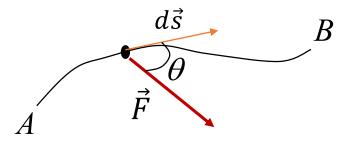


Energia meccanica, leggi di conservazione

Il lavoro di una forza

Un corpo si sposta da A a B per effetto della forza esterna F



Il lavoro è una grandezza scalare

$$W>0\;,\,0\leq\theta<\frac{\pi}{2}\qquad W<0\;,\,\frac{\pi}{2}<\theta<\pi\qquad \qquad W=0\;,\,\theta=\frac{\pi}{2}$$

$$W < 0$$
, $\frac{\pi}{2} < \theta < \pi$

$$W=0$$
, $\theta=\frac{\pi}{2}$

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{s} = \int_{A}^{B} F \cos \theta \, ds = \int_{A}^{B} F_{T} ds$$

Lavoro della forza nello spostamento AB = integrale di linea della forza

$$W = \int\limits_A^B \vec{R} \cdot d\vec{s} = \int\limits_A^B \sum\limits_i \left(\overrightarrow{F_i} \cdot d\vec{s} \right) = \sum\limits_i \int\limits_A^B \overrightarrow{F_i} \cdot d\vec{s} = \sum\limits_i W_i \quad \text{Se agiscono più forze, il lavoro el la somma dei singoli lavori oppure, il lavoro della forza risultante}$$

Lavoro infinitesimo:
$$dW = \vec{F} \cdot d\vec{s} = Fds \cos \theta$$

 $= F_T ds = ma_T ds = m \frac{dv}{dt} ds$
 $= m \frac{ds}{dt} dv = mv dv$

Lavoro finito:
$$W = \int dW = \int_{v_1}^{v_2} mv \, dv =$$
$$= \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2 = \Delta E_k$$

Energia cinetica:
$$E_k = \frac{1}{2} m v^2$$

Il lavoro è uguale alla variazione di energia cinetica

$$W = \Delta E_k$$

L'Energia cinetica

E' una forma di energia legata al movimento

Come tutti i tipi di energia, sono rilevanti le sue variazioni (è definita a meno di una costante)

- Il lavoro motore (W > 0) → aumenta l'energia cinetica
- Il lavoro resistente (W < 0) → diminuisce l'energia cinetica
- Lavoro nullo (W = 0) → l'energia cinetica rimane costante

Il lavoro è nullo ($\Delta E_k = 0$) quando:

- non ci sono forze applicate
- ci sono forze ma la loro risultante e' nulla
- ci sono forze ma la risultante e' ortogonale alla traiettoria (ad esempio nel caso del moto circolare uniforme)

Energia potenziale

Per forze conservative posso scrivere il lavoro come variazione di Energia potenziale

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{s} = -\Delta E_p = E_p(A) - E_p(B)$$

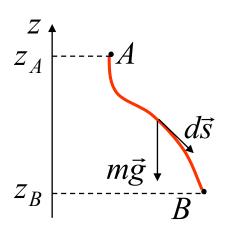
E' una forma di energia legata alla posizione

Come tutti i tipi di energia, sono rilevanti le sue variazioni

e' definita a meno di una costante additiva

Il lavoro motore $(W > 0) \rightarrow$ diminuisce l'energia potenziale Il lavoro resistente $(W < 0) \rightarrow$ aumenta l'energia potenziale Su un percorso chiuso \rightarrow Lavoro nullo (W = 0)

Lavoro della forza peso



$$dW = m\vec{g} \cdot d\vec{s} = (-mg\vec{u}_z) \cdot d\vec{s}$$
$$= -mgds_z = -mgdz$$

$$W = -\int_{A}^{B} mg \, dz = -(mgz_{B} - mgz_{A})$$
$$= -\Delta E_{P}$$

Energia potenziale E_p= mgz

Il lavoro della forza peso è uguale all'opposto della variazione dell'energia potenziale della forza peso

se $z_A > z_B$, lavoro motore (W > 0) \rightarrow diminuisce l'energia potenziale se $z_A < z_B$, lavoro resistente (W < 0) \rightarrow aumenta l'energia potenziale se $z_A = z_B$, lavoro nullo (W = 0) \rightarrow l'energia potenziale rimane costante

Conservazione dell'energia meccanica

7

Chiamiamo ENERGIA MECCANICA la somma di energia cinetica e potenziale.

In presenza di forze conservative sappiamo che: $W=\Delta E_{K}=-\Delta E_{P}$

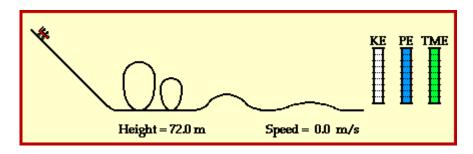
Quindi:
$$E_{K,B} - E_{K,A} = -(E_{P,B} - E_{P,A})$$

$$E_{M,A} = E_{K,A} + E_{P,A} = E_{K,B} + E_{P,B} = E_{M,B}$$

L'energia meccanica si CONSERVA

https://phet.colorado.edu/sims/html/energy-skate-park-basics/latest/energy-skate-park-basics it.html

Se l'energia potenziale diminuisce, l'energia cinetica aumenta e viceversa.



Esempi

1) Un corpo cade verticalmente da una altezza h partendo da fermo, che velocità raggiunge?

$$E_{M,A} = mgh \quad (E_{K,A} = 0)$$

$$E_{M,B} = \frac{1}{2} mv^2 \quad (E_{P,B} = 0)$$

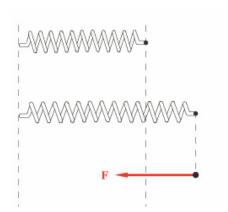
$$E_{M,A} = E_{M,B} \qquad \longrightarrow \qquad v = \sqrt{2gh}$$

2) Un corpo viene lanciato in salita lungo un piano inclinato liscio con velocità iniziale v, calcolare che distanza percorre prima di fermarsi

$$E_{M,A}=rac{1}{2}mv^2, \quad E_{M,B}=mgh$$

$$E_{M,A}=E_{M,B} \implies h=rac{v^2}{2g}$$
 Spazio percorso $x=h/ ext{sen}\,\theta$

Lavoro della forza elastica



$$\vec{F} = -kx\vec{u}_x$$

$$W = \int_{A}^{B} -kx\vec{u}_{x} \cdot d\vec{x} = -k \int_{A}^{B} x dx$$
$$= -\left(\frac{1}{2}kx_{B}^{2} - \frac{1}{2}kx_{A}^{2}\right) = -\Delta E_{p}$$

$$E_P = \frac{1}{2}kx^2$$

Il lavoro della forza elastica è uguale all'opposto della variazione della funzione E_p delle coordinate, detta energia potenziale della forza elastica.

Quando il punto si avvicina al centro $\Delta E_p < 0$ e W > 0 : spostamento naturale Quando il punto si allontana dal centro $\Delta E_p > 0$ e W < 0 : bisogna tirare la molla

https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs_it.html