Distributed Systems

a.y. 2023/2024

Distributed Systems:

Naming

- Names:
 - Resource sharing
 - Unique resource identification
 - Reference of locations
- Name resolution
- Naming systems (distributed across…)
- Efficiency and scalability issues

A name is ...

...string of bit (characters) to refer to an entity

- To operate on an entity…access point
- The name of an access point is called address
- Can the name of the access point of an entity be the name of the entity?
- Location independent names

A true identifiers

- An identifier refers to at most one entity.
- Each entity is referred to by at most one identifier.
- An identifier always refers to the same entity

Forwarding Pointers using (client stub, server stub) pairs

Home-Based Approaches

Names to address binding

Human-friendly names

A (name, address) table over the network...

Solving names is related to message routing

Distributed Hash Tables

General Mechanism

Resolve a key k to the address of succ(k)

- A linear approach:
 - □ p
 - \square succ(p+1)
 - □ prec(p)

- Each node maintains a table with m entries
- $FT_p[i] = succ(p+2^{i-1})$
- $= q = FT_p[i] < k < FT_p[i+1]$

Distributed Hash Tables

General Mechanism

Distributed Hash Tables

General Mechanism

Resolving key26 from node1 and key 12from node 28

- Entering the ring....
 - Lookup for succ(p+1)

Leaving the ring...

Keeping the table up-to-date

$$\blacksquare$$
 q = pred(succ(q+1)) ... For FT_q[1]

Arr k = q + 2ⁱ⁺¹ for each entry ...

 Hierarchical organization of a location service into domains, each having an associated directory node.

 Storing information of an entity having two addresses in different leaf domains.

Looking up a location in a hierarchically organized location service.

 (a) An insert request is forwarded to the first node that knows about entity E.

 (b) A chain of forwarding pointers to the leaf node is created.

Name Spaces

A general naming graph with a single root node.

Linking and Mounting (1)

Figure 5-11. The concept of a symbolic link explained in a naming graph.

Linking and Mounting (2)

- Information required to mount a foreign name space in a distributed system
- The name of an access protocol.
- The name of the server.
- The name of the mounting point in the foreign name space.

Linking and Mounting (3)

 Mounting remote name spaces through a specific access protocol.

Name Space Distribution

Name Space Distribution (2)

Item	Global	Administrational	Managerial
Geographical scale of network	Worldwide	Organization	Department
Total number of nodes	Few	Many	Vast numbers
Responsiveness to lookups	Seconds	Milliseconds	Immediate
Update propagation	Lazy	Immediate	Immediate
Number of replicas	Many	None or few	None
Is client-side caching applied?	Yes	Yes	Sometimes

Figure 5-14. A comparison between name servers for implementing nodes from a large-scale name space partitioned into a global layer, an administrational

laver, and a managerial laver.

Iterative name resolution

Recursive name resolution

Implementation of Name Resolution (3)

Server for node	Should resolve	Looks up	Passes to child	Receives and caches	Returns to requester
cs	<ftp></ftp>	# <ftp></ftp>	(°		# <ftp></ftp>
vu	<cs,ftp></cs,ftp>	# <cs></cs>	<ftp></ftp>	# <ftp></ftp>	# <cs> #<cs, ftp=""></cs,></cs>
nl	<vu,cs,ftp></vu,cs,ftp>	# <vu></vu>	<cs,ftp></cs,ftp>	# <cs> #<cs,ftp></cs,ftp></cs>	# <vu> #<vu,cs> #<vu,cs,ftp></vu,cs,ftp></vu,cs></vu>
root	<nl,vu,cs,ftp></nl,vu,cs,ftp>	# <nl></nl>	<vu,cs,ftp></vu,cs,ftp>	# <vu> #<vu,cs> #<vu,cs,ftp></vu,cs,ftp></vu,cs></vu>	# <nl> #<nl,vu> #<nl,vu,cs> #<nl,vu,cs,ftp></nl,vu,cs,ftp></nl,vu,cs></nl,vu></nl>

Recursive name resolution of <nl, vu, cs, ftp>.
Name servers cache intermediate results for subsequent lookups.

Attribute-based naming

(attribute, value) list

Directory services

RDF...resource descriptor framework

LDAP

Lightweight directory access protocol

an LDAP directory entry...

Attribute	Abbr.	Value
Country	С	NL
Locality	L	Amsterdam
Organization	0	Vrije Universiteit
OrganizationalUnit	OU	Comp. Sc.
CommonName	CN	Main server
Mail_Servers	_	137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server		130.37.20.20
WWW_Server		130.37.20.20

Hierarchical Implementations: LDAP

Part of a directory information tree.

Hierarchical Implementations: LDAP (3)

Attribute	Value
Country	NL
Locality	Amsterdam
Organization	Vrije Universiteit
OrganizationalUnit	Comp. Sc.
CommonName	Main server
Host_Name	star
Host_Address	192.31.231.42

Attribute	Value
Country	NL
Locality	Amsterdam
Organization	Vrije Universiteit
OrganizationalUnit	Comp. Sc.
CommonName	Main server
Host_Name	zephyr
Host_Address	137.37.20.10

(b)

Two directory entries having Host_Name as RDN.

Mapping to Distributed Hash Tables (1)

- (a) A general description of a resource.
 - (b) Its representation as an AVTree.

Mapping to Distributed Hash Tables (2)

```
description {
   type = book
   description {
       author = Tolkien
       title = *
   genre =
         (a)
```


(a) The resource description of a query.
 (b) Its representation as an AVTree.

...Distributed Systems...

End of lecture