl

o
-
TN
T w
- &
-
-+ o
— ~
-+ @
-+ ©

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2
| | | | | | | | | | | | | | | |
[[[[[[I [[[[[[I [|

Solar 0 1 2 34 5 6 7 8 9 11 12 1314 15 16 17 18 19 2122 23 24 2
seconds | i ' i l ! i ! i ' !

| | | | | | |
I\I 1 [[I I/II [[[|

Leap seconds introduced into UTC to
get it in synch with TAI

TAI seconds are of constant length, unlike solar

seconds. Leap seconds are introduced when
necessary to keep in phase with the sun.

Computers with receivers can synchronize
their clocks with these timing signals

Signals from land-based stations are
accurate to about 0.1-10 millisecond

Signals from GPS are accurate to about 1
microsecond

...clock time and UTC...

Clock time, C

UTC, t

Each computer in a DS has its own internal
clock used by local processes to obtain the
value of the current time

clocks on different computers may give
different times

o computer clocks drift from perfect time and their
drift rates differ from one another.

o clock drift rate: the relative amount that a
computer clock differs from a perfect clock

Even if clocks on all computers in a DS are
set to the same time, their clocks will
eventually vary quite significantly unless
corrections are applied

Remind ...

A distributed system is defined as a collection P of N
processes p;,:=1,2,... N

Processors do not share memory

Fach process p;has a state s;consisting of its variables
(which it transforms as it executes)

Processes communicate only by messages (via a
network)

Actions of processes:
a Send, Recezve, change their own (internal) state

Event: the occurrence of a single action that a process
carries out as it executes

Events at a single process p; can be placed
in a total ordering denoted by the relation —.
between the events. i.e.

e —>, e’ if and only if e occurs before e’ at p;

A history of process p;.is a series of events
ordered by —.

history(p;)= h,=<e?, e!, e?, ...>

Clocks

The computet’s clock (for timestamping events)
the time on the computer’s hardware clock H;(t)
The software clock:

Co= aHt) + £
C;(t) 1s the reading of the software clock

Clock resolution < time interval between successive events

Skew between computer clocks

SERCEEOIIC

NRIWRIrk

Skew: the difference between the times on two clocks (at any
instant)

Computer clocks are subject to clock drift (they count
time at different rates)

Clock drift rate: the ditference per unit of time from
some 1deal reference clock

Ordinary quartz clocks drift by about 1 sec in 11-12
days. (107 secs/sec).

High precision quartz clocks drift rate is about 107 or
108 secs/sec

Synchronizing (physical) clocks

External synchronization

a0 A computer’s clock C, is synchronized with an external authoritative
time source S, if:

a [S®-C)| <Dtfori=1,2,... N overan interval I

a The clocks C; are accurate to within the bound D.

Internal synchronization

0 The clocks of a pair of computers are synchronized with one
another so that:

a0 [GO-CG@O] <Dfori=1,2,... Noveraninterval 1
0 The clocks C; and C; agree within the bound D.

Internally synchronized clocks are not necessarily
externally synchronized, as they may drift collectively

If the set of processes P 1s synchronized externally

within a bound D, it 1s also internally synchronized
within bound 2D

Clock correctness

A hardware clock, H 1s said to be correct if its drift rate is
within a bound p > 0. (e.g. 10 secs/ sec)

This means that the error in measuring the interval
between real times #and #’is bounded:

a(1-p) @-H<HHN-HH<=A+p) (£'-7
(where #>7)

a0 Which forbids jumps in time readings of hardware
clocks

Weaker condition of monotonicity
ot >t= C(t)> C(t)
0 e.g. required by Unix make

0 can achieve monotonicity with a hardware clock
that runs fast by adjusting the values of o ans
B (C{t)= aH(t)+ B)

a faulty clock is one that does not obey its
correctness condition

crash failure - a clock stops ticking

arbitrary failure - any other failure e.g. jumps
in time

the 'Y2K bug' ...

Clock synchronization in a synchronous system

a synchronous distributed system 1s one in which :

0 the time to execute each step of a process has known
lower and upper bounds

0 each message transmitted over a channel is recetved
within a known bounded time

0 each process has a local clock whose drift rate from
real time has a known bound

Internal synchronization

= One process p; sends its local time 7 to process p, in a
message 7,

= b, could set its clock to 7+ T, . where T, 1s the time
to transmit 7
" Tans 18 unknown but min < T, = max

" uncertainty # = max-min. Set clock to ¢+ (max + min)/2
then skew < #/2

In the Internet, we can only say T,,,,. = mn + x where x >= 0

rans

Cristian’s algorithm -

0 a single time server might fail, so they suggest the
use of a group of synchronized servers

0 it does not deal with faulty servers

Cristian's Algorithm

Both Tgand Ty are measured with the same clock

To Ty
Client

Request

Time server -------——-—-—----

|, Interrupt handling time

Getting the current time from a time server.

Cristian’s method for an asynchronous system

M

P Time server,S
A time server S receives signals from a UTC source
Process p requests time at m, and receives t at m;
p sets its clock to t + T, ng/2

Trouna IS the round trip time recorded by p

Cristian’s method (1989) for an

asynchronous system

Accuracy £ (T,oyng/2- min) :

0 because the earliest time S puts tin message m; is
min after p sent m,.

o the latest time was min before m; arrived at p

o the time by S’s clock when my arrives is in the range
[t+min, t + T, ,,q - MiN]

min is an estimated minimum round trip time

Berkeley algorithm

Berkeley algorithm

o An algorithm for internal synchronization of a group of
computers

o A master polls to collect clock values from the others
(slaves)

o The master uses round trip times to estimate the slaves’
clock values

“The Berkeley Algorithm

Time daemon

3:00)

00

' 3:00

J\

3
3:00
L Network l
T T
| (W
2:50 3:25

(@)

3:00

+25 f

3:05

The Berkeley Algorithm

Time daemon
3:00 / 3:00

o | (D
. | 3:00

The time daemon ST

asks all the other | |

machines for their

clock values. @ @

“The Berkeley Algorithm
300

10, (5
(b w+25
= The machines

250 3:25
(b)

The Berkeley Algorithm

3:05

=

I 1-20
The time daemon G r

tells everyone how
to adjust their clock.

It takes an average (eliminating any above some
average round trip time or with faulty clocks)

It sends the required adjustment to the slaves
(better than sending the time which depends on the
round trip time)

Measurements

0 15 computers, clock synchronization 20-25 mullisecs drift
rate < 2x107

0 If master fails, can elect 2 new master to take over (not in
bounded time)

‘ Network Time Protocol (N'TP)

= It synchronizes clients to UTC
o Reliability from redundant paths,

o Scalable, .
o authenticates time sources

N~
2\ 2

~ ™~

3 3

 Network Time Protocol (N'TP)

Primary servers are connected to UTC

sougs
Secondary servers are synchronized to
primary servers

/1\
BN

2

~ ~

3 3 3

‘ NTP - synchronisation of servers

= The synchronization subnet can reconfigure if failures occur, e.g.
0 a primary that loses its UTC source can become a secondary

0 a secondary that loses its primary can use another primary

NTP - synchronisation of servers

Modes of synchronization:

o Multicast

0 A server within a high speed LAN multicasts time to others which
set clocks assuming some delay (not very accurate)

o Procedure call
0 A server accepts requests from other computers (like Cristian’s
algorithm). Higher accuracy.
0 Symmetric
0 Pairs of servers exchange messages containing time information

0 Used where very high accuracies are needed (e.g. for higher
levels)

Messages exchanged between a pair of NTP peers

Server B T Tiq T
ime

Time
Server A Ti- 3 Ti

Each message bears timestamps of recent events:
o Local times of Send and Receive of previous message
o Local times of Send of current message

Messages exchanged between a pair of
NTP peers

Server B Ti-2 Ti-1

Time

Time
Server A Ti- 3 Ti

Recipient notes the time of receipt T; (we have T3, Tip, Tiy, T)

In symmetric mode there can be a non-negligible delay between
messages

Accuracy of NTP

For each pair of messages between two servers,
NTP estimates an offset o, between the two clocks
and a delay d; (total time for the two messages,
which take t and)

lipo=Tgstt+oand ;=T +t-0

This gives us (by adding the equations) :
a=t+t=T, -Tizs+t T - T4

Also (by subtracting the equations)
o=o0;+(t-t)2whereo;, = (T, -Tis+ T, -T)2

Accuracy of NTP

Using the fact that ¢, £>0 it can be shown that
o-d/2<o0<o0;+d/2.

o Thus o; is an estimate of the offset and d, is a measure of
the accuracy

NTP servers filter pairs <o;, d>, estimating reliability
from variation, allowing them to select peers

Accuracy of 10s of millisecs over Internet paths (1
on LANS)

Logical time and logical clocks

P1

P2

P3

Instead of synchronizing clocks, event ordering can be used

For any two events occurred at the same process p;, they occurred in the
order observed by p;, thatis —;

when a message, 7 is sent between two processes, send(n) —>receive()

The happened before relation is transitive

4. the happened before relation is the relation of causal ordering

2o Physical

c d time

Logical time and logical clocks

P1 ® ®
b m
P, e ° Physical
time
C d m,
p3 e ». >
e f

a—> b (atpl)c —>d (atp2) b —> c because of ml also d — f because of m?2

Not all events are related by —>»
consider a and e (different processes and no chain of messages to relate them)

they are not related by — ; they are said to be concurrent; write as a Il e

Lamport’s logical clocks

A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock.

Each process p; has a logical clock, I, which can be used to apply logical
(Lamport) timestamps to events

o LC1: L, 1s incremented by 1 before each event at process p;
o LC2:

(a) when process p; sends message 7, it piggybacks /= L

(b) when py receives (m,2) it sets L := max(L, 7) and applies L.LC1 before

timestamping the event recezve (172)

1 2
p L]
1 a b m,

3 4 .

0, e o » Physical
c d time

my
1 5
p3 < ‘l _d

Lamport’s logical clocks

P4

P2

P3

each of pl, p2, p3 has its logical clock initialised to zero,

the clock values are those immediately after the event.

for m, 2 1s piggybacked and ¢ gets max(0,2)+1 = 3

e —e¢’ implies I.(e)<L.(¢)

The converse 1s not true, that is I.(¢)<I(¢’) does not imply ¢ —>¢’

- Physical
c d time

AN
O)

Lamport’s logical clocks

A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock.

Each process p; has a logical clock, I, which can be used to apply logical
(Lamport) timestamps to events

o LC1: L, 1s incremented by 1 before each event at process p;
o LC2:

(a) when process p; sends message 7, it piggybacks /= L

(b) when py receives (m,2) it sets L := max(L, 7) and applies L.LC1 before

timestamping the event recezve (172)

1 2
p L]
1 a b m,

3 4 .

0, e o » Physical
c d time

my
1 5
p3 < ‘l _d

Lamport’s Logical Clocks

P, P, Py
0 0 0
& my, [F o

i 20
18 54 m, [30

54 Bt

30 40 50
36 48 60

42 561« s |70
48 64 80

54 1< M, |72 90
60 80 100

(a)

(a) Three processes, each with its own clock.
The clocks run at different rates.

Lamport’s Logical Clocks

P, P, Py
0 0 0
6 m, 8 10

iz| 16 20
18 541 m, |30

54 Bt

30 | P2 adjusts | 40 190,
36 | its clock |48 60

....... 2 e - I

22 i ms |70
48 69 80

@‘{ 77 90

oL e i 190
76| P, adjusts L85 100

its clock

(b)
(b) Lamport's algorithm corrects the clocks.

Lamport’s Logical Clocks

Application layer
Application sends message \%] I Message is delivered to application
~ Adjust local clock Adijust local clock Middleware layer
and timestamp message

_____________________________ e —

Middleware sends message Message is received

Network layer

The positioning of Lamport’s logical
clocks in distributed systems.

Example: Totally Ordered Multicasting

% Ypdater RERle i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Figure 6-11. Updating a replicated database and
leaving it in an inconsistent state.

Vector Clocks

P, P, P
0 0 0
6 m, 8 10
3] 15| me %%
8 ElEd
54 32 mg |40
30 40| >[50
30 48 60
12 6 e |70
48 69 80
7o s |77 90
76 85 100

Concurrent message transmission
using logical clocks:.

Vector clocks

Vector clocks overcome the shortcoming of Lamport logical
clocks (I(e) < I(¢) does not imply ¢ —¢”)

Vector timestamps ate used to timestamp local events
17]]7] 1s the number of events that p, has timestamped

V7] (J# i) is the number of events at p; that p, has been affected
by

Vector clocks

P1

P2

P3

Vector clock 17; at process p; 1s an array ot IN integers

Q

Q

Q

Q

VCl:initially I}l =0 for7,7=1,2,...N
VC2: before p; timestamps an event it sets Ii[7] := 177 +1

z

VC3: p, piggybacks # = 17, on every message it sends
VC4: when p; receives (m,7) it sets 7]/ := max(17}|/] , 4)]) (a merge

operation)

(1,0,0) (2,0,0)

a t\
(21,0) (22,0)
N

= Physical
c d m, time
(0,0,1) (2,2,2)
@ -

e f

Vector clocks

P1

P2

P3

(1,0,0) (2,0,0)

\£2’1 0) (2.2.0) ~ Physical

c d time

(0,0,1) (2,2,2)
@

-

At plea(L0,0) b (2,0,0) piggyback (2,0,0) on mlf

At p2 on receipt of 7 get max ((0,0,0), (2,0,0)) = (2,0, 0), add 1

to own element = (2,1,0)

Meaning of =, <=, max etc for vector timestamps - compare
elements pairwise

Note that e — ¢ implies I"(e)<V(¢). The converse is also true.
¢ | | e(parallel) because neither 17(c) <= 1"(¢) nor 1(e) <= T17(¢).

‘ Enforcing Causal Communication

VG, = (1,0,0) VC,=(1,1,0)
PO

VC,=(0,00) VC,=(1,0,0)

Summary on time and clocks in DS

accurate timekeeping is important for distributed systems.

algorithms (e.g. Cristian’s and N'TP) synchronize clocks in
spite of their drift and the variability of message delays.

for ordering of an arbitrary pair of events at different
computers, clock synchronization is not always practical.

the happened-before relation 1s a partial order on events
that reflects a tflow of information between them.

Lamport clocks are counters that are updated according to
the happened-before relationship between events.
vector clocks are an improvement on Lamport clocks,

0 we can tell whether two events are ordered by happened-before or
are concurrent by comparing their vector timestamps

...Distributed Systems. ..

End of lectures

