

UNIVERSITÀ DEGLI STUDI DI PADOVA

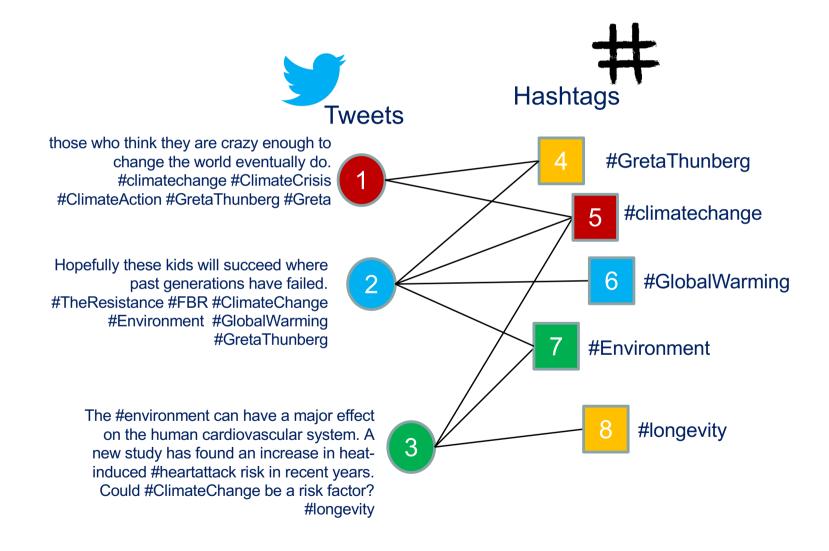
Network Science

A.Y. 23/24

ICT for Internet & multimedia, Data science, Physics of data

Semantic networks

network science tools for their study



An overview

what we will be investigating about semantic networks

- Data collection + polishing
- Building the semantic network (bipartite/projections)
- □ Topic (i.e., community) detection
 - Modularity & InfoMap
 - Non-negative matrix factorization (NMF)
 - Latent Dirichlet allocation (LDA)
 - Variational auto-encoders (VAE)
 - Embeddings and BERTopic

Data collection

how to get data from the Internet using APIs

no longer available unless you pay 5k\$ per month <u>https://developer.twitter.com/en/portal/dashboard</u>

Twitter's plan to cut off free data access evokes 'fair amount of panic' among scientists

Social media platform's intent to increase revenue could end or limit many research projects

8 FEB 2023 · 4:35 PM ET · BY KAI KUPFERSCHMIDT

Twitter's plan to charge researchers for data access puts it in EU crosshairs

Elon Musk's social media giant plans to charge academics to access its data – in potential violation of Europe's content rules

BY MARK SCOTT MARCH 22, 2023

Academic researchers blast Twitter's data paywall as 'outrageously expensive'

By <u>Brian Fung</u>, CNN Published 11:40 AM EDT. Wed April 5, 2023

2.3k upvotes 245 comments

Reddit

Reddit

Subreddit

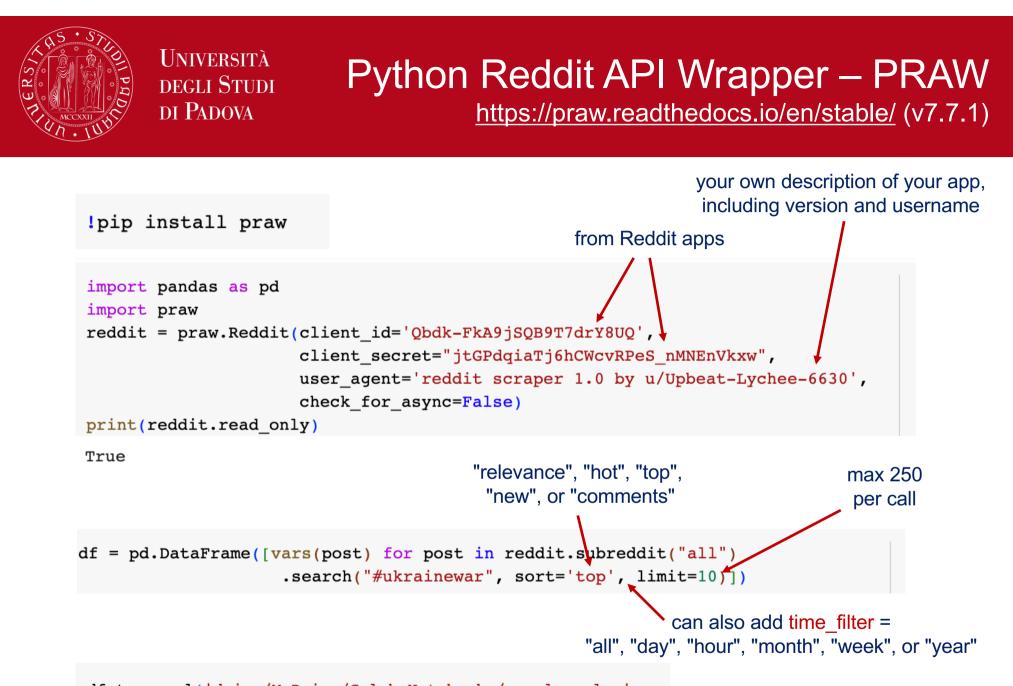
G Q V Q ukrainev 💬 斗 🕂 Advertise 📑
Posts Comments Communities People
r/ukrainewar · 3.5k Members reddit for events of the Ukranian-Russian war ongoing since February 24, Join 2022.
r/UkraineWarVideoReport - 722k Members Community Driven Videos/Photos/Updates and Discussion
r/RuZZiaUkrainewar · 321 Members Unbiased reporting of the Russian Ukraine war. Please be respectful of Pro-Russian views as well as Pro-Ukrainian views. feel free to contribute
r/UkrainianConflict · 453k Members News, analysis, discussion and investigative journalism documenting the Join ongoing conflict in Ukraine.

Reddit apps https://www.reddit.com/prefs/apps

GET NEW REDDIT 🛛 🔍 MY S									ORLDNEWS - NEWS	S - MOVIES - N
😨 reddit 🛛 prefe										
	RENCES opt	ions apps	RSS feeds	friends	blocked	password/er	mail del	ete	Upbeat-Lychee-	5630 (1) ⊵

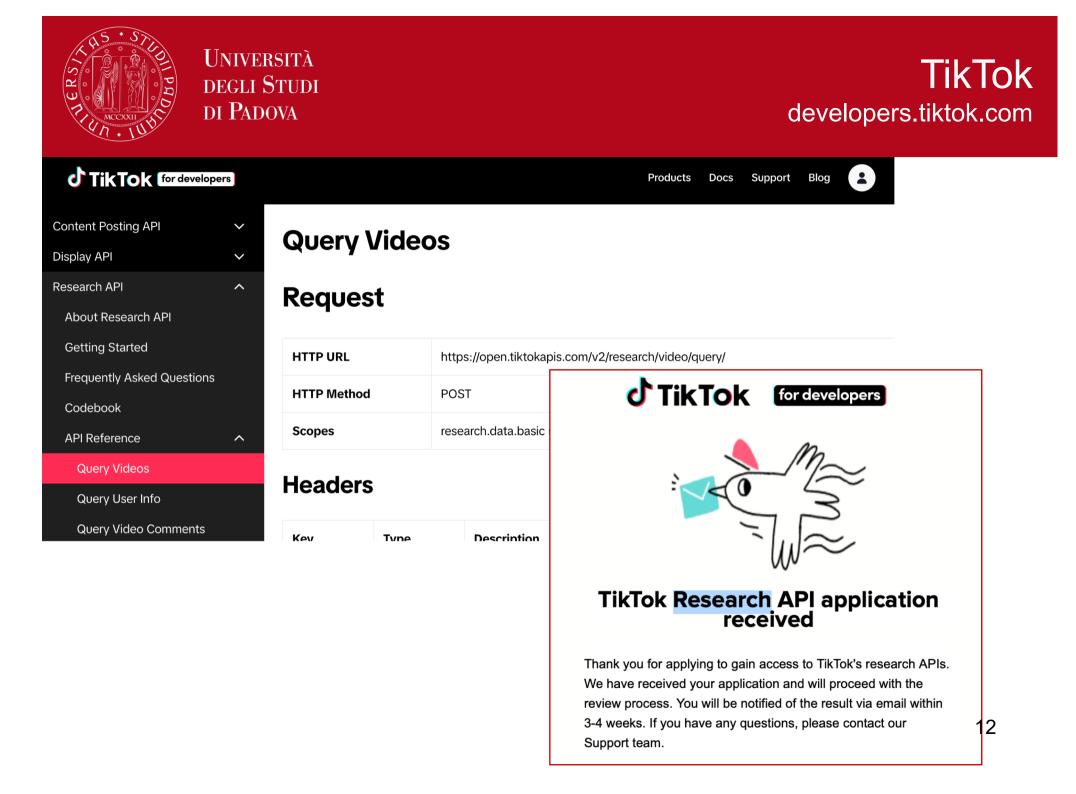
developed applications

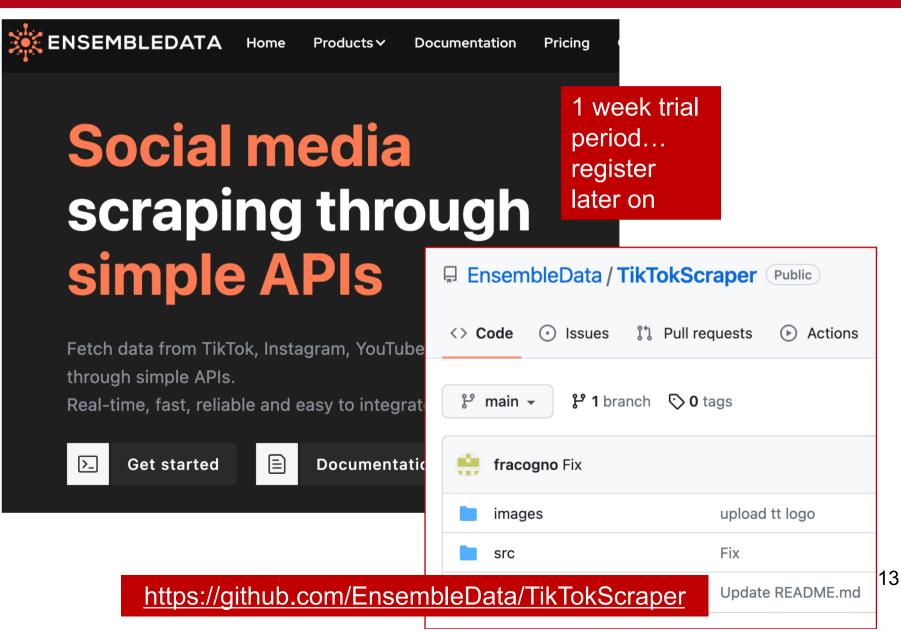
	ownload reddit context for the network science course, at the unioversity of Padova, of hich I am the instructor
client_id	
change icon	username
secret jtGPdqiaTj6hCWcvRPeS_nMNE	Vkxw developers Upbeat-Lychee-6630 that's you!) remove
name ns2023	client_secret add developer:
description download reddit context for science course, at the union	
about url	register
redirect uri https://localhost:8080	asap will
update app delete app	be using this in the 1 st lab
create another app	



Reddit data an example

	there is a list of 116 on which you ca			n this you extrac	ct the d	ate		
	title	created	score	upvote_ratio	ups	num_comments	selftext	
0	Damnwe blinked and missed the T-34 stage of	1.666899e+09	10394	0.99	10394	738		
1	Finnish volunteer sends greetings home from	1.680237e+09	2095	1.00	2095	57		
2	Guess having 5 trucks fall into your office ca	1.663341e+09	1974	1.00	1974	88		
3	[META] Important - Russia- Ukraine Crisis/War:	1.645712e+09	1284	0.89	1284	1	Hi, /u/Anonim97 here.\n\nWe - as a mods of 40k	
4	V*tniks coping hard Over the counter offensive	1.662956e+09	1081	1.00	1081	86		
0	Russia Ukraine War.	1.695349e+09	1	1.00	1	0		





Data preprocessing

how to polish raw data from the Internet

NLP cleaning process of text sources

1. Superficial cleaning

Removing website links Removing accented characters Removing text inside square brackets Removing moderator messages Removing double spaces Removing non-text special words and characters Removing extra-used new lines Limiting all the repetitions to two characters and removing the extra characters Removing punctuation except main sentence punctuation Removing sentences that represent the rules of the community

Fixing contractions Removing emoji Removing hashtags and mentions Removing numbers Lowercasing Correct spellings the bare minimum to polish the text, useful as an input to sentiment analysis

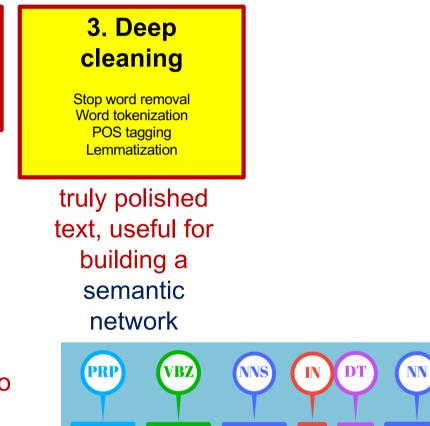
2. Subsentence

Tokenise subsentences

useful for long

text samples

(e.g., Reddit)



sells

She

seashells

seashore

the

SpaCy part-of-speech (POS) tags https://spacy.io/

POS	description	example	POS	description	example
ADJ	adjective	big, old, green, incomprehensible, first	PART	particle	's, not,
ADP	adposition	in, to, during	PRON	pronoun	l, you, he, she, myself, themselves, somebody
ADV	adverb	very, tomorrow, down, where, there	PROPN	proper noun	Mary, John, London, NATO, HBO
AUX	auxiliary	is, has (done), will (do), should (do)	PUNCT	punctuation	., (,), ?
CONJ	conjunction	and, or, but	SCONJ	subordinating conjunction	if, while, that
CCONJ	coordinating conjunction	and, or, but	SYM	symbol	\$, %, §, ©, +, -, ×, ÷, =, :),
DET	determiner	a, an, the	VERB	verb	run, runs, running, eat, ate, eating
INTJ	interjection	psst, ouch, bravo, hello	Х	other	sfpksdpsxmsa
NOUN	noun	girl, cat, tree, air, beauty	SPACE	space	
NUM	numeral	1, 2017, one, seventy- seven, IV, MMXIV	sn	aCy	
			Y	ucy	16

11.

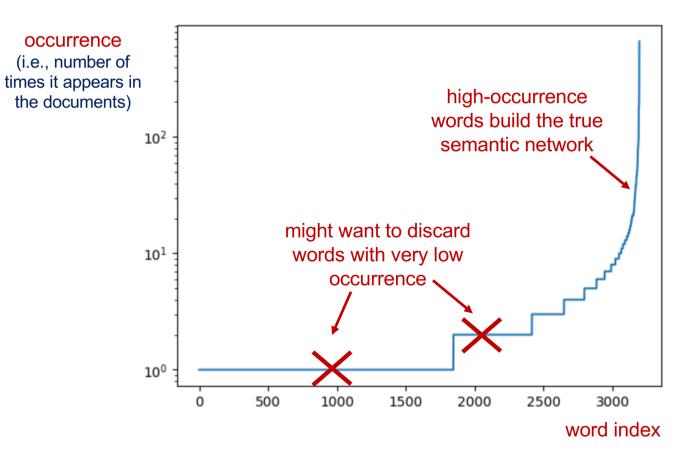
Università degli Studi di Padova

	true dat	e		supe	erficial cleaning ↓	deep c ↓	leaning
title	created	score	upvote_ratio	selftext	title_sup_clean	title_deep_clean	title_deep_clean_pos
Damnwe blinked and missed the T-34 stage of	2022-10- 27	10390	0.99	NaN	damn we blinked and missed the t stage of the	damn blink miss t stage war	[damn ADV, blink VERB, miss VERB, t PROPN, sta
Finnish volunteer sends greetings home from	2023-03- 31	2095	1.00	NaN	finnish volunteer sends greetings home from so	finnish volunteer send greeting home	[finnish ADJ, volunteer NOUN, send VERB, greet
Guess having 5 trucks fall into your office ca	2022-09- 16	1980	1.00	NaN	guess having trucks fall into your office can	guess have truck fall office significant emoti	[guess VERB, have VERB, truck NOUN, fall VERB,
[META] Important - Russia-Ukraine Crisis/War:	2022-02- 24	1280	0.89	Hi, /u/Anonim97 here.\n\nWe - as a mods of 40k	important russia ukraine crisis war info and	important russia ukraine crisis war info way help	[important ADJ, russia PROPN, ukraine PROPN, c
V*tniks coping hard Over the counter offensive	2022-09- 12	1076	1.00	NaN	v tniks coping hard over the counter offensive	tnik cope hard counter offensive traitor pfp Imao	[tnik NOUN, cope VERB, hard ADJ, counter NOUN,
					c	only ADJ, ADV, N	

PROPN, VERB kept

Example always check words occurrencies

Università degli Studi di Padova



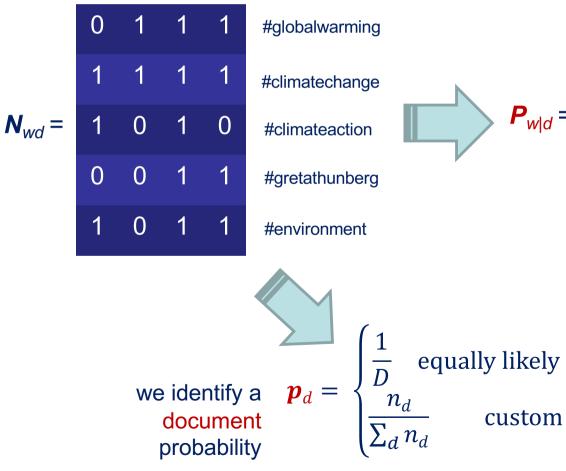
18

Building the semantic network

bipartite and projected counterparts

Probability matrices linking words to documents

number of occurrences of words in documents

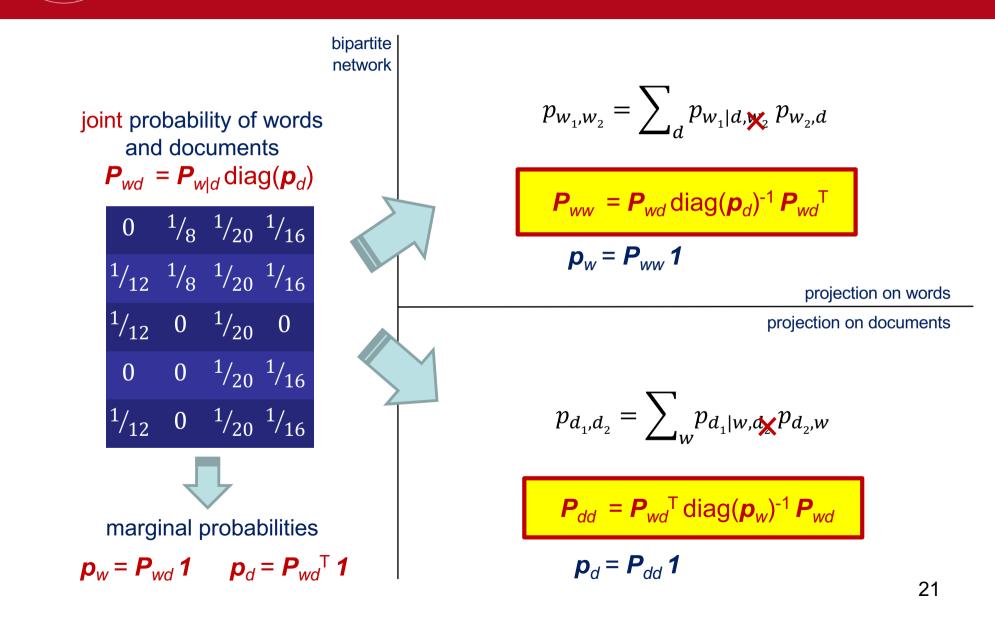


probability of words given a documents

	0	1/2	¹ ⁄5	1⁄4
	1⁄3	1⁄2	¹ /5	1⁄4
=	1⁄3	0	¹ /5	0
	0	0	¹ /5	1⁄4
	1⁄3	0	¹ ⁄5	1⁄4

we capture the statistical properties by normalizing by columns

Probability matrices projecting to words or documents



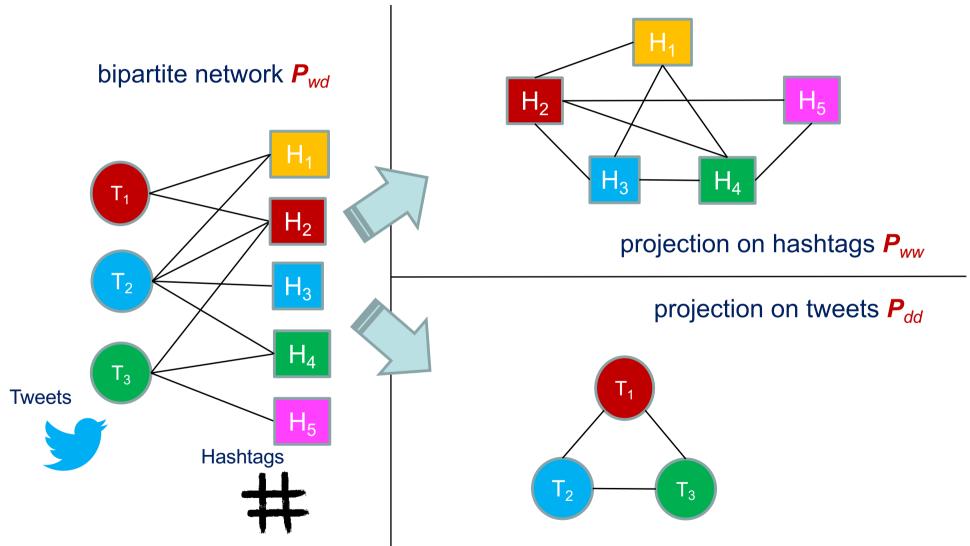
UNIVERSITÀ

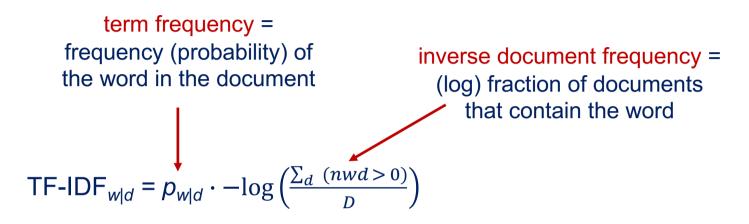
DEGLI STUDI

DI PADOVA

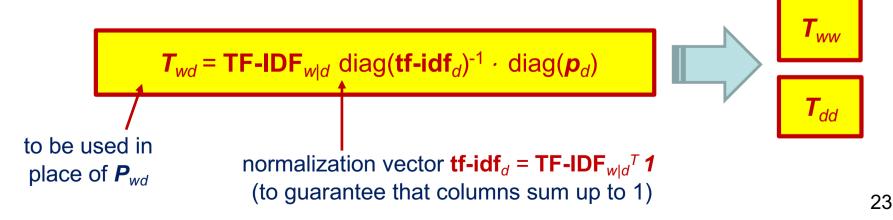
Bipartite and projected networks

a comparison





An heuristic
 Punishes words that appear in many documents
 Enhances words that are document specific

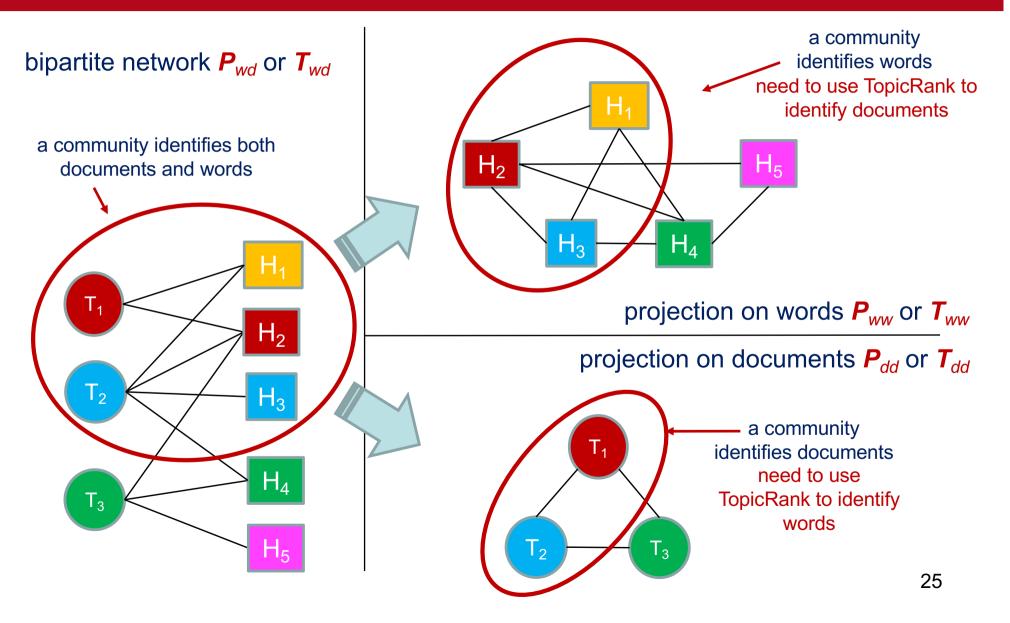


Topic detection

i.e., community detection in semantic networks

Topic detection

in bipartite and projection networks

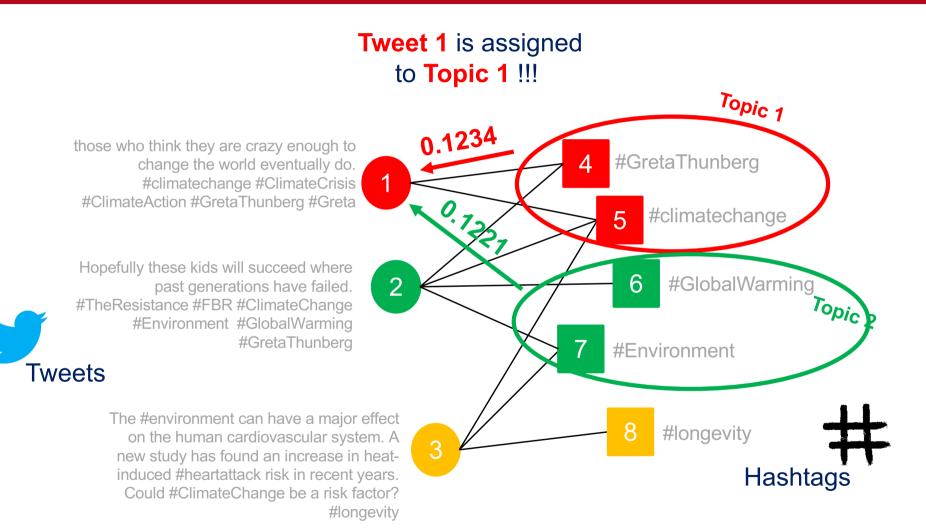


ence harassment sav power -continue ^{play}part space action fact refugee bromote mee get empowerment scussion practice let country knoŵ society beo oma ρ income crimination programme ome mostion decision decision difference support start memb make oring learn everyone worker /ear achieve stor commitment musi access win V010 sform tool business time give stand ppen event family home place marriage community movement ce lebrate activist

#metoo tweets

Projection on words

assigning documents to topics via TopicSpecific PageRank



Normalized mutual information

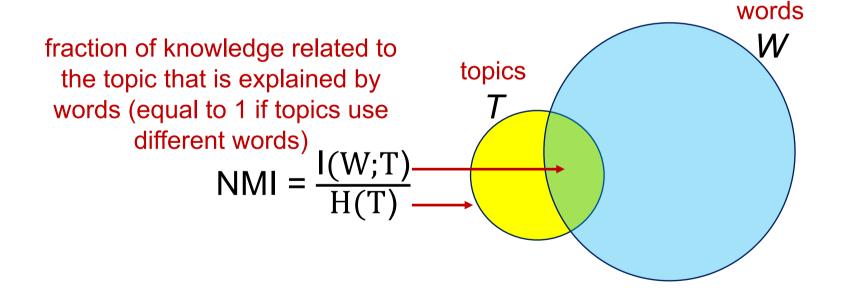
a wrap-up in topic detection

statistical dependencies about words and topics

probability of a topic

$$\mathbf{P}_{wt} = \mathbf{P}_{wd} \mathbf{C}^{\mathsf{T}}$$
 –

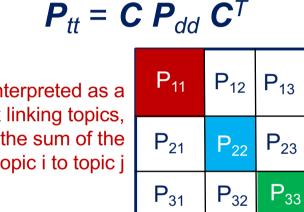
$$\rightarrow \mathbf{p}_{t} = \mathbf{P}_{wt}^{T} \mathbf{1}$$



Modularity and normalized cut

a wrap-up in topic detection

C topic assignment to be assessed for quality

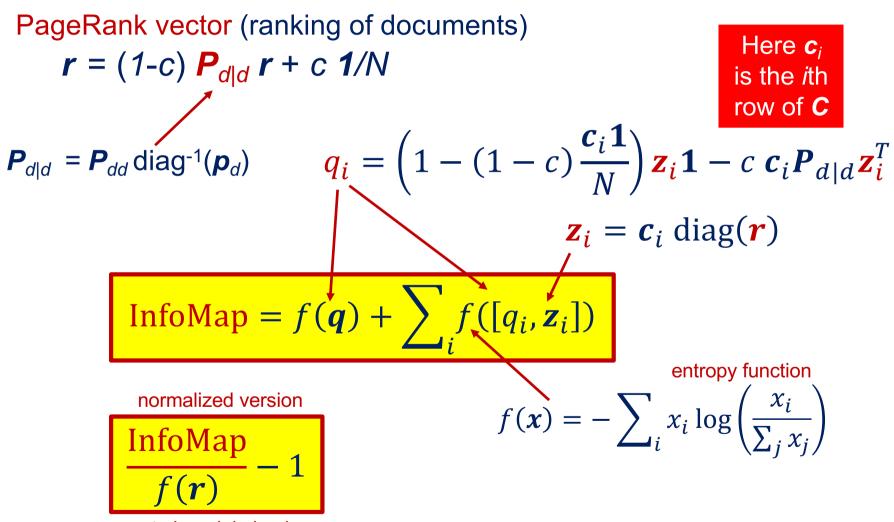


can be interpreted as a probability matrix linking topics, its entries are the sum of the links of **A** from topic i to topic j

modularitynormalized cutnormalized version
$$Q = \sum_{t} (P_{tt} - p_t^2) < 1$$

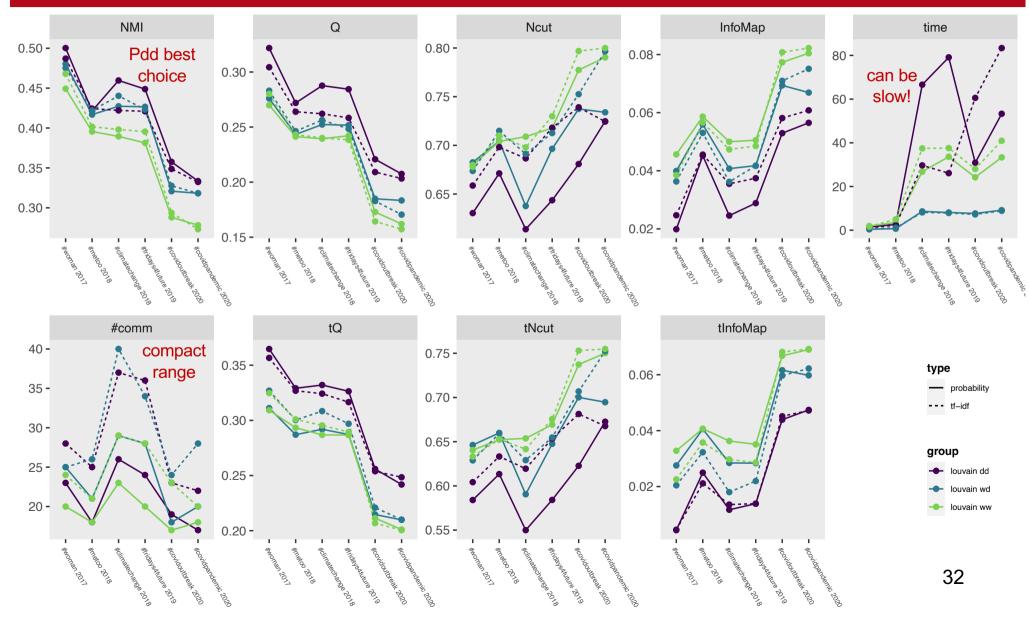
to be maximizedNcut = $1 - \frac{\sum_{t} P_{tt}/pt}{\sum_{t} 1} > 0$
to be minimized

a wrap-up in topic detection

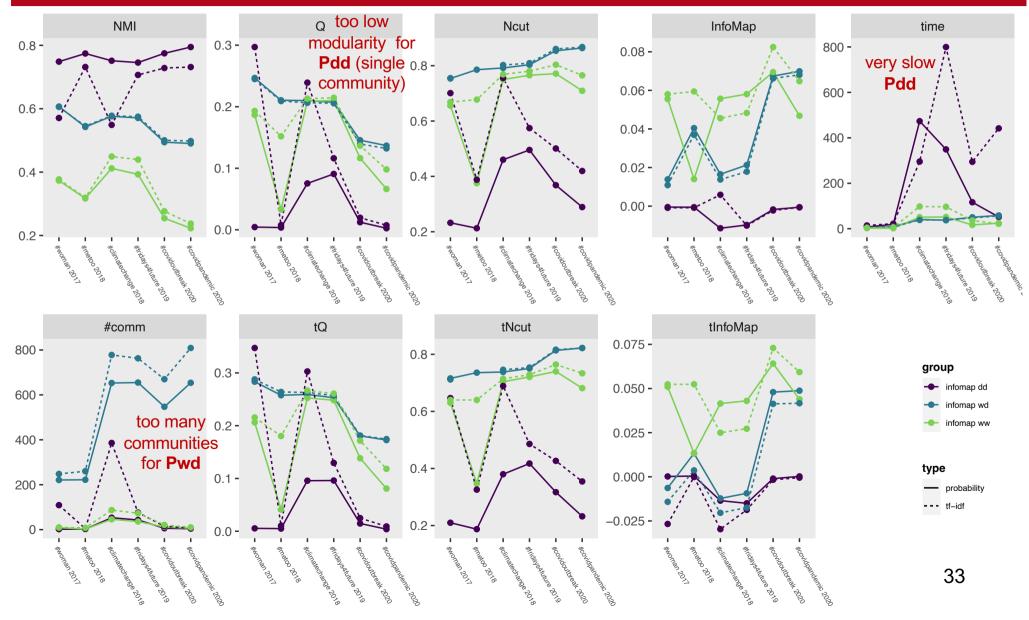


to be minimized

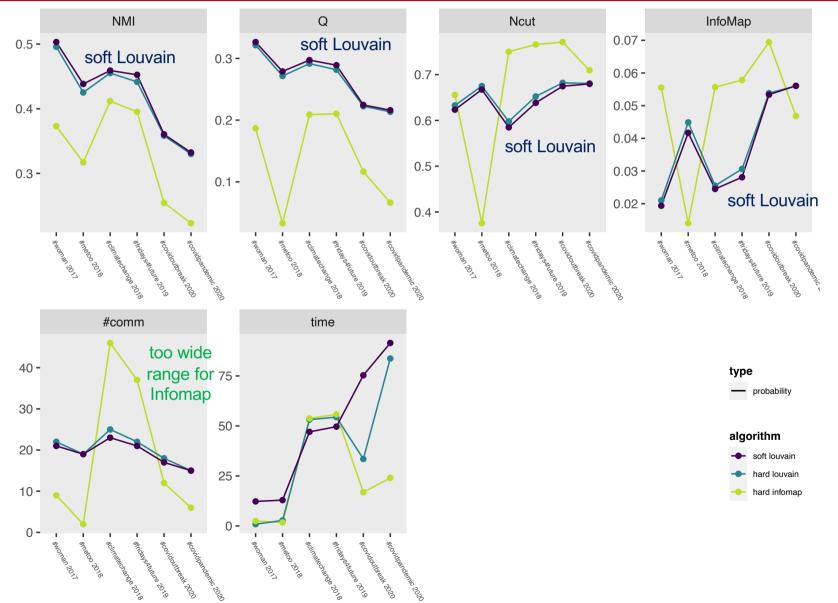
A comparison of the different approaches - Louvain



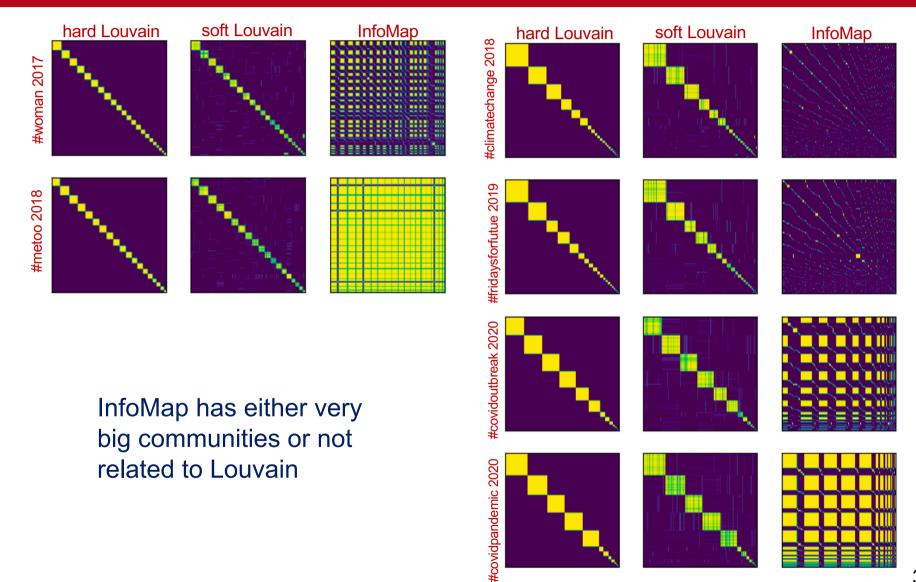
A comparison of the different approaches - Infomap



A comparison hard/soft Louvain Pdd versus InfoMap Pww



A comparison a *c^Tc* pattern overview



A comparison takeaways

Louvain Pdd – provides the best results produces balanced clusters

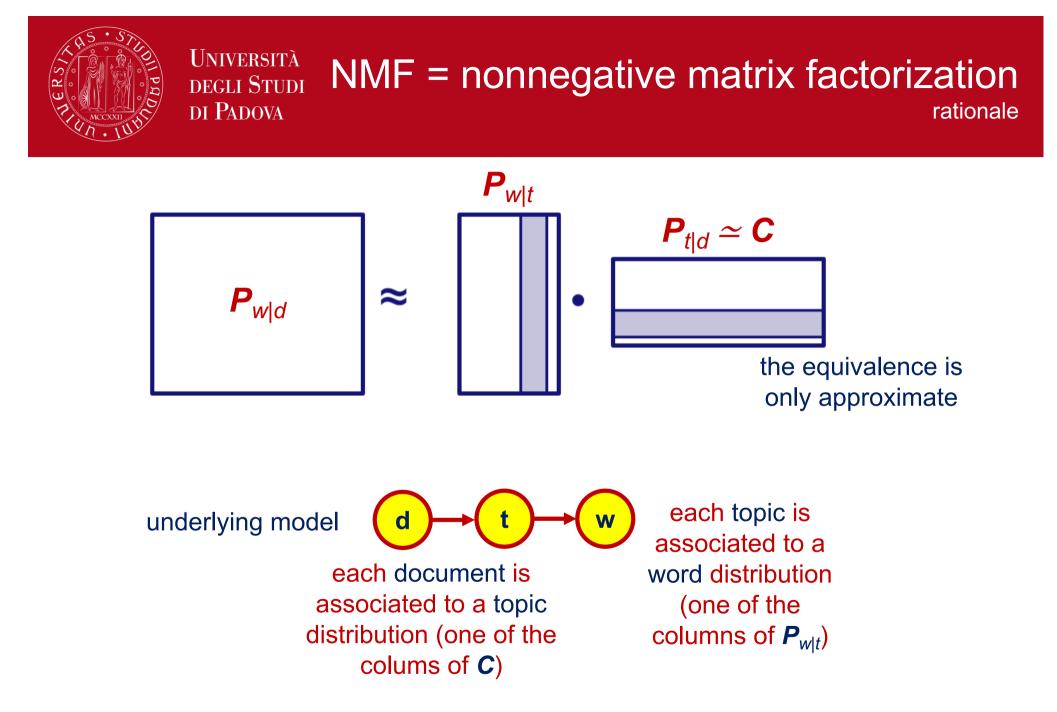
Louvain soft – slightly strengthens the result

Bipartite networks – run much faster but performance deteriorates

□ InfoMap – not robust would be nice to see BigCLAM and SBMs ... your task! ☺

Non-negative Matrix Factorization

and its application to topic detection



Frobenius norm and generalized Kullbak-Leibler divergence

$$A = P_{w|d} \text{ is column stochastic} \qquad \text{minimizing the} \\ \text{argmin}_{W \ge 0, H \ge 0} \sum_{ij} |A_{ij} - [WH]_{ij}|^2 \qquad \text{minimizing the} \\ \text{Frobenius norm} \\ \text{does not ensure a column stochastic} \\ \text{product } WH$$

Università

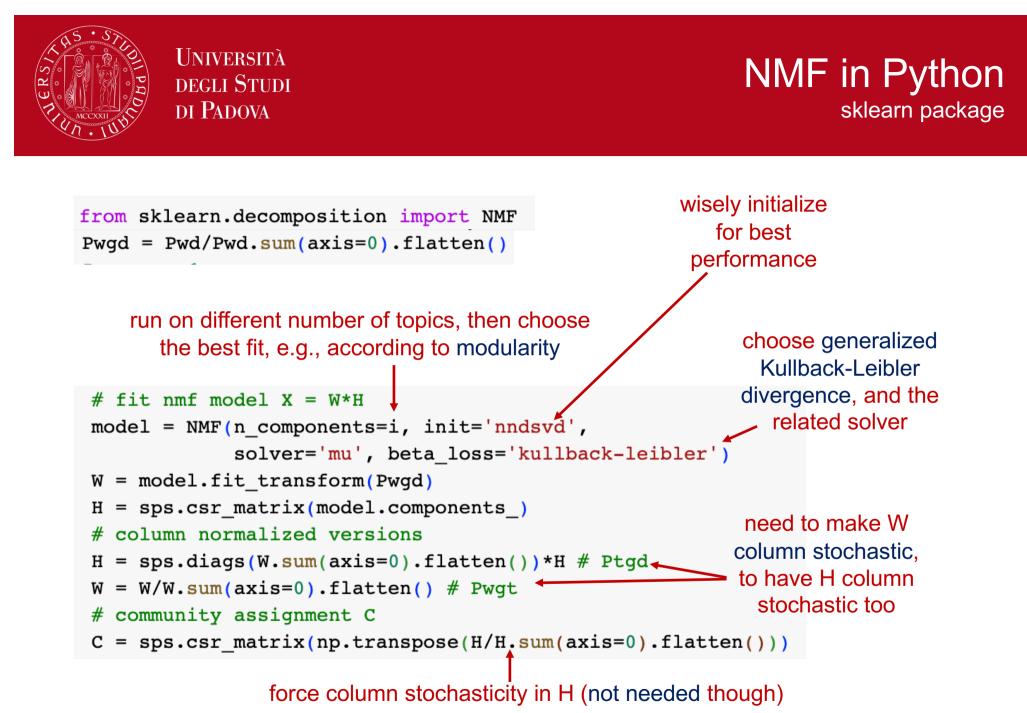
DEGLI STUDI

di Padova

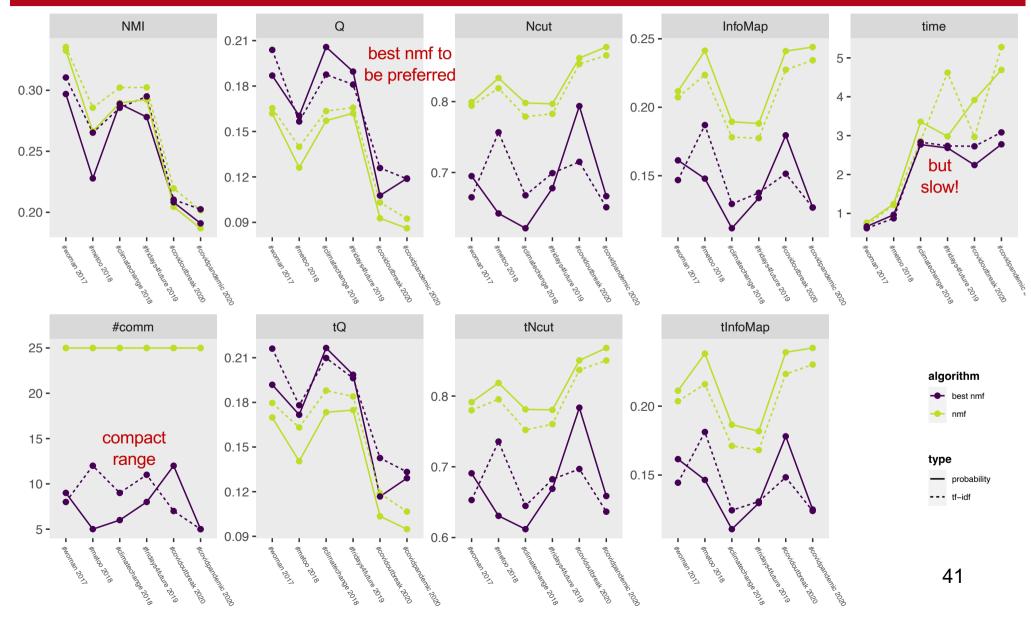
$$\operatorname{argmin}_{W \ge 0, H \ge 0} \sum_{ij} A_{ij} \log \left(\frac{A_{ij}}{[WH]_{ij}} \right) - A_{ij} + [WH]_{ij}$$

minimizing the generalized Kullback-
Leibler divergence ensures a column
stochastic product W H
$$f'(y) = -\frac{x}{y} + 1 = 0 \rightarrow y = x$$

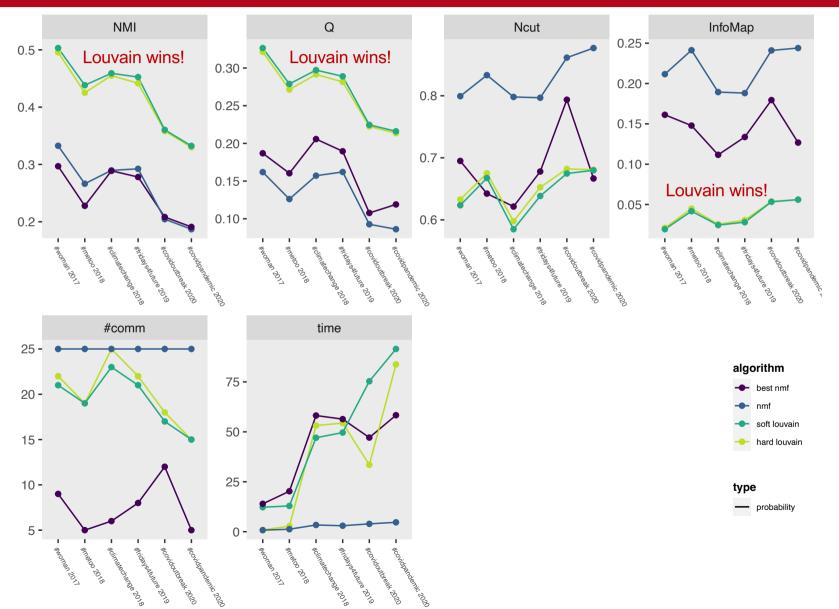
Ho & Van Dooren. "Non-negative matrix factorization with fixed row and column sums." (2008)



A comparison of the different approaches



A comparison with Louvain



Takeaways on NMF

Naturally provides a soft topic assignment

- NMF not strikingly good probably due to the fact that we want to express a sparse matrix through an eigenvector-like product with few eigenvectors (the fit is far from ideal)
- Comparison with Louvain

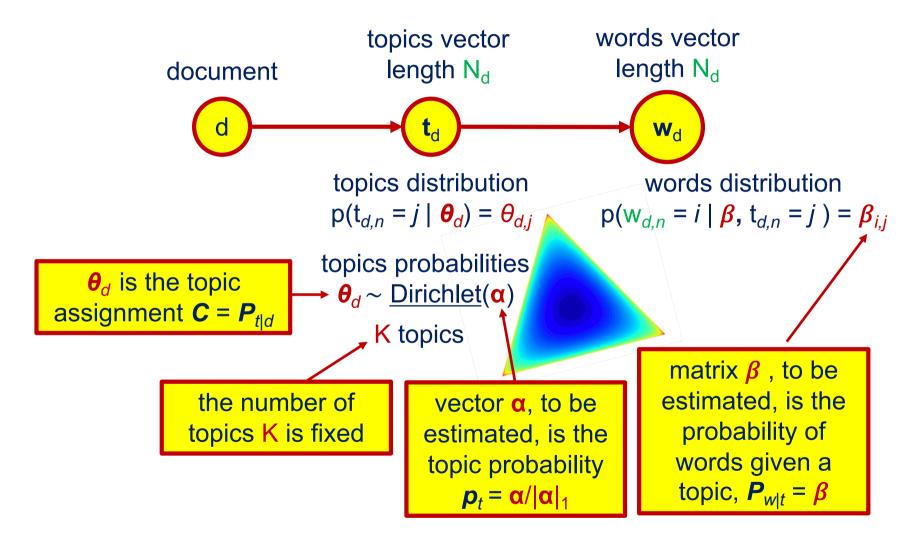
much weaker

Complexity – generally slow need to test it for different numbers of topics fast for fixed topic number

Latent Dirichlet allocation

LDA = a stochastic model for topic detection

Blei,, Ng, Jordan. "Latent dirichlet allocation." (2003) https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf?ref=https://githubhelp.com

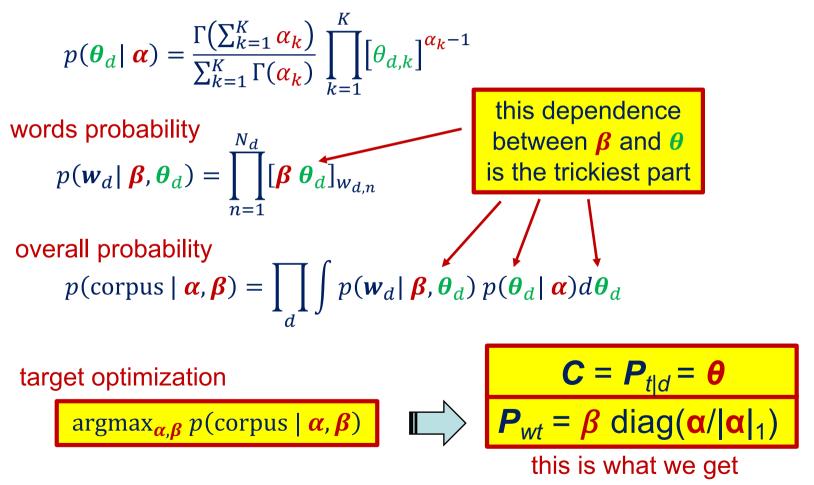


LDA optimization

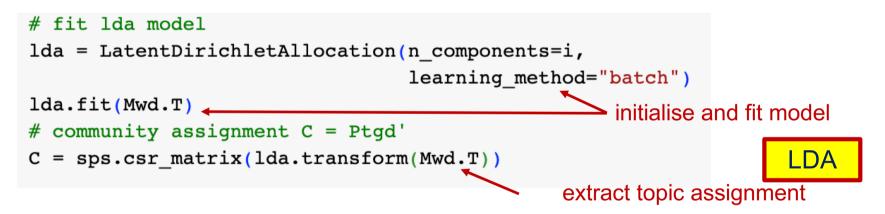
Università degli Studi di Padova

can be solved using variational inference = suboptimum approach

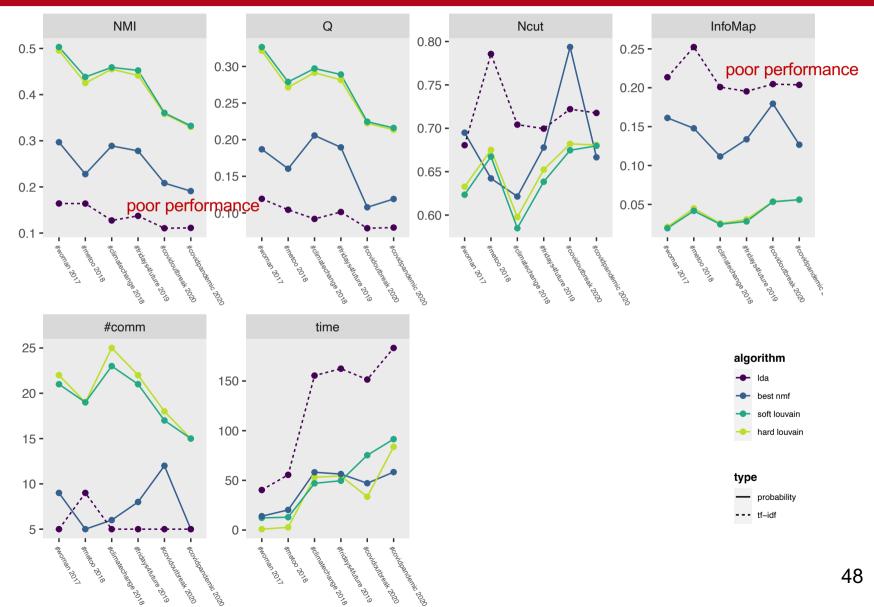
topics assignment probability (Dirichlet)



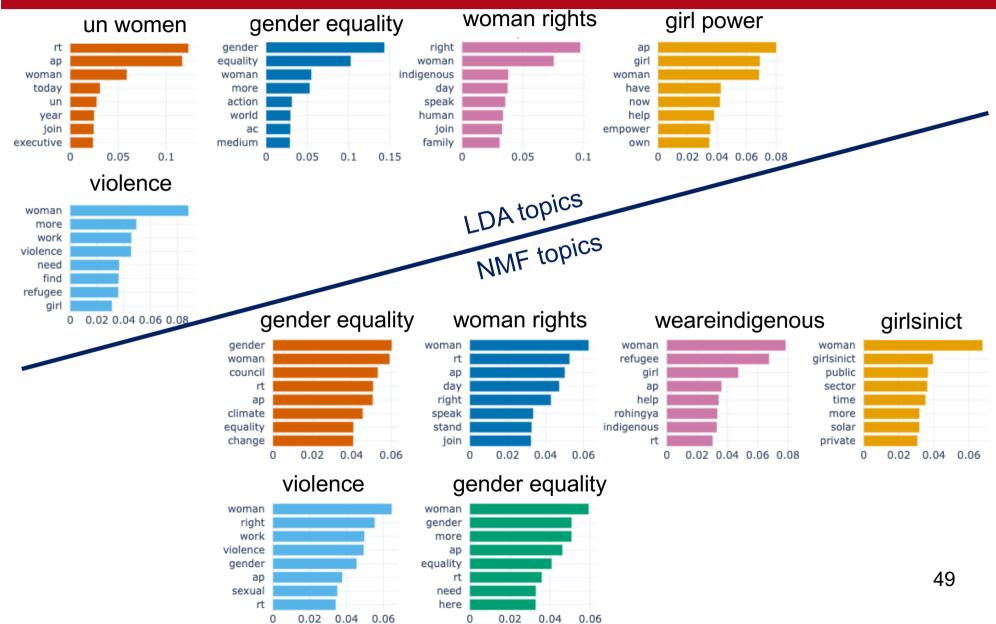
from sklearn.decomposition import LatentDirichletAllocation



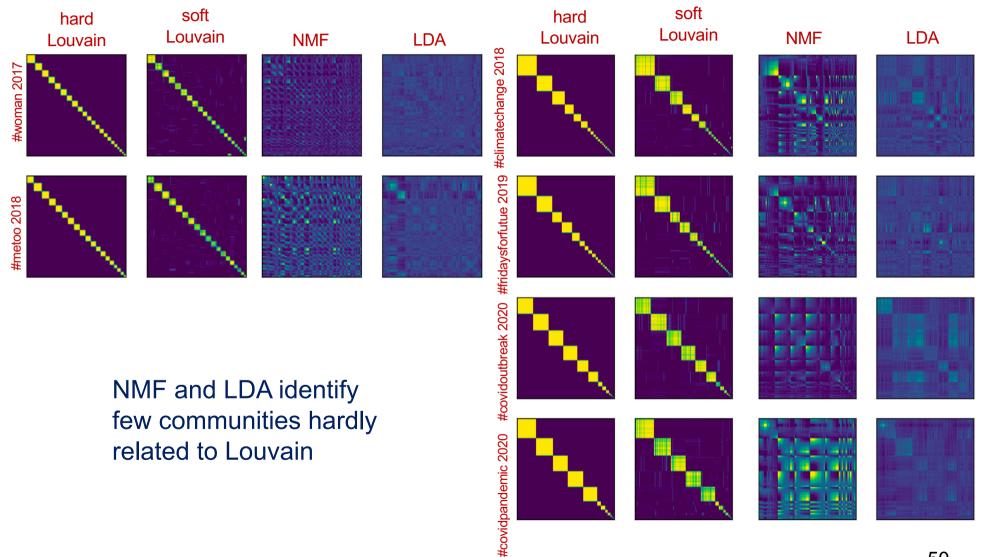
A comparison with NMF and Louvain



A comparison NMF versus LDA topics



A comparison a *c^Tc* pattern overview



Takeaways on LDA

Naturally provides a soft topic assignment

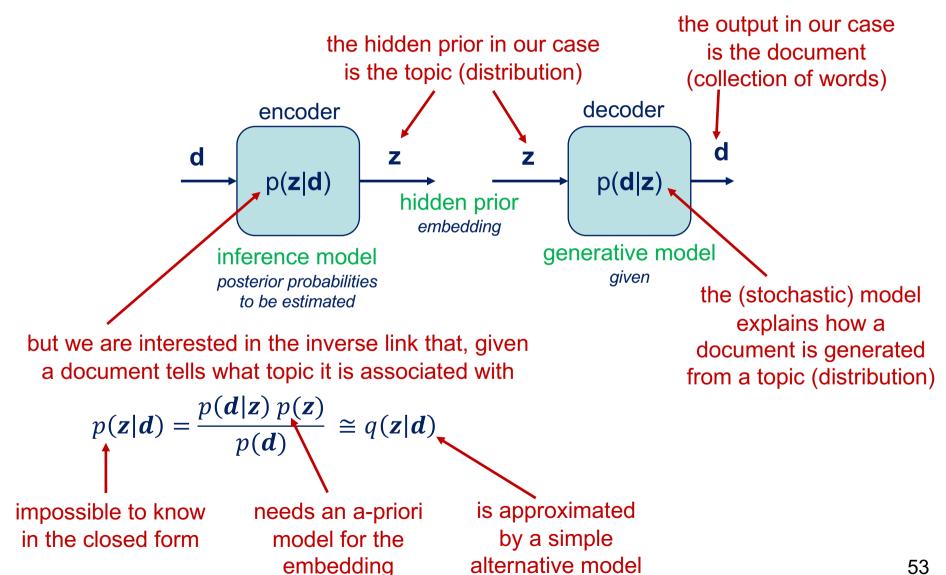
- LDA not strikingly good same eigenvector-like product as NMF worse than NMF ... known issue probably due to the Dirichlet assumption (questionable) and the variational inference (suboptimum approach)
- Comparison with Louvain

much weaker

Complexity – generally slow need to test it for different numbers of topics fast for fixed topic number

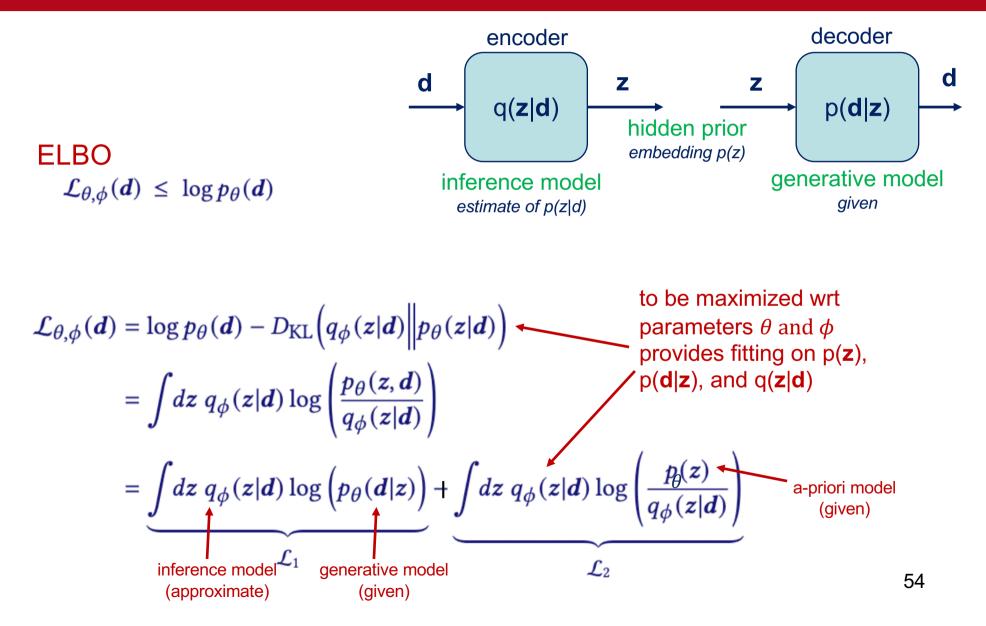
Variational Auto Encoders

an application to topic analysis



VAE optimization rationale

ELBO = evidence lower bound



L2 ELBO function

usually has a compact expression

$$\int dz \ q_{\phi}(z|d) \log \left(\frac{p_{\theta}(z)}{q_{\phi}(z|d)} \right)$$
 both should have a simple parametrization on θ and ϕ
$$\mathcal{L}_{2}$$

e.g., the Gaussian case

$$p_{\theta}(\mathbf{z}) = \frac{1}{\sqrt{\det\left(2\pi \operatorname{diag}(\boldsymbol{\sigma}_{\theta}^{2})\right)}} \exp\left(-\frac{1}{2(\mathbf{z}-\boldsymbol{\mu}_{\theta})^{T}}\operatorname{diag}^{-1}(\boldsymbol{\sigma}_{\theta}^{2})(\mathbf{z}-\boldsymbol{\mu}_{\theta})\right)$$
$$q_{\phi}(\mathbf{z}|\mathbf{d}) = \frac{1}{\sqrt{\det\left(2\pi \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{d}))\right)}} \exp\left(-\frac{1}{2(\mathbf{z}-\boldsymbol{\mu}_{\phi}(\mathbf{d}))^{T}}\operatorname{diag}^{-1}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{d}))(\mathbf{z}-\boldsymbol{\mu}_{\phi}(\mathbf{d}))\right)$$

$$\mathcal{L}_{2}(\theta,\phi) = \frac{1}{2} \sum_{i} 1 + \log\left(\frac{\sigma_{\phi,i}^{2}(d)}{\sigma_{\theta,i}^{2}}\right) - \frac{\sigma_{\phi,i}^{2}(d)}{\sigma_{\theta,i}^{2}} - \frac{\left(\mu_{\phi,i}(d) - \mu_{\theta,i}\right)^{2}}{\sigma_{\theta,i}^{2}}$$

55

L1 ELBO function

approximated through Monte Carlo estimation

$$\int dz \ q_{\phi}(z|d) \log \left(p_{\theta}(d|z) \right)$$
 mostly too complex to be written in the closed form \mathcal{L}_1

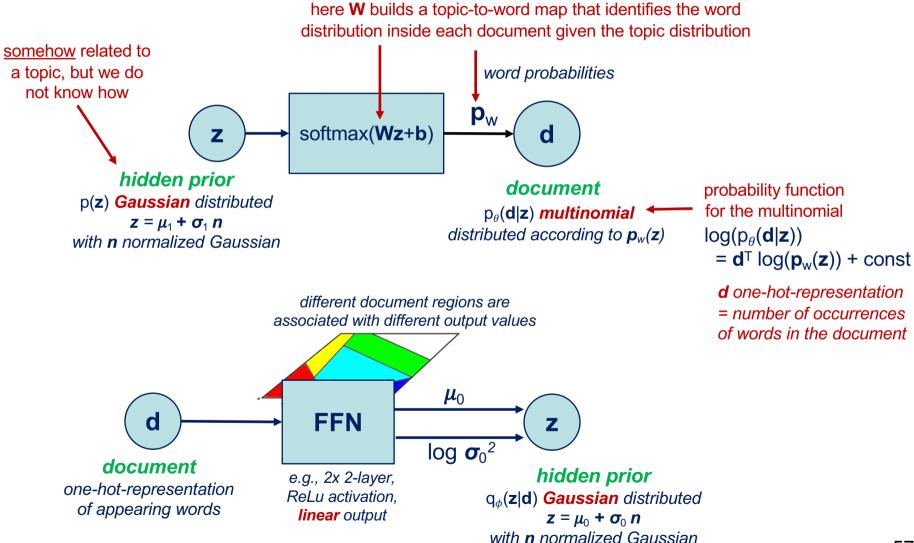
solution: Monte Carlo approximation

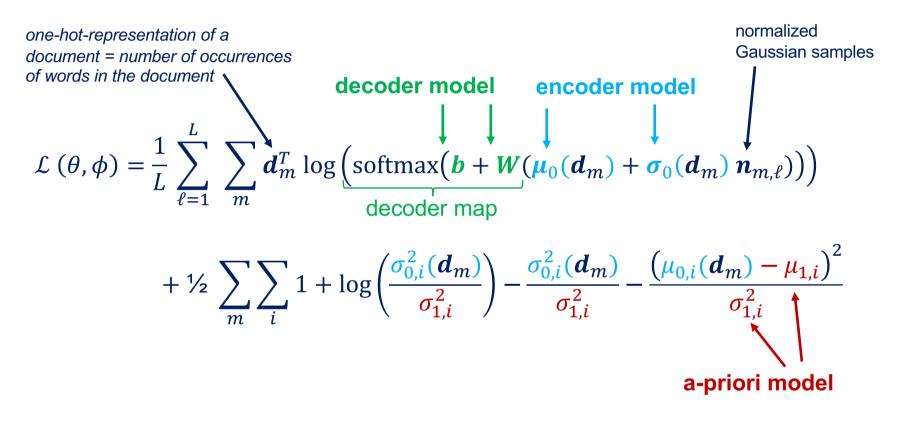
$$\mathcal{L}_{1}(\theta, \phi) = \frac{1}{L} \sum_{\ell=1}^{L} \log(p_{\theta}(\boldsymbol{d} | \boldsymbol{z}_{\ell}))$$
 samples generated according to the correct distribution $\boldsymbol{z}_{\ell} \sim q_{\phi}(\boldsymbol{z} | \boldsymbol{d})$

need to generate these once, then use them \longrightarrow $n_{\ell} \sim \mathcal{N}(0, I)$ throughout the process

Miao, Yu, Blunsom, "Neural variational inference for text processing," (2016) http://proceedings.mlr.press/v48/miao16.pdf

Take 1 - NVDM

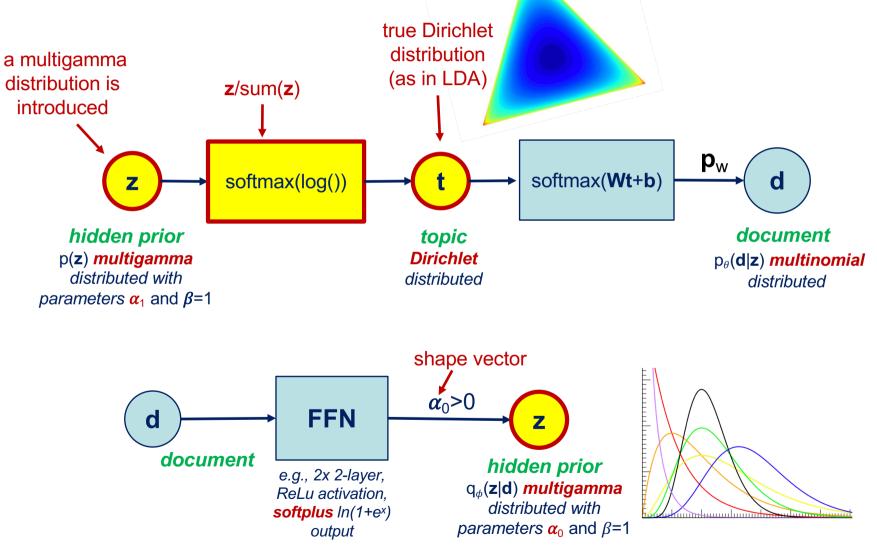




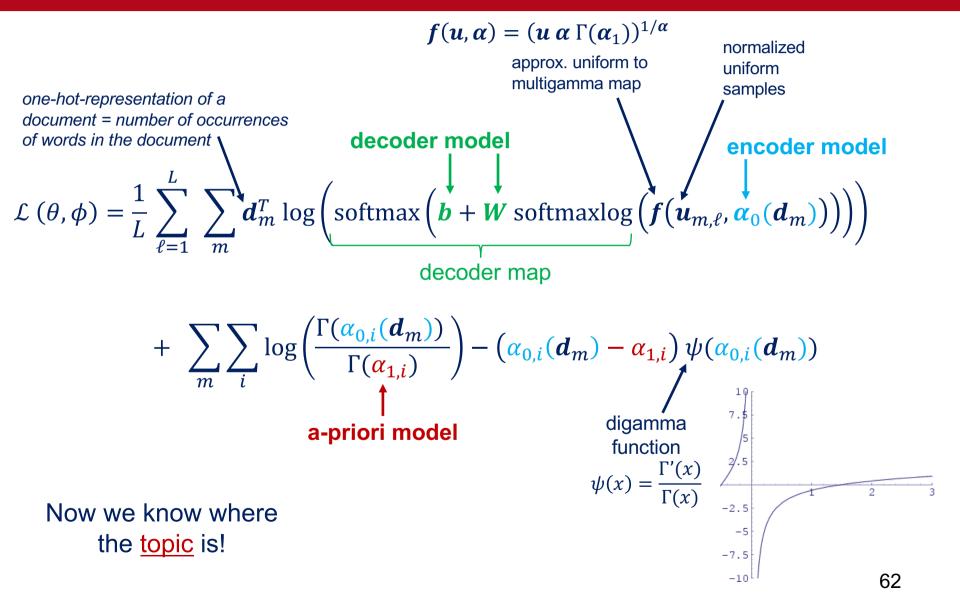
Not very clear where the <u>topic</u> is, though!

Take 2 - DirVAE

Joo, Li, Park, Moon, "Dirichlet variational autoencoder," (2020) https://www.sciencedirect.com/science/article/pii/S003132032030317



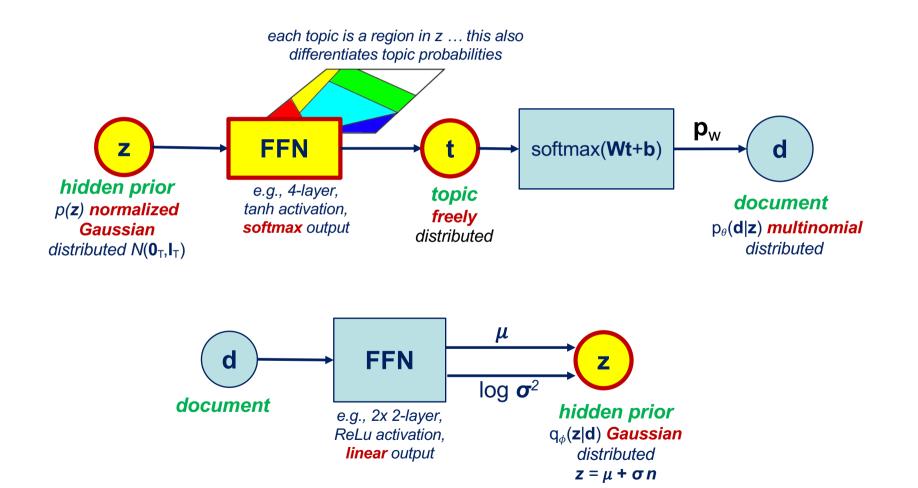
DirVAE ELBO optimization target, to be maximized



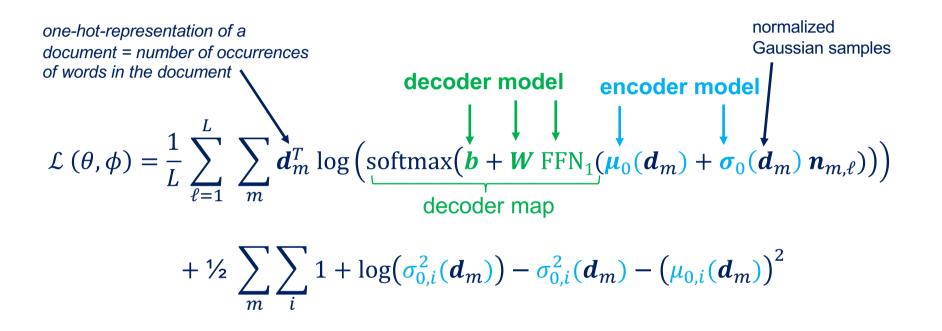
Take 3 – NFTM

Università degli Studi di Padova

Gui, Lin, et al. "Multi task mutual learning for joint sentiment classification and topic detection," (2020) https://ieeexplore.ieee.org/document/9112648

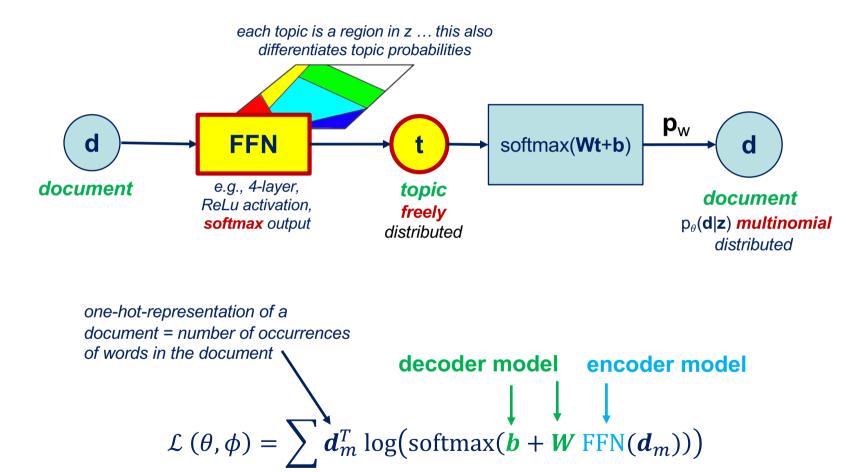


63



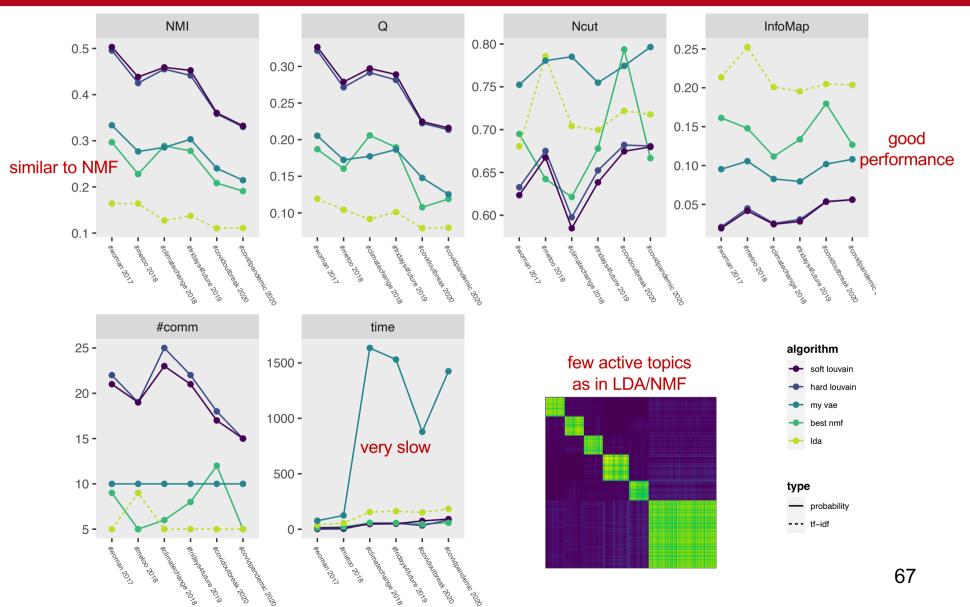
Our estimate of the topic distribution for the *m*th document!

$$\boldsymbol{c}_m = \frac{1}{L} \sum_{\ell=1}^{L} \operatorname{FFN}_1(\boldsymbol{\mu}_0(\boldsymbol{d}_m) + \boldsymbol{\sigma}_0(\boldsymbol{d}_m) \boldsymbol{n}_{m,\ell})$$



m

A comparison with NMF, LDA, and Louvain



Naturally provides a soft topic assignment

- VAE interesting approach more flexible model than NMF or LDA gives improvements
- Comparison with Louvain
 - still far away would be nice to see other Deep Learning approaches ... your task! ③

Transformer Architecture

with application to BERT, RoBERTa, OpenAI GPT

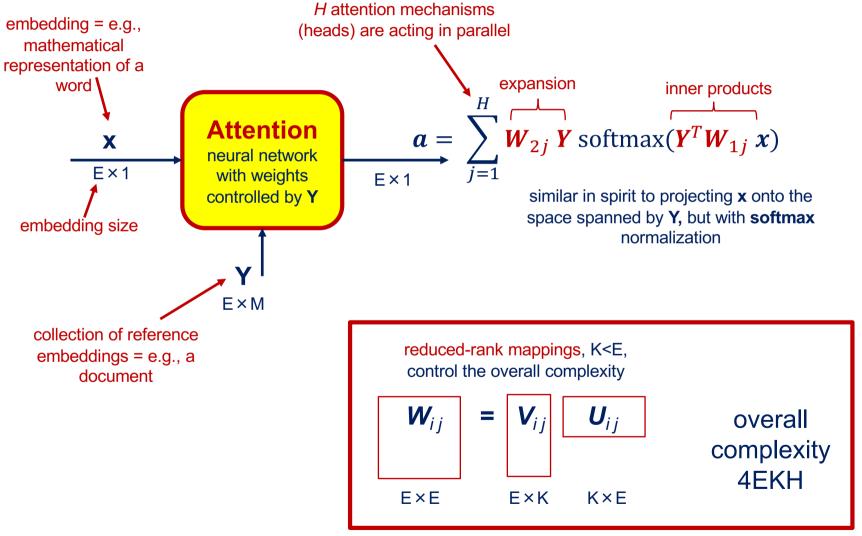
Attention in Machine Learning

E Attention (machine learning)

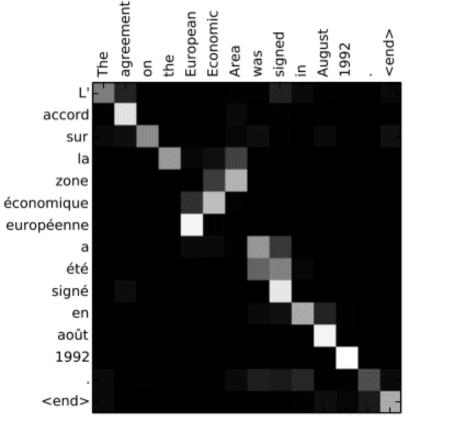
Article Talk

From Wikipedia, the free encyclopedia

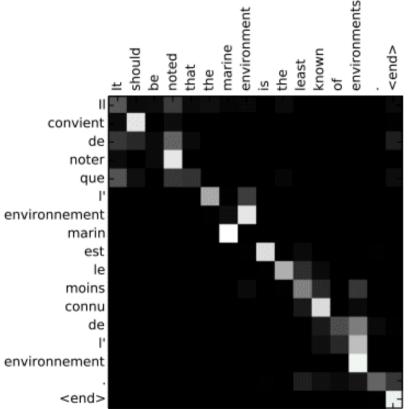
In artificial neural networks, **attention** is a technique that is meant to mimic cognitive attention. This effect enhances some parts of the input data while diminishing other parts — the motivation being that the network should devote more focus to the important parts of the data, even though they may be small portion of an image or sentence. Learning which part of the data is more important than another depends on the context, and this is trained by gradient descent.



Visualizing Attention in a translation experiment (X English, Y French)

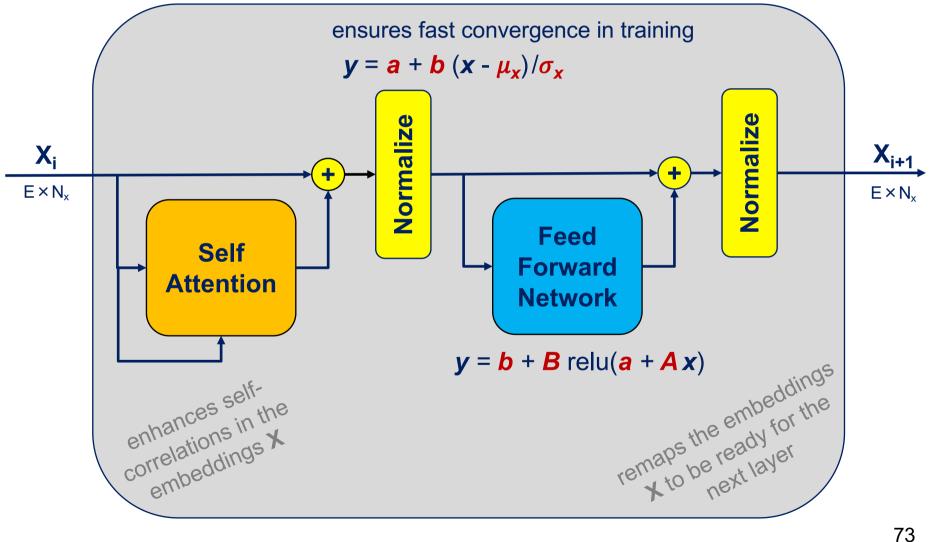


softmax(**Y^T W**_{1j} **X**)



UNIVERSITÀ **DEGLI STUDI** DI PADOVA

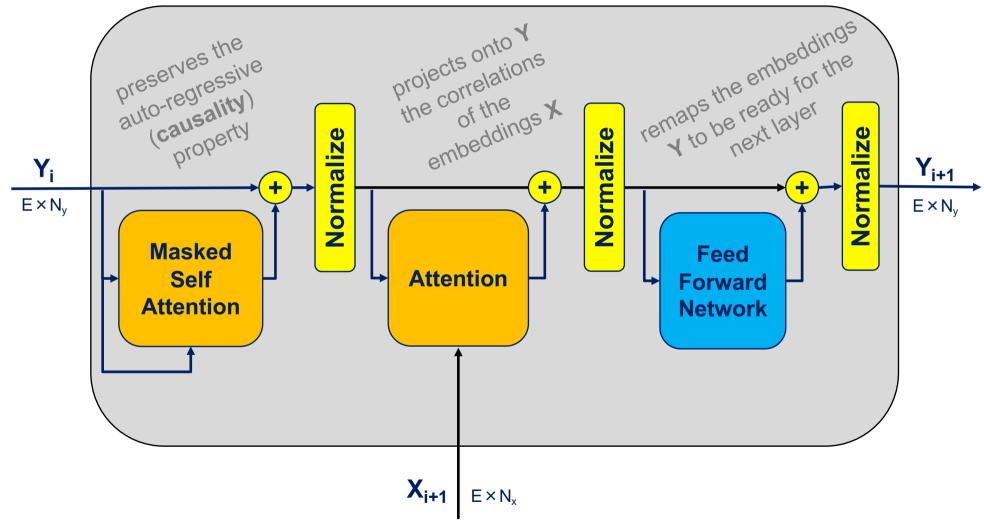
Encoder a serie of multi-head self-attention modules



a serie of attention modules preserving causality

Università degli Studi di Padova

ER



74

Vaswani, Ashish, et al. "Attention is all you need" (2017) Google's patent <u>https://patents.google.com/patent/US10452978B2/en</u>

DEC STATION STATION

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

estimate Ŷ,

given the alternative representation X, and the past information Y_s word-to-embedding (i.e., **Y** shifted right by one position) Decoder map V output embeddings E x N_v VT E×D Linear softma -inear Y_{L-1} YL Ŷ Y_1 Y₀ Y_s D × N_y $D \times N_{y}$ P₀ embedding-to-word (probability) map Linear **X**_{L-1} Χ **X**₁ XL **X**0 $D \times N_x$ **P**₀ positional input embeddings E x N_x encoding

Encoder

The Annotated Transformer

http://nlp.seas.harvard.edu/2018/04/03/attention.html tensor2tensor library https://github.com/tensorflow/tensor2tensor

Members PI Code Publications

The Annotated Transformer

Apr 3, 2018

There is now a new version of this blog post updated for modern PyTorch.

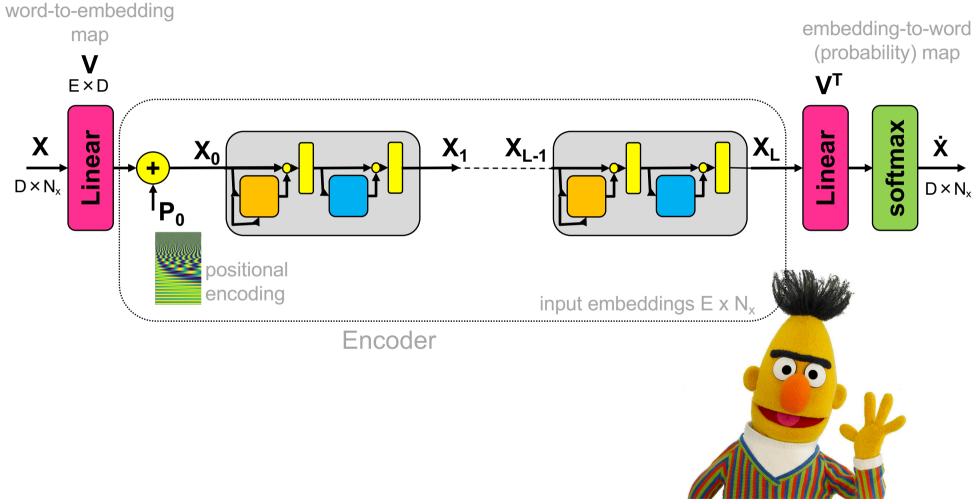
from IPython.display import Image
Image(filename='images/aiayn.png')

Attention Is All You Need

BERT Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding" (2018)

Università degli Studi di Padova

https://github.com/google-research/bert



	Embeddings size E	Self-attention heads H	Head dimension K = E/H	FFN inner size I = 4E	Parameters per layer 12E ² +9E	Layers L	Dictionary size D	Total parameters	
BERT base	768	12	64	3072	7.1M	12	30.5K	110M	
BERT large	1024	16	64	4096	12.6M	24	30.5K	340M	

max tokens $N_x = 512$

Created by researchers at Google AI Language

BERT pre-training procedure

BooksCorpus (800M words) + English Wikipedia (2,500M words)

Masked Language Model **Next Sequence Prediction** 15% masked tokens replaced with: Next sequence (50% of the times) [MASK] token (80% of the times) Random sequence (50%) Original token (10%) Random token (10%) [MASK] [MASK] Input likes play ##ina dog he [SEP] [CLS] cute [SEP] my is Token Ecute E_{##ing} Ehe E [MASK] E Emy E E_[SEP] Eplay E_[SEP] E[MASK] Embeddings Sentence EB EA EA EA EA EB EA EB EB Embedding Transformer E₀ E_6 Positional Ε, E4 E₅ E_7 E₈ E₉ E₁₀ E. E3 Embedding

Output [CLS] fed into an additional output layer for softmax classification (of correct/wrong next sequence) Output masked tokens fed into the output layer V^T and evaluated for probability of correct estimate

RoBERTa

Liu, Yinhan, et al. "Roberta: A robustly optimized BERT pretraining approach" (2019)

Larger training corpora (10x larger)

training on BookCorpus + Wikipedia and also CC-News, OpenWebText, Stories

Dynamic masking

training data was duplicated 10 times so that each sequence is masked in 10 different ways over the 40 epochs of training

Full-sentences without NSP loss

full sentences sampled contiguously from one or more documents, such that the total length is at most 512 tokens

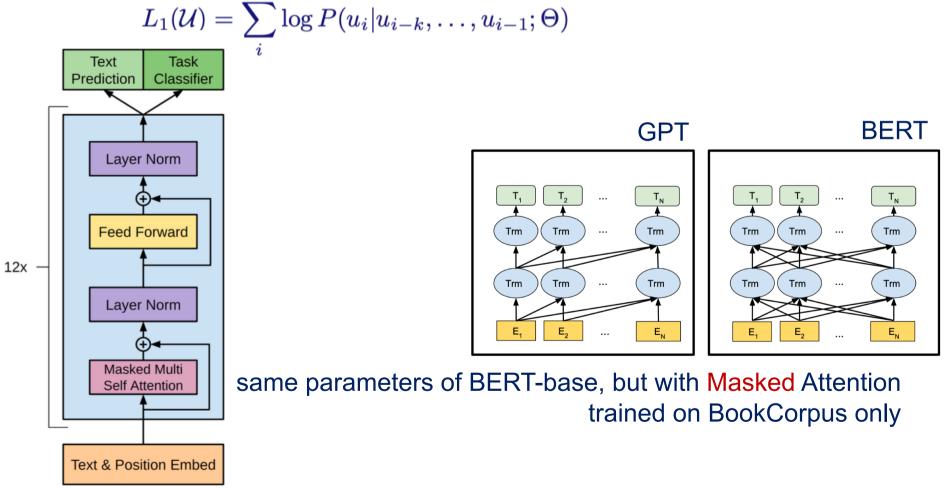
Large mini-batches

A larger byte-level BPE (byte pair encoding) of 50K subword units a hybrid between character- and word-level representations that allows handling the large vocabularies common in natural language corpora

Generative Pre-Training (GPT)

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018)

(unsupervised) pre-training on Language Modelling (no mask)



Radford, Alec, et al. "Language models are unsupervised multitask learners" (2019)

GPT-2

McCann et al. (2018)

language provides a flexible way to specify tasks, inputs, and outputs all as a sequence of symbols... it is therfore possible to <u>train a single model</u> with sufficient capacity to infer and perform many different tasks

Parameters	Layers	d_{model}
117 M	12	768 GPT, BERT-base
345M	24	1024 BERT-large
762M	36	1280
1542M	48	1600 GPT-2

scraping all outbound links (45M links) from Reddit, a social media platform, which received at least 3 karma – exclude WikiPedia

Brown, Tom, et al. "Language models are few-shot learners" (2020)

GPT-3

increasingly larger data and model!									
Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate		
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$		
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$		
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$		
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes10^{-4}$		
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	$1.6 imes 10^{-4}$		
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$		
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$		
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$		

Layer normalization at the input (plus one at the output)

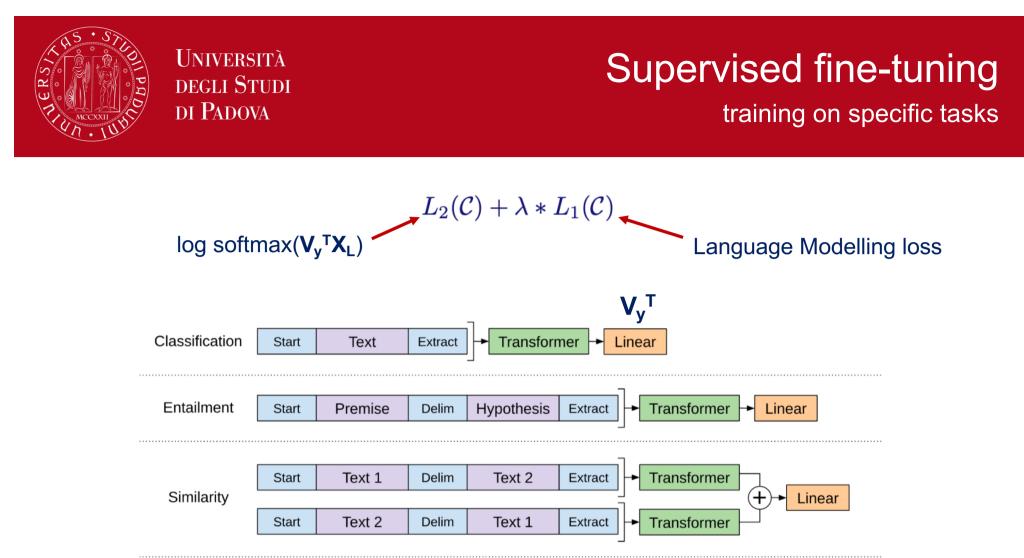
Sparse attention patterns

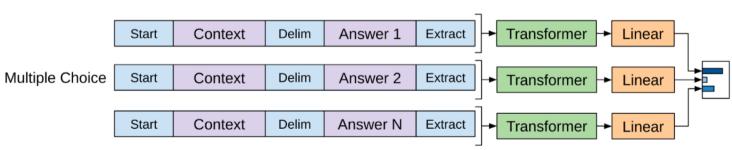
alternating dense and locally banded sparse attention patterns in the layers

Byte-level BPE (byte pair encoding) of 50K subword units

also prevent BPE from merging across character categories (to avoid dog, dog!, dog?)

Modified initialization





NLP tasks some fine-tuning possibilities in NLP

Task	Description	Possible approach
Masked language prediction	predict masked words in a text	This is what BERT model is pre-trained for
Text classification or Sentiment analysis	assign a label to a given sequence of text	Apply linear transform+softmax on K classes, and train the model for the specific classification task
Text translation	translate a text	Need to pre-train a full Transfomer Architecture for this task
Summarization	generate a summary of a document	GPT example: context given by a document; then generate 100 tokens by top-2 random sampling (Fan et al., 2018), i.e., take at each step the most likely next word at random among the top-2 candidates; finally select first 3 sentences as abstract
Question answering	answer a question	GPT example: the context of the language model is seeded with example question answer pairs which helps the model infer the short answer style of the dataset
Document question answering	answer a question on a given text	GPT example: context seeded by a text; then as for question answering
Conversational	ChatBot	InstructGPT/ChatGPT: Fine-tuned models using reinforcement learning from human feedback

Software Tools

for Transformer Architecture use or fine tuning

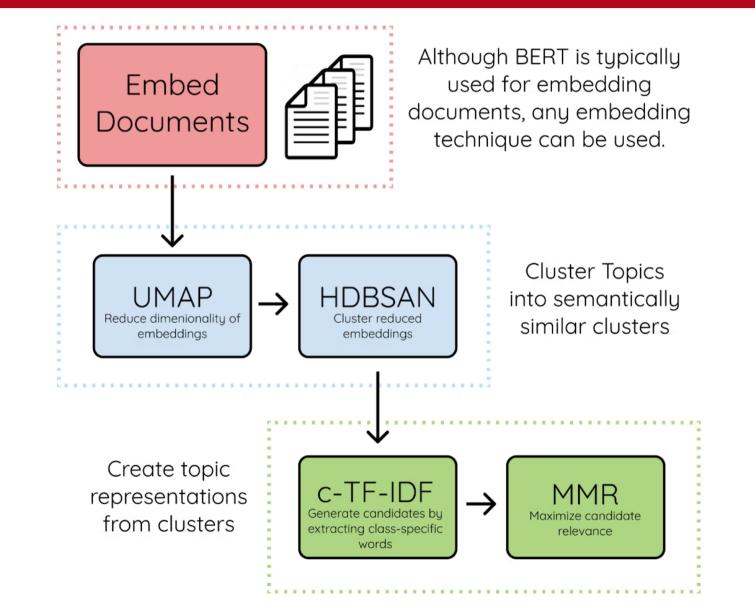
State-of-the-art Machine Learning for <u>PyTorch</u>, <u>TensorFlow</u>, and <u>JAX</u> O PyTorch **TensorFlow**

ALBERT, BART, **BERT**, BigBird, BigBird-Pegasus, BioGpt, BLOOM, CamemBERT, CANINE, ConvBERT, CTRL, Data2VecText, DeBERTa, DeBERTa-v2, DistilBERT, ELECTRA, ERNIE, ErnieM, ESM, FlauBERT, FNet, Funnel Transformer, GPT-Sw3, **OpenAl GPT-2**, GPTBigCode, GPT Neo, GPT NeoX, GPT-J, I-BERT, LayoutLM, LayoutLMv2, LayoutLMv3, LED, LiLT, LLaMA, Longformer, LUKE, MarkupLM, mBART, MEGA, Megatron-BERT, MobileBERT, MPNet, MVP, Nezha, Nyströmformer, OpenLlama, **OpenAl GPT**, OPT, Perceiver, PLBart, QDQBert, Reformer, RemBERT, **RoBERTa**, RoBERTa-PreLayerNorm, RoCBert, RoFormer, SqueezeBERT, TAPAS, Transformer-XL, XLM, XLM-RoBERTa, XLM-RoBERTa-XL, XLNet, X-MOD, YOSO

BERT Topic

exploiting embeddings for topic detection

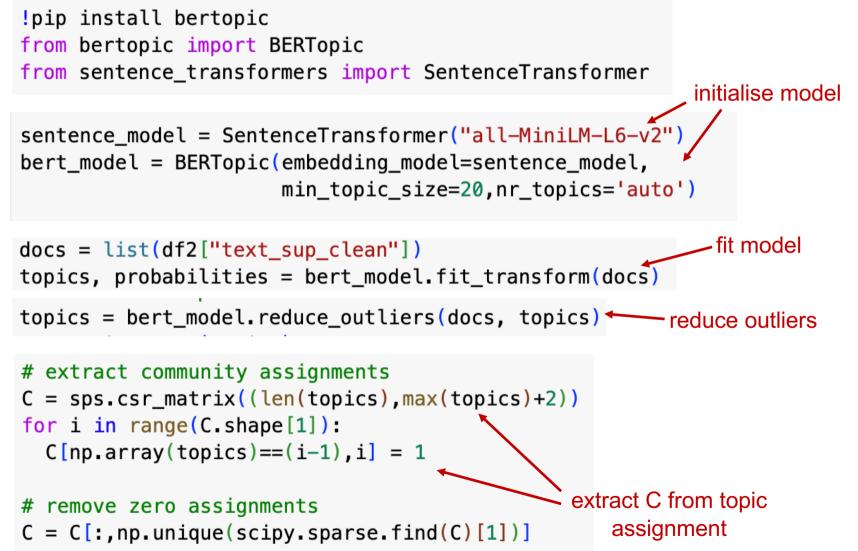
Grootendorst, «BERTopic: Neural topic modeling with a class-based TF-IDF procedure» (2022) <u>https://arxiv.org/abs/2203.05794</u>



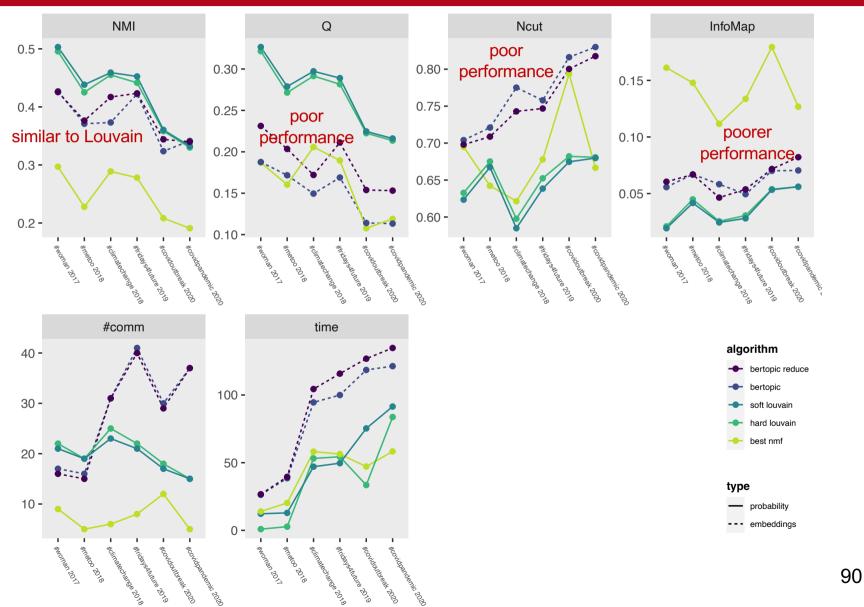
BERTopic

BERTopic in Python

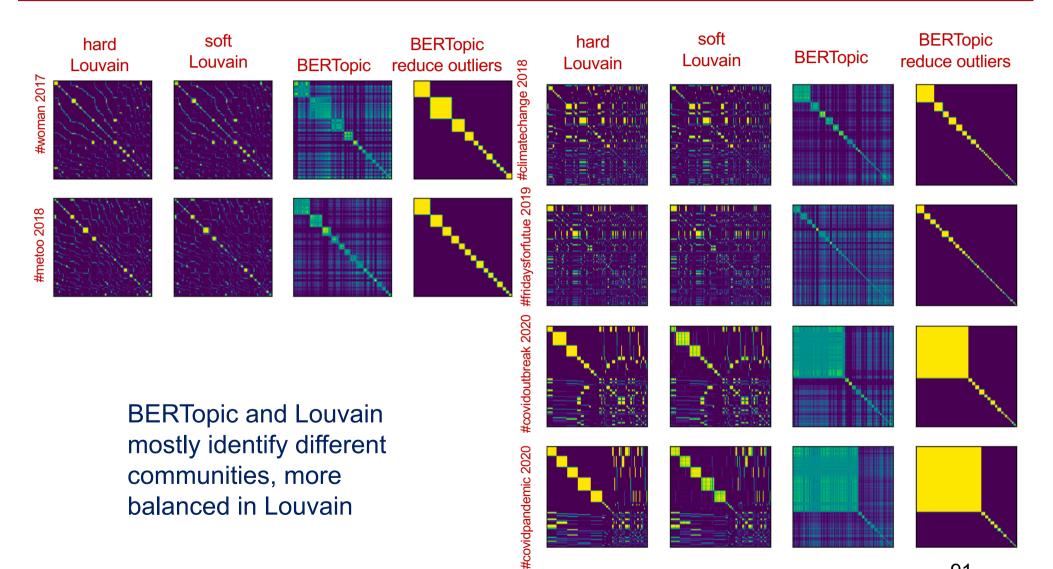
bertopic package https://maartengr.github.io/BERTopic/



A comparison with NMF and Louvain

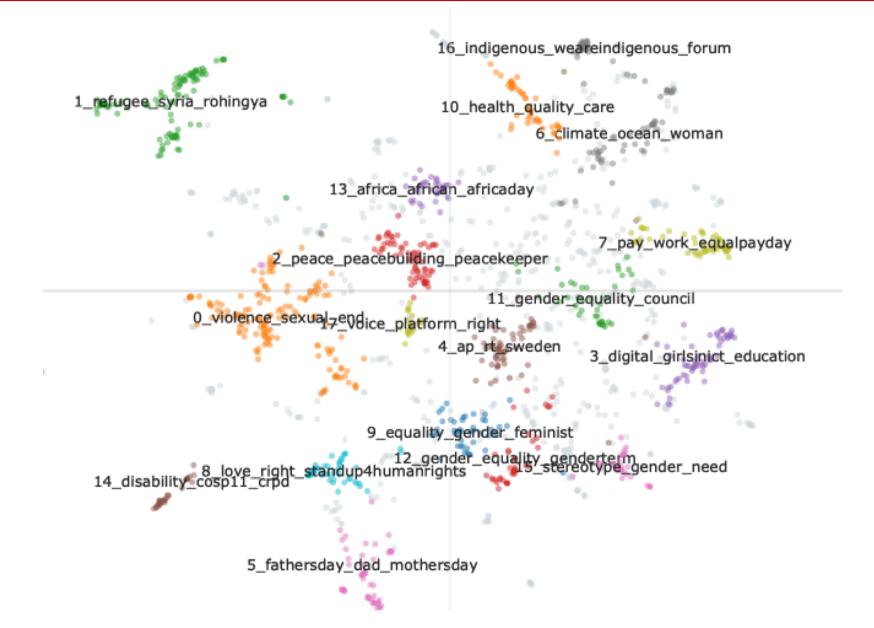


A comparison a *c^Tc* pattern overview



UNIVERSITÀ DEGLI STUDI DI PADOVA bert_model.visualize_documents(docs) #metoo2018

92



bert model.visualize barchart() #metoo2018

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

violence

sexual

woman girl

survivor

base

ap

director

sweden

thank

general

executive

congratulation

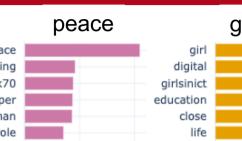
rt

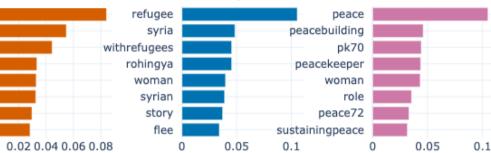
0

harassment

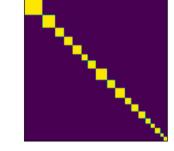
end

b





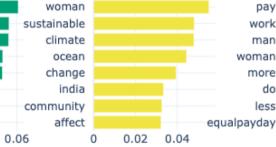
refugees



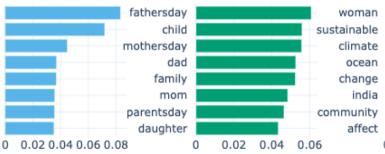
2

U

sustainability



mothersday



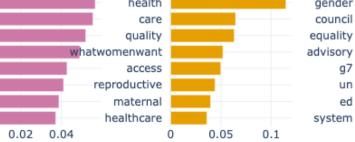
politics whatwomenwant gender council

g7

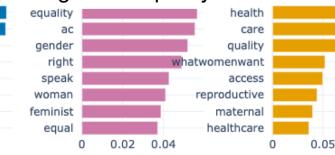
un

ed

0



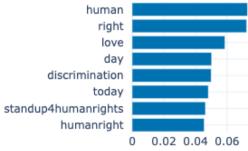
gender equality equality



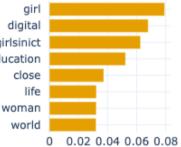
discrimination

sexual violence

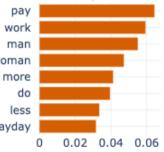
executive director



girlsinict



equal pay

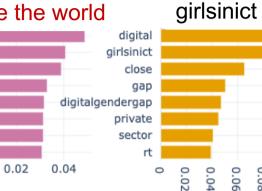


93

0.02 0.04 0.06

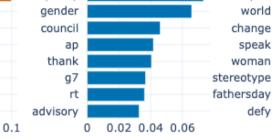
Same barchart with Louvain #metoo2018

b

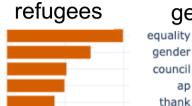


gender equality change the world inspire

0



peace



0.05

0.02 0.04

whatwomenwant

refugee

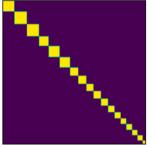
stand

health

family

whatwomenwant

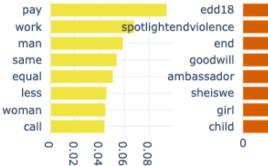
0



2

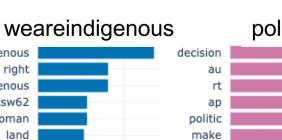
U

equal pay



peace

0



0.06

0.08

0.1

sheiswe

0.05

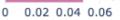
ocean

poverty

woman

0

0 0.02 0.04 0.06 0.08 politics climate



How to use BERTopic barchart

with your own topic assignment **C** in python

```
def bertopic overwrite(bert model in,docs,C):
  bert_model = copy.deepcopy(bert_model_in)
 # build the documents dataframe: 'Document' + "Topic"
 documents = pd.DataFrame(docs,columns=['Document'])
 tmp = np.array([C[i].argmax() for i in range(C.shape[0])])
 documents["Topic"] = tmp
 # update topic assignment
  bert_model.topics_ = tmp.tolist()
 # build cf-idf values
 documents per topic = documents.groupby(['Topic'],
                    as_index=False).agg({'Document': ' '.join})
  c_tf_idf_, words = bert_model._c_tf_idf(documents_per_topic)
  bert_model.c_tf_idf_ = c_tf_idf_
 # extract words representations
 topic representations = bert model. extract words per topic(words, documents)
  bert_model.topic_representations_ = topic_representations_
  bert_model.topic_labels_ = {key: f"{key}_" + "_".join([word[0] for word in values[:4]])
                              for key, values in
                              bert model.topic representations .items()}
 # exit
```

return bert_model

- Naturally provides a hard topic assignment
- Useful tool
- More readable output with deep cleaned text but same performance
- Comparison with Louvain weaker in general, especially in modularity equivalent NMI = relevant topics lower modularity = the documents that identify the topics are less distinguishable higher complexity involved less balanced topics, but generally meaningful topics correlated with Louvain

Sentiment analysis

adding useful insights to your data

Socio-psychological markers beyond simple sentiment

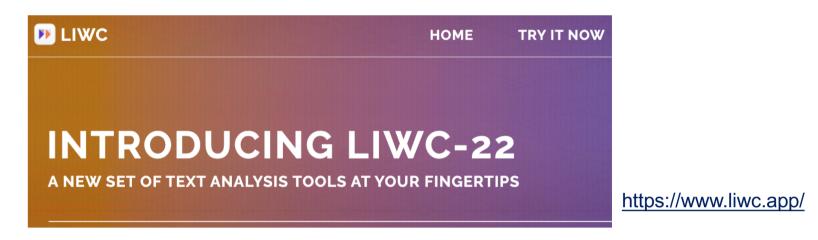
Sentiment – e.g., positive, negative, neutral enduring cognitive content that defines the affective state

- Emotion e.g., anger, disgust, fear, joy, sadness intense affective state of short duration with a precise cause
- Ingroup bias e.g., use of pronouns I, we, us tendency to favor one's own group over other groups
- Outgroup bias e.g., use of pronoun they tendency to dislike members of groups we don't identify with
- Agency e.g., use of action verbs do, take, make perception that an individual is able to contribute to/a group can collectively reach a social change

UNIVERSITÀ DEGLI STUDI DI PADOVA LIWC linguistic inquiry and word count Tausczik. Pennebaker. "The psychological meaning of words:

Tausczik, Pennebaker. "The psychological meaning of words: LIWC and computerized text analysis methods." (2010)

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=79d2494cc10a9633c42115df84bb74ed447080f6



- word count (or dictionary) methodology
- over 60 dictionaries coded and validated for their accuracy in reflecting psychological content
- □ simplicity of implementation and usage
- state-of-the-art in psychology
- □ one licence available in the instructor's PC ☺

LIWC categories ingroup and outgroup

Category	Examples	Words in Category	Psychological Correlates	
Linguistic processes Word count			Talkativeness, verbal fluency	
Words/sentence			Verbal fluency, cognitive complexity	
Dictionary words	(Percentage of all words captured by the program)		Informal, nontechnical language	
Words >6 letters	(Percentage of all words longer than 6 letters)		Education, social class	
Total function words	0	464		
Total pronouns	l, them, itself	116	Informal, personal	
Personal pronouns	l, them, her	70	Personal, social	
First-person singular	l, me, mine	12	Honest, depressed, low status, personal, emotional, informal	
First-person plural	We, us, our	12	Detached, high status, socially connected to group (sometimes)	
Second person	You, your, thou	20	Social, elevated status	
Third-person singular	She, her, him	17		group
Third-person plural	They, their, they'd	10	Social interests, out-group awareness (sometimes)	100

goal orientation, aggression, social concern, emotionality

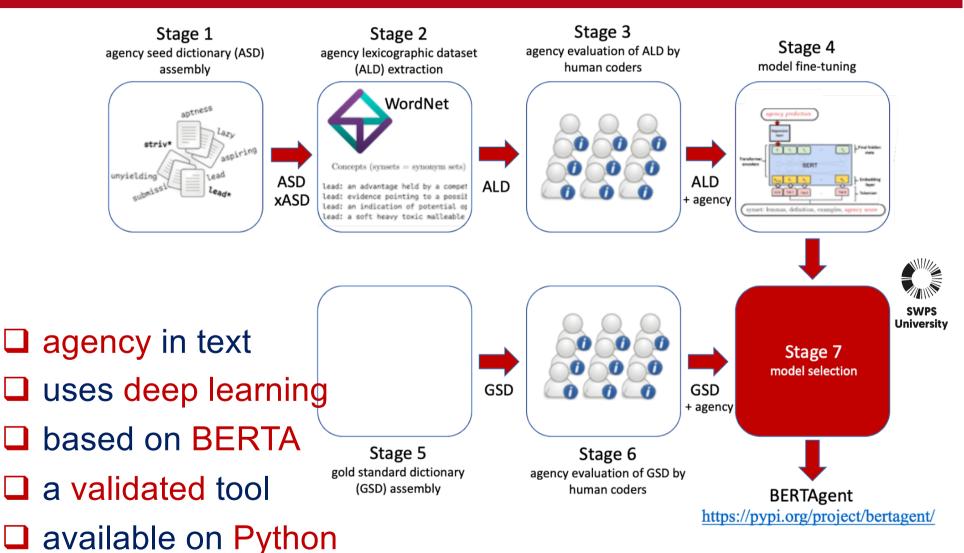
Category	Examples	Words in Category	Psychological Correlates	
Indefinite pronouns	lt, it's, those	46		
Articles	A, an, the	3	Use of concrete nouns, interest in objects and things	
Common verbs	Walk, went, see	383	5	
Auxiliary verbs	Am, will, have	144	Informal, passive voice	focus on
Past tense	Went, ran, had	145		past, present
Present tense	ls, does, hear	169	Living in the here and now	or future
Future tense	Will, gonna	48	Future and goal oriented	
Adverbs	Very, really, quickly	69	5	
Prepositions	To, with, above	60	Education, concern with precision	
Conjunctions	And, but, whereas	28		
Negations	No, not, never	57	Inhibition	
Quantifiers	Few, many, much	89		
Numbers	Second, thousand	34		
Swear words	Damn, piss, fuck	53	Informal, aggression,	
Psychological processes				
Social processes	Mate, talk, they, child	455	Social concerns, social support	
Family	Daughter, husband	64		
Friends	Buddy, friend, neighbor	37		
Humans	Adult, baby, boy	61		
Affective processes	Happy, cried, abandon	915	Emotionality	10 ⁻

LIWC categories a full list

WC	Analytic	Clout	Authentic	Tone	WPS	Sixltr	Dic	function	pronoun
ppron	i	we	you	shehe	they	ipron	article	prep	auxverb
adverb	conj	negate	verb	adj	compare	interrog	number	quant	affect
posemo	negemo	anx	anger	sad	social	family	friend	female	male
insight	cause	discrep	tentat	certain	differ	percept	see	hear	feel
bio	body	health	sexual	ingest	drives	affiliation	achieve	power	reward
risk	focus past	focus present	focus future	relativ	motion	space	time	work	leisure
home	money	relig	death	informal	swear	netspeak	assent	nonflu	filler
AllPunc	Period	Comma	Colon	SemiC	QMark	Exclam	Dash	Quote	Apostro
Parenth	cogproc								

Choose the ones of interest to your project!

Nikadon et al., «BERTAgent: A novel tool to quantify agency in textual data,» (2023) <u>https://psyarxiv.com/qw6u3</u>



Validation of BERTAgent

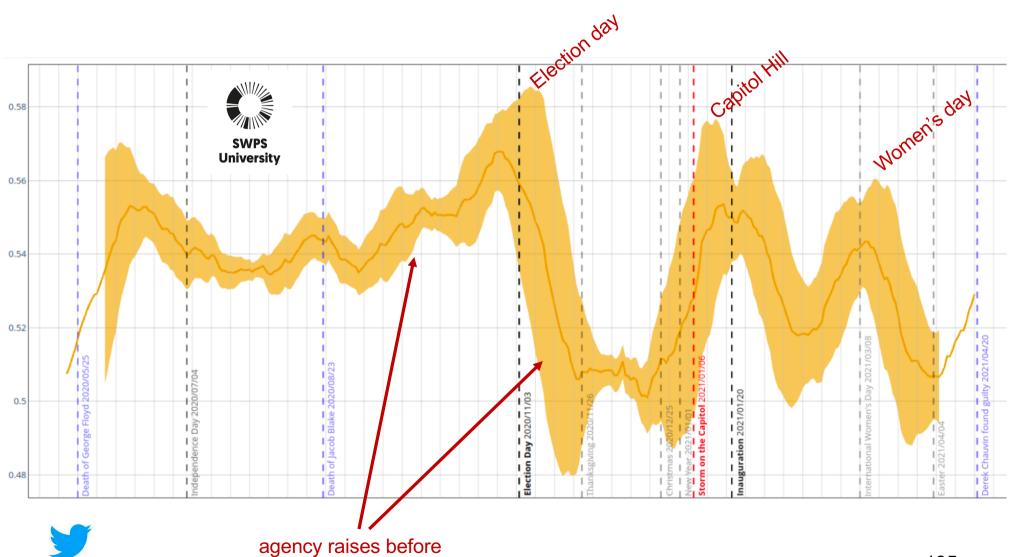
Università degli Studi di Padova

deep learning wins versus DWC = dictionary word count

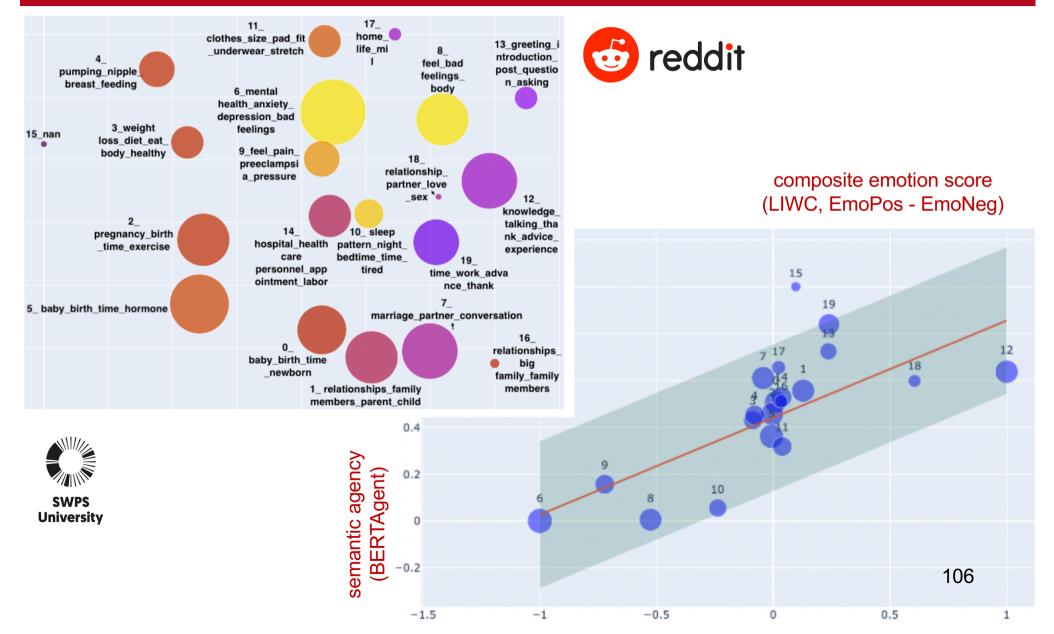
	Variable	М	SD	1	2	3	4	5	6	7	8
(1. HumEval	0.12	1.54								\bigcirc
	2. PietA	0.05	0.05	.17** [.06, .28]		-1.25	0.28	0.05	5.35**	-1.78	-10.95**
Human evaluatior	3. PietB	0.02	0.03	.25** [.14, .35]	.40** [.30, .49]		1.27	1.16	6.58**	-0.70	-10.00**
	4. PietC	0.05	0.05	.17** [.06, .28]	. 99** [.99, 1.00]	.40** [.30, .49]		0.03	5.34**	-1.80	-10.93**
	5. NicoPos	0.03	0.04	.17 ** [.05, .27]	.18 ** [.07, .29]	.23** [.12, .34]	.17 ** [.06, .28]		5.49**	-3.81**	-11.08**
	6. NicoNeg	0.01	0.03	28**	10	01	10	03		-5.73**	-13.40**
				[38, 17]	[21, .01]	[12, .11]	[21, .02]	[14, .09]			\ /
	7. NicoCom	0.02	0.05	.30**	.20**	.19**	.19**	.82**	60**		-10.38**
		0.00	0.25	[.19, .40]	[.09, .31]	[.08, .30]	[.08, .30]	[.78, .85]	[67,52]	10**	\bigvee
(8. BATot	0.09	0.35	.78** [.73, <i>8</i> 2]	.21** [.10, .31]	.24** [.13, .34]	.20** [.09, .31]	.22** [.11, .33]	42** [51,33]	.42** [.33, .51]	1
BEF	RTAgent			orrelation in evalua	n with		#	correl	Z-statisti ation is st relevant t	cs: atisticall	

Twitter, 2020-2021 by Jan Nikadon @ swps

R R

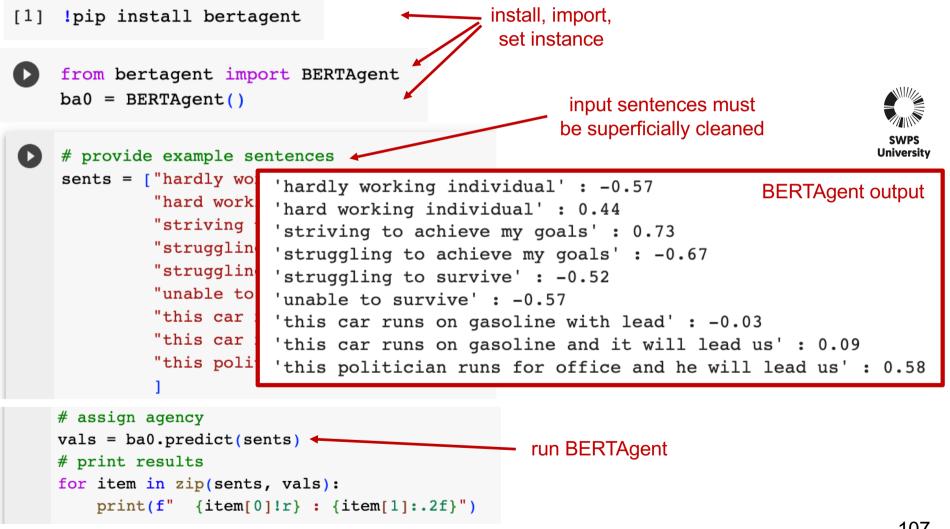


Agency in postpartum depression Reddit Posts 2021 by Selen Arslan @ unipd/swps



BERTAgent in Python

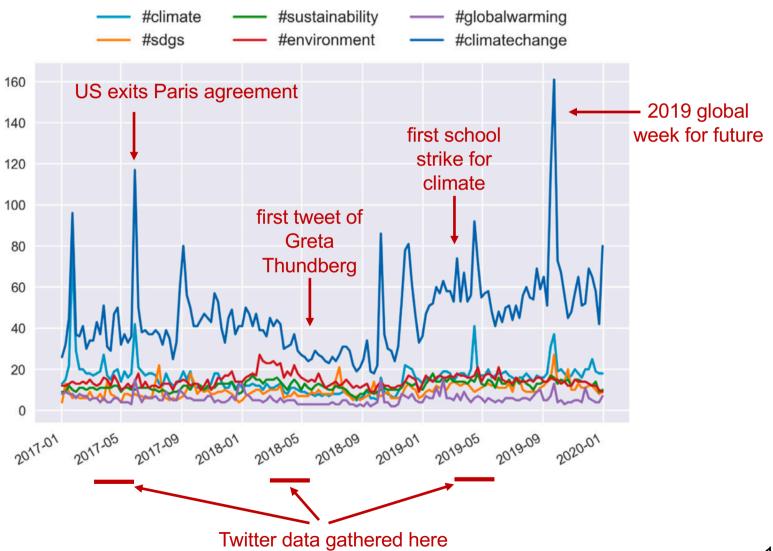
Free software: GNU General Public License v3 PyPi: <u>https://pypi.org/project/bertagent/</u>



Using sentiment analysis

an overview on how it can be useful in your projects

on Twitter in 2017, 2018, 2019



UNIVERSITÀ DEGLI STUDI DI PADOVA

Socio-psychological linguistic markers a view on the entire tweets corpus

2017 2018 2019

Statistically relevant increase by Student/Welch t-test

\equiv Student's *t*-test

Article Talk

From Wikipedia, the free encyclopedia

A *t*-test is a type of statistical analysis used to compare the averages of two groups and determine whether the differences between them are more likely to arise from random chance. It is any statistical hypothesis test in which the test statistic follows a Student's *t*-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known (typically, the scaling term is unknown and is therefore a nuisance parameter). When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's *t* distribution. The *t*-test's most common application is to test whether the means of two populations are different.

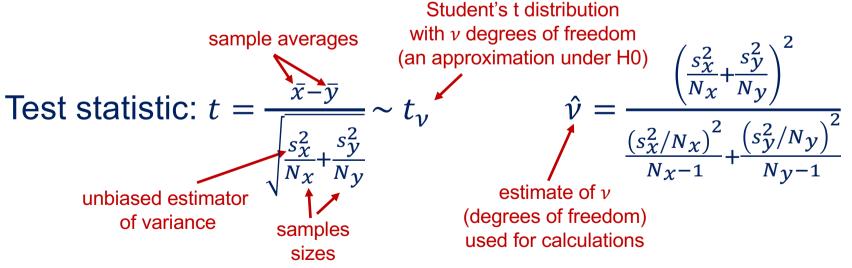
Student/Welch t-test hypothesis and t value

Assumption:

the **average** values of the two populations being compared should follow a **normal distribution** (e.g., with many samples)

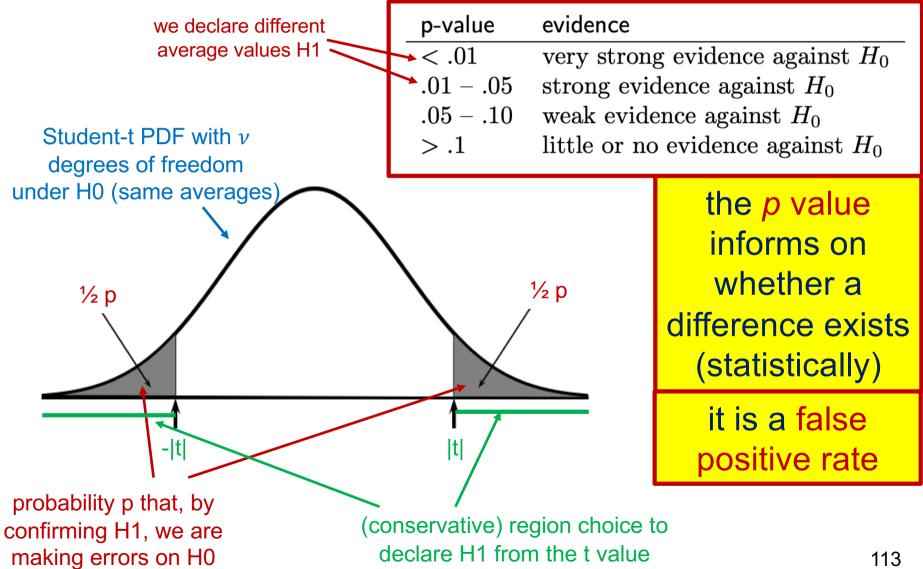
Hypothesis (to be tested):

H0 - the two sets have equal average value, $m_x = m_y$ H1 - the two sets have different average value, $m_x \neq m_y$



UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Student/Welch t-test p value = probability of error under H0

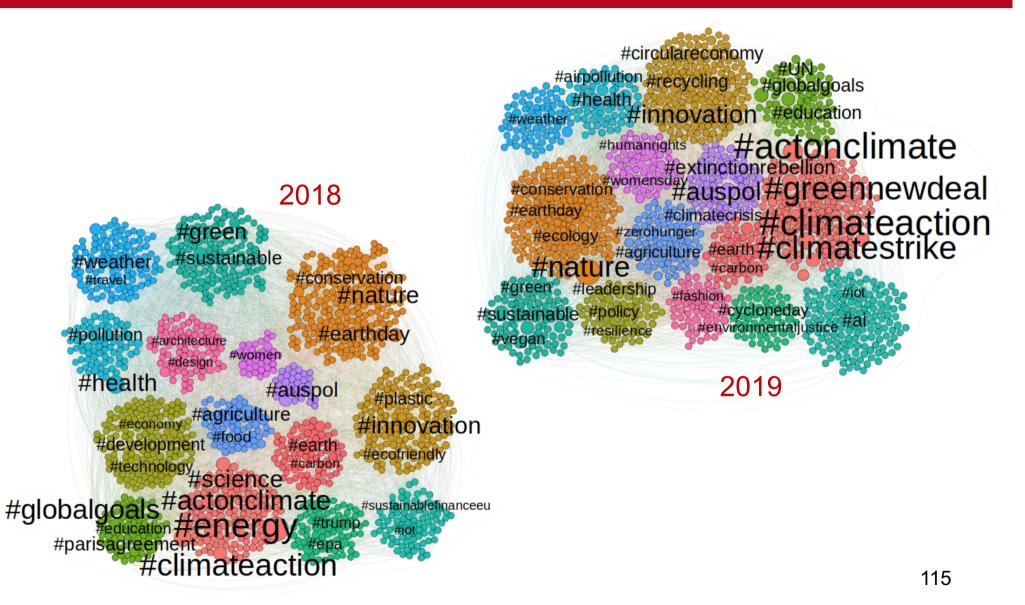


Cohen's d-value evaluating effect sizes

Cohen's
$$d = \frac{\bar{x} - \bar{y}}{\sqrt{a \, s_x^2 + (1 - a) \, s_y^2}}$$
 $a = \frac{N_x - 1}{N_x + N_y - 2}$

	Relative size	Effect size	the <i>d</i> value informs on the size of the effect
we confirm H1		0.0	
	Small	0.2	
	Medium	0.5	
	Large	0.8	
		1.4	

Topics in #climateaction on Twitter in 2017, 2018, 2019

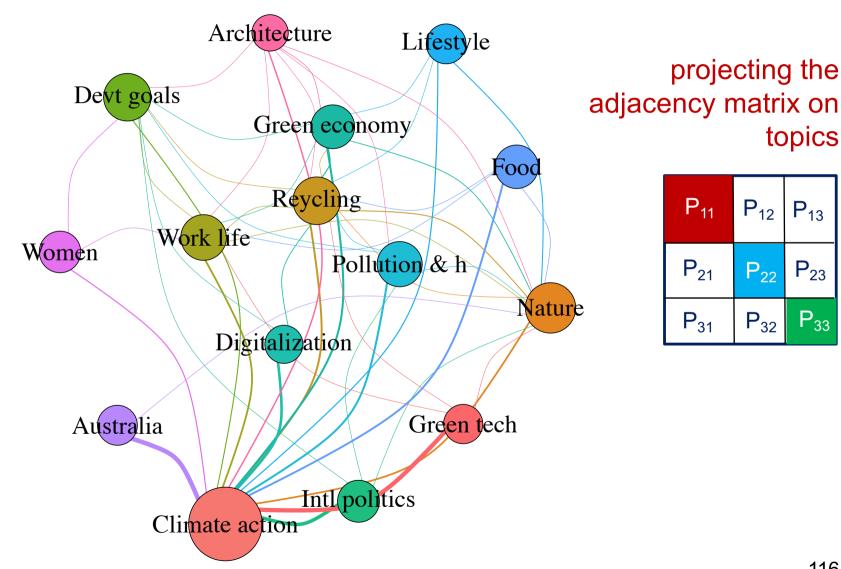


Topics interdependencies

UNIVERSITÀ

DEGLI STUDI

DI PADOVA



1.5 -

1.0 -

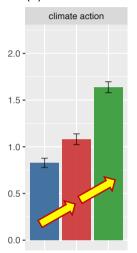
0.5 -

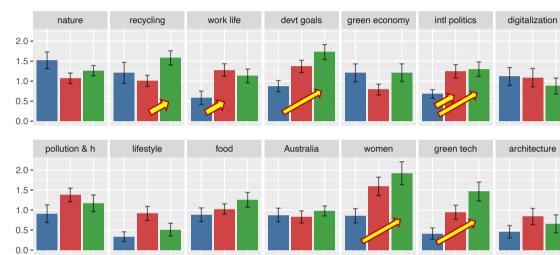
0.0

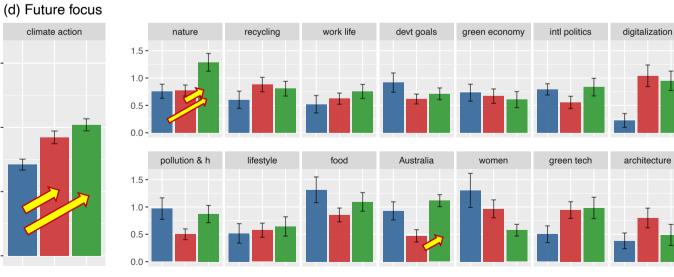
(b) We

Università degli Studi di Padova

Socio-psychological linguistic markers a view inside topics







relevant statistically changes of we-future only in the climate action community

2017 📕 2018 📕 2019

117

Wrap-up on topic detection

What available tools should be used Louvain & BERTopic compare their performance through NMI, modularity, etc. LIWC & BERTAgent to enrich your analysis under a socio-psycological lens

What available tools should NOT be used InfoMap, NMF & LDA they show poor performance

What would be nice to see implemented soft Louvain made fast performance of BigCLAM and SMBs NFTM VAE and its performance