$$\frac{\text{CONPUTABILITY}(27/14/2023)}{\text{Rice's Theorem }} \xrightarrow{\text{ployarly}?} \xrightarrow{\text{every property of programs}} \xrightarrow{\text{obtich concurres the I/s behaviour }} \xrightarrow{\text{ployarly}?} \xrightarrow{\text{obtich concurres the I/s behaviour }} \xrightarrow{\text{obtich concurres the I/s behaviou$$

Def. (saturated /extensional set):
$$A \subseteq IN$$
 is saturated (extensional)
if for all $m_1 m \in IN$
if $m \in A$ and $\varphi_m = \varphi_m$ then $m \in A$

A saturated if $A = q m | g_m$ satisfies a property of functions)
 $= q m | g_m \in A$
where $A \subseteq \mathcal{Y}_m$ set of all functionss
property
of functions

Examples

¢ LEN 10

$$m = \gamma (Z(1)) \in LEN10$$

 $m = \left\{ \begin{pmatrix} Z(1) \\ Z(1) \\ \vdots \\ Z(1) \end{pmatrix} \right\} > 11$

*
$$K = \{m \mid q_m(m) \downarrow \}$$

 $= \{m \mid q_m \in \mathcal{K}\}$
 $K = \{f \mid f(?) \downarrow \}$???
Here shat K is not saturated
formally I should find $m_1 m \in IN$
 $m \in K$ $q_m(m) \downarrow$
and q_m

$$m \notin K$$
 $q_m(m) \uparrow$

$$md \quad \varphi_m = \varphi_m$$

R

If we were able to show that there is program m
$$\in IN$$
 s.t.
 $q_{rm}(x) = \begin{cases} 1 & \text{if } x = m. \\ 1 & \text{otherwise} \end{cases}$
(*)

we can conclude
(1)
$$m \in K$$
 $q_{m}(m) \downarrow$
(2) for a computable function the are infinitely many proportions
hence there is $m \neq m$ s.t. $q_{m} = q_{m}$
(3) $m \notin K$
 $q_{m}(m) \stackrel{=}{=} q_{m}(m) \uparrow_{K_{1}}$
 $q_{m} = q_{m}$ $m \neq m$
 K is not solveoted!
What about (K) ?
 $\chi \rightarrow P \rightarrow if x \neq P$ them 1 if $x = \text{"def } P(x)$:

Rice's Theorem:

det
$$A \leq IN$$
 if A is saturated $A \neq \phi$, $A \neq IN$
them A is mot recursive

proof

we show K Sm A (since K is not recursive ~ A mot recursive) IN S IN reduction function A κ ·e1 ĸ . Peo Ā Let $e_0 \in IN$ be s.t. $\varphi_{e_0}(x) \uparrow \forall x$ (program for the function orlings) undl fimed Assume le ∉ A let ere A (it exists since A = \$\$) define $q(\alpha, y) = \begin{cases} q_{e_1}(y) & \text{if } x \in K \\ q_{e_n}(y) & \text{if } x \in \overline{K} \end{cases}$ $= \begin{cases} \varphi_{e_1}(y) & \text{if } x \in K & \left[\varphi_x(x)\downarrow\right] \\ \uparrow & \text{if } x \in \overline{K} & \left[\varphi_x(x)\uparrow\right] \end{cases}$ = $\varphi_{e_1}(y) \cdot \mathbb{I}\left(\varphi_{x}(x)\right)$ $\uparrow \quad 1 \quad (\int \varphi_{x}(x) \psi$ $\uparrow \quad otherwise$ = θe1 (y) · 1 (ψ_υ(x,2)) computable !

By smm Missierm Have is
$$S: N \rightarrow N$$
 total and computable s.t. $\forall \alpha, y$
 $q_{S(\alpha)}(y) = g(\alpha, y) = \begin{cases} Pe_1(y) & \text{if } x \in K \\ Pe_0(y) & \text{if } x \in K \end{cases}$
S is the technologing function for $K \leq m A$
* $x \in K \longrightarrow p$ $S(\alpha) \in A$
if $x \in K$ them $\varphi_{S(\alpha)}(y) = g(\alpha, y) = Qe_1(y) \quad \forall y$
if $x \in K$ them $\varphi_{S(\alpha)}(y) = g(\alpha, y) = Qe_0(y) \quad \forall y$
if $x \notin K \longrightarrow S(\alpha) \notin A$
if $x \notin K$ theor $Q_{S(\alpha)}(y) = g(\alpha, y) = Qe_0(y) \quad \forall y$
i.e. $q_{S(\alpha)} = qe_0$. Since $e_0 \notin A$ and A saturated in $S(\alpha) \notin A$
Hence s is the technologies function function for $K \leq m A$ and since
K mot tecursive , we deduce A mot tecursive .
(2) if instead $e_0 \in A$
 $e_0 \notin \overline{A}$
 $\overline{A} \equiv M = (since $A = s = saturated)$
 $\overline{A} \equiv \emptyset$ (since $A = M$)
 $\overline{A} \equiv N = (n - A \equiv \emptyset)$
 $applied to \overline{A}$ we deduce \overline{A} mod tecursive
 $\sim A$ mot tecursive (since $A = k$ and $k = koursive$)$

* <u>Output problem</u> $B_m = d \neq 1 m \in E_{x}$

we observed k≤m Bn

- Bon saturated, in fact

$$B_m = \{ c \mid P_x \in B_m \}$$

 $B_m = \{ f \mid m \in cod(f) \}$

-
$$B_m \neq \emptyset$$

e.g. let $e_1 \in \mathbb{N}$ be, s.t. $\varphi_{e_1}(y) = y \forall y$ mo $m \in E_{e_1} = \mathbb{N}$
 $\rightarrow e_i \in B_m \neq \emptyset$

-
$$Bm \neq IN$$

e.g. let $e_z \in IN$ s.t. $\varphi_{e_z}(y) = m (\neq m)$ $\forall y$
 $e_z \in B_m$ (since $m \notin E_{e_z} = qmy$)

EXAMPLE :

$$I = \{x \in \mathbb{N} \mid P_z \text{ has imfinitely many possible outputs}\}$$

= $q \ge 0$ | E_z is imfinite $\}$

* saturated

$$\begin{aligned} \mathbf{T} &= \mathbf{1} \times \mathbf{1} \quad \mathbf{q}_{\mathbf{z}} \in \mathcal{Y} \\ \text{with} \qquad \mathcal{Y} &= \mathbf{1} \quad \mathbf{f} \quad (\quad \operatorname{cod} (\mathbf{f}) \quad \operatorname{imfimite}) \end{aligned}$$

if er is comparisons exercise => Ee,=N infimite ⇒ ei∈I × I ≠ IN

If le is as before ~ Eez = {m} ~ ez & I => I not recursive, by Rice's theorem. Example

$$A = \{x \mid x \in W_z \cap E_z\}$$

saturated ?

$$A = \{ \varkappa \mid \varphi_{\varkappa} \in \mathcal{A} \}$$

$$A = \{ f \mid 2 \in \operatorname{dorm}(f) \cap \operatorname{cad}(f) \}$$

$$K = \operatorname{dot}(f) \cap \operatorname{cad}(f) = \operatorname{dot}(f) = \operatorname{dot}(f) \cap \operatorname{cad}(f) = \operatorname{dot}(f) = \operatorname{dot}(f) \cap \operatorname{cad}(f) = \operatorname{dot}(f) = \operatorname{do$$

probably and saturated we do not use Rice

 $K \leq_m A$, i.e. that there is a total computable function $s: N \to IN$ We s.t.

$$\begin{aligned} x \in K \quad (ff \quad S(x) \in A \\ \uparrow \\ S(x) \in W_{S(x)} \quad \dots \quad P_{S(x)} (S(x)) \lor \\ omd \\ S(x) \in E_{S(x)} \quad \dots \quad P_{S(x)} (y) = S(x) \quad for \\ some y \end{aligned}$$

we defime

$$g(x_{i}y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases}$$
$$= y \cdot I(\varphi_{x}(x))$$
$$= y \cdot I(\varphi_{y}(x_{i}x)) \qquad \text{computable}$$

By smm theorem there is s: IN -> IN total computable s.t.

$$\varphi_{S(x)}(y) = g(x,y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases}$$

s is the reduction function

-> if
$$x \in K$$
 then $Q_{S(x)}(y) = g(x,y) = y \quad \forall y$
Hence
 $S(x) \in W(S(x) \cap E_{S(x)} = |N \dots N|$. Thus $S(x) \in A$

N

-r if $x \notin K$ thus $q_{S(x)}(y) = g(x,y) \uparrow \forall y$

Hennee $S(x) \notin W_{S(x)} \cap E_{S(x)} = \emptyset$

Thus S(x) ∉ A

Thus K Sm A, and since K not recursive, also A is not recursive.