
Distributed
Systems

a.y. 2023/2024



Distributed Systems:

Coordination



Coordination and agreement

ØAction coordination
ØMutual exclusion

ØAgreement on shared values
ØLeader election



Coordination algorithms

§ for resource sharing: concurrent updates of
– records in a database (record locking)
– files (file locks in stateless file servers)
– a shared bulletin board

§ to agree on actions: whether to
– commit/abort database transaction
– agree on a readings from a group of sensors

§ to dynamically re-assign the role of master
– choose primary time server after crash
– choose co-ordinator after network reconfiguration



§ Centralized solutions are not appropriate
– communications bottleneck

§ Fixed master-slave arrangements are not 
appropriate
– processes crash

§ Varying network topologies
– ring, tree, …. connectivity problems



Requirements

(MC1) At most one process is in CS at the same 
time.

(MC2) Requests to enter and exit are eventually 
granted (no deadlock, no starvation).

(MC3 - Optional, stronger) Requests to enter 
granted according to causality order.



Centralized mutual exclusion

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p 4

p
3p2

p
1



Centralized service

§ Single server implements an imaginary token:
– only the process holding the token can be in CS
– server receives request for token
– replies granting access if CS free; otherwise, the 

request is queued
– when a process releases the token, the oldest request from the 

queue is granted

§ it does not respect causality order of requests (MC3) 



Mutual Exclusion a Centralized Algorithm

n Process 1 asks the coordinator for permission to access a 
shared resource. Permission is granted. 



Mutual Exclusion a Centralized Algorithm

n Process 2 then asks permission to access the same 
resource. The coordinator does not reply.



Mutual Exclusion a Centralized Algorithm

n When process 1 releases the resource, it tells the 
coordinator, which then replies to 2.



Distributed mutual exclusion

• peer processes

• Working hypthesis:

– N asynchronous processes, for simplicity no failures
– guaranteed message delivery (reliable links)
– to execute critical section (CS), each process calls:

• enter()
• resourceAccess()
• exit()



A Distributed Algorithm

1. If the receiver is not accessing the resource and does 
not want to access it, it sends back an OK message to 
the sender.

2. If the receiver already has access to the resource, it 
simply does not reply. Instead, it queues the request.



A Distributed Algorithm

3. If the receiver wants to access the resource as well 
but has not yet done so, it compares the 
timestamp of the incoming message with the one 
contained in the message that it has sent everyone. 
The lowest one wins. 



A Distributed Algorithm

n Two processes want to access a 
shared resource at the same moment.



A Distributed Algorithm

n Process 0 has the lowest timestamp, so it wins.



A Distributed Algorithm

n When process 0 is done, it sends an OK also, so 
2 can now go ahead.



Ricart&Agrawala algorithm

It is based on multicast communication.
• N inter-connected asynchronous processes, each with

– unique id
– Lamport’s logical clock

• processes multicast request to enter:
– timestamped with Lamport’s clock and process id

• entry granted
– when all other processes replied
– simultaneous requests resolved with the timestamp



How it works:
• satisfies the stronger property (MC3)
• if hardware support for multicast, there is only 

one message to enter



Ricart&Agrawala algorithm

On initialization
state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;



Multicast mutual exclusion

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply Reply



A Token Ring Algorithm

n (a) An unordered group of processes on a network. 
(b) A logical ring constructed in software.



Ring-based algorithm

• No server bottleneck, no master
• Processes:

– continually pass token around the ring, in one 
direction

– if do not require access to CS, pass on to neighbour
– otherwise, wait for token and retain it while in CS
– to exit, pass to neighbour



How it works
– continuous use of network bandwith
– delay to enter depends on the size of ring
– causality order of requests not respected 

(MC3)



Maekawa’s algorithm – part 1

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying; 
else

send reply to pi;
voted := TRUE;

end if



Maekawa’s algorithm – part 2

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if



A Comparison of the algorithms

n A comparison of mutual exclusion algorithms.



…Distributed Systems…

End of lecture


