Katka Streams

Prof. Carlo Ferrari
Michele Stecca, Ph.D.

Developing Kafka Applications

We can use the JAVA Consumer client

Repetitive requirements and patterns appear

Application

Kafka Producer | - Topic 1

Kafka Cluster %

Application

Kafka Consumer

B |

< % Processing

Kafka Producer

Application

Writing an application requires a lot of code

Threading?
State management?

Kafka Cluster %

Topic 2

Developing Kafka Applications

Kafka streams

i Kafka Cluster 3

Kafka Producer

' 2 Topic 1

Topic 2

:

n

¢

D Kafka Streams

Consumer 1

State OnA AN State i
ﬁ Store r‘ !‘- *5-4‘::}/{:) Store

Producer 1
Thraad 1

Application

Record Buffers
Consumar N

| Processing

Producer 1
Thread N

Write an application requires few lines of code
Support stateless and stateful operations

Threading and parallelism

Kafka streams

Kafka Streams is a client library for processing and analyzing data stored in
Kafka. The Kafka Stream APl interacts with a Kafka cluster but the
application does not run directly on Kafka brokers

Supports fault-tolerant

Offers necessary stream processing primitives:
* high-level Streams DSL (Domain Specific Language)
* |ow-level Processor API

Transforms and enriches data

Supports per-record stream processing with millisecond latency (no
micro-batching)

Supports stateless processing, stateful processing, windowing operations

High Level Architecture

You Lan vun one or more instantes of your app. T’hc'f Fun

‘ ihdt?thdcnﬂ‘r but will auhma{jcally distover eath other and tollaborate.

Kafka
Cluster

You tan elastically add and vemove
app instantes during live operations.
[f one instante dies, then the other
instantes will take over its work.

Kafka Streams Architecture

J'nfm‘t Katka Stre amg

- \
Contumer 1 | Comsemer n
‘I. \\\Htﬂr‘l %,-,41};5 1"1 “'.\Er‘ml Oeeflorg
- ne ..'
@ .-—. :
o ().
b i ‘L"'
] T 4 - -
Tk 14 X L 7 TTask -p Tack w-1 = Tad il |

Pl'ulurtr h

Produer 1 |

o r

Stream Threed n

— - -
-

S‘tnim}hr"pil}“

-,

ﬂh‘lr'l Katka Stre amg

KStreams and KTables

A KStream is an abstraction of a record stream
— Each record represents a self-contained piece of data in
the unbounded data set

= A KTable is an abstraction of a changelog stream
— Each record represents an update

Example When you Read the Topic |Data interpreted Messages
= into as interpreted as

All the places All the values of KStream record stream INSERT (append)
Alice hasever akey

been

Where Aliceis Latest value of a KTable changelog UPSERT

right now key stream (overwrite

existing)

KStreams and KTables

Processing Layer
(ksqlDB, Kafka Streams) alice | Rome

Table
plus aggregation

bob | Sydney

Stream
plus schema
(SerDes)

alice | Paris —»| bob |Sydney —»| alice | Rome

Storage Layer Topic

(Brokers) 00100 | 11101 p=»| 11000 | 00011 p—»| 00100 | 00170

Process Topology

¥~ slream
Fm:ﬂﬂrr

\g -
[

O

Processor [oPoLoGy

Process Topology

A processor topology is a graph of stream processors (nodes) that are
connected by streams (edges).

Stream: unbounded, continuously updating data set. A stream is an
ordered and fault-tolerant sequence of immutable key-value pairs (data
records).

Source Processor produces an input stream to its topology from one Kafka
topic by consuming records from these topics and forwarding them to its
down-stream processors.

Sink Processor sends any received records from its up-stream processors
to a Kafka topic.

Processing data in Kafka Streams

= Examples of stateless transformation operations:

- filter

- Creates a new KStream containing only records from the previous KStream
which meet some specified criteria

- map

- Creates a new KStream by transforming each element in the current stream into
a different element in the new stream

- mapValues

- Creates a new KStream by transforming the value of each element in the current
stream into a different element in the new stream

Processing data in Kafka Streams

= Examples of stateless transformation operations (cont’d):

- flatMap

- Creates a new KStream by transforming each element in the current stream into
zero or more different elements in the new stream

- flatMapValues

- Creates a new KStream by transforming the value of each element in the current
stream into zero or more different elements in the new stream

Processing data in Kafka Streams

= Examples of stateful transformation operations:

- countByKey

- Counts the number of instances of each key in the stream; results in a new, ever-
updating KTable

- reduceByKey

- Combines values of the stream using a supplied Reducer into a new, ever-
updating KTable

= » e 3
Partition 1 Ty Kafka Stream —=

Kafka Broker b T Processor
oo iy

e —

Partition 3 k->750 "-.

Partition 4 " :
Kafka Broker Partition 5 Kafka Stream
— "\ Processor State
Partition 6 ;.

Kafka Producer

s L '

Partition 7 n
Kafka Broker Partition 8 Kafka Stream [——
Partition 9 Processor State

/1N

DefaultPartitioner

Complete guide here:
https.//docs.confluent.io/platform/current/streams/developer-guide/dsl-api.html

Kafka Streams & Fault Tolerance: an example

transactions topic

P1 P2 P3 =
Streom Streom Streoam Streom
Processor Processor Processor Processor

Kafka Streams & Fault Tolerance: an example

transactions topic

P2 | - P
Streom Streom Streom Streom
Processor Processor Processor Processor
1 870 1001 | 123 2001 @ 768 3001 | 945
2 543 1002 | 59 2002 @678 3002 | 1000
1000 = 345 2000 | 476 3000 @ 900 4000 | 456

Kafka Streams & Fault Tolerance: an example

Transactions 'tnpic:

P1 P2 P3 Py

i I " £

v 4

F 4
r
Streoam Streom Streom :- _S-'b;‘e.;m)]r
Processor Processor Processor | Processor : Crashed

— |

A B C D

Kafka Streams & Fault Tolerance: an example

transoctions topic b's d""'"ﬂdﬂﬂ'

Kafka Streams
(Windowing)

Stateful operations: Tumbling Windows

Tumbling Window: Fixed-size, non-overlapping windows

A 5-min Tumbling Window
/" Samc tolour means same retovd kc\’

Data records

10 15

0 5
* | 1 1 | * 1 1 1 ¢ 1 1 1 ' 1 | o stream
T T I T O L O L L B i

O H B B]I HE l [

L Windows are treated per vecord key

Stateful operations: Tumbling Windows

Tell me the count of Tweets per time zone every 10 seconds

A 10-second Tumbling Window

HE DEH BEE HE O

° JJime

Stateful operations: Hopping Windows

Hopping Window: Fixed-size, overlapping windows

Samc tolour means same vetovrd ke
Data records /’ !

0 5 10 15
ey stream
[I D I D O time

L Windows are treated per vetord kcy

Stateful operations: Hopping Windows

Every 5 seconds give me the A 10-second Hopping Window with a 5-second “Hop'

count of Tweets over the last 10
seconds NE DOaB OB B OO

Stateful operations: Session Windows

Session Window: Dynamically-sized, non-overlapping, data-driven windows

A Session Window with a 5-min inactivity gap

'/"' Samc f.alowr means Ssame velovd kC‘r
Data records

0 5 10 15
L b L bt ¢ ¢ %t L & 1 E L L % L 1 . stream
N I N O O N N N O B N time

L Windows are tveated Per vetord key

Stateful operations: Session Windows

Tell me the count of Session Windows with 5 seconds timeout, 10 seconds max
Tweets that occur
within 5 seconds of
each other

Time
(second)

Stateful operations: Sliding Windows

Sliding Window: Fixed-size, overlapping windows that work on differences between
record timestamps

A 5-ms Sliding Window

Same tolour means same retord ltcT

Data records /_—
& "N O O O
o 5 10 15
A
(m m
(= =
(.)
&8
(m) m
O _1
g LB
L.

L Windows are treated as vetords are Protessed

Stateful operations: Sliding Windows

Alert me whenever a A 10-second Sliding Window

topic is mentioned
more than 3 times in

under 10 seconds 20 25 Time
& ®o— q

Note: ! (second)

- all tweets on the diagram

belong to the same topic i Output

— (topic, 4)
— (topic, 3)

IMPORTANT: A new window is created each time a record enters the
sliding window or a record drops out of the sliding window.

Stateful operations: Sliding Windows

For example, if we have a time difference of 5000ms and the following data arrives:

R +
| key | value | time |
Fommmm e R L Fommm e +
| A | 1 | 8000 |
R R L R LT +
| A | 2 | 9200 |
Fommmmm s R L Fommmmm s +
| A | 3 | 12400 |
Fommmm s Fommmmm e Fommm e +

We'd have the following 5 windows:
« window [3000;8000] contains [1] (created when first record enters the window)
« window [4200;9200] contains [1,2] (created when second record enters the window)
« window [7400;12400] contains [1,2,3] (created when third record enters the window)
« window [8001;13001] contains [2,3] (created when the first record drops out of the window)
« window [9201;14201] contains [3] (created when the second record drops out of the window)

Source:
https://kafka.apache.org/27/javadoc/org/apache/kafka/streams/kstream/SlidingWind
ows.html

Kafka Streams vs. Spark Streaming

Data stream Unbounded Table

new datain the
data stream

—

new rows appended
to a unboundedtable

Data stream as an unbounded table

https://spark.apache.org/docs/latest/structured-streaming-programming-
guide.html

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

Kafka Connect

« JDBC connector for Kafka connect

Use CDC (Change data capture) tool which integrates with kafka

connect.

52 Karka Connect

.)
5 4
I >
1. e — LB
D.-{-a <) - K Qj Da"‘a
S - SIS, d'ﬂ(a s
purc 8 ——— < Stnk
— — — P ¥ §
o %
. D

Kafka Connect

Kafka Connect is a tool for scalably and reliably streaming data between Apache Kafka and other data
systems.

Runs separately from Kafka brokers.

B Kafka Connect - Overview

. \:,-;_\ Mo -
S M >
77 SQL Server “SOL Server
A VAL e
= DATABASE
SRS onas . &
FUSION MIDDLEWARE e redls cassandra

GOLDENGATE
%) o
cassandra

FTANA 35 debezium

. mongo

= lasti h = Ay
¥ elasncsearc fony

.,
il

WIANA Amazon 53

e & redis € influxdb
T ¥ v

twiktter Ewiktker

DJVI?It .mongo

References

https://www.baeldung.com/java-kafka-streams-vs-kafka-consumer

https://docs.confluent.io/platform/current/streams/

https://kafka.apache.org/documentation/streams/developer-guide/dsl-api.html#streams-developer-
guide-dsl-windowing

https://github.com/sj666/df stream kafka/blob/master/README.md

https://medium.com/event-driven-utopia/understanding-materialized-views-part-2-ae957d40a403

Matteo Nardelli, Kafka Streams: Hands-on Session

