
A distributed pub/sub
platform: Apache Kafka

(Part 2)

Prof. Carlo Ferrari
Michele Stecca, Ph.D.

• Each broker holds a number of partitions and each of these partitions can be
either a leader or a replica for a topic. Thus, each partition has one leader
and multiple in-sync replicas (ISR).

• All writes and reads to a topic go through the leader and the leader
coordinates updating replicas with new data.

Kafka partitions (Replication)

Producers write to a single leader, this provides a means of load balancing
production so that each write can be serviced by a separate broker and
machine.

Kafka partitions (Producers)

If a leader fails, a replica takes over as the new leader.

Kafka partitions (Fault Tolerance)

Unclean election: What if they all die?

There are two behaviors that could be implemented:

• Wait for a replica in the ISR to come back to life and
choose this replica as the leader (hopefully it still
has all its data).

• Choose the first replica (not necessarily in the ISR)
that comes back to life as the leader.

This is a simple tradeoff between availability and
consistency.

Producer guarantees

‘acks=0’
With a value of 0, the producer won’t even wait for a response from the broker.
It immediately considers the write successful the moment the record
is sent out.

‘acks=1’
With a setting of 1, the producer will consider the write successful when
the leader receives the record. The leader will immediately
respond the moment it receives the record.

‘acks=all’
When set to all, the producer will consider the write successful when all
of the in-sync replicas receive the record. This is achieved by the leader
broker being smart as to when it responds to the request — it’ll send back a
response once all the in-sync replicas receive the record themselves.

Producer guarantees

The Publish primitive

batch.size
• The producer config property batch.size defaults to 16K bytes.
• This is used by the Producer to batch records.
• Batches are per partition.

linger.ms
• You can set this so that the Producer will wait this long before sending if

batch size not exceeded.
• This setting allows the Producer to group together any records that arrive

before they can be sent into a batch.

compression.type
• Setting this allows the producer to compresses request data.
• This setting can be set to none, gzip, snappy, or lz4.

Some configuration parameters

Push approach
• Flow control needs to be explicit to deal with diverse

consumers. Different consumers will consume at different
rates, so the broker needs to be aware of this.

• A push-based system must choose to either send a request
immediately or accumulate more data and then send it later
without knowledge of whether the downstream consumer
will be able to immediately process it.

• I t is possible to use a backoff protocol l ike additive
increase/multiplicative decrease, widely known for its use in
TCP congestion control, to optimize utilization.

Consumers: Pull vs. Push

Pull approach

• Flow control is implicit. Consumers simply go at their own
pace, and the server doesn’t need to track anything.

• Complex tuning to avoid “busy waiting ” and network
inefficiency

• In the end: Kafka clients tend to be “thick” and have a lot of
complexity. That is, they do a lot because the broker is
designed to be simple.

Consumers: Pull vs. Push

The End-2-End path

Log Compaction

Consumers: Delivery guarantees

Auto commit, using property enable.auto.commit. In this case, Kafka shifts offset
as soon as it sends batched messages to Consumer and doesn’t take care of
whether Consumer handled messages or not. It may lead to missing messages.

Manual commit, we ask Kafka to change offset explicitly as soon as we are sure
that Consumer handles all income messages. In this system, we may get
duplicate messages, but if our Consumers handle all messages in an idempotent
way it’s not an issue at all.

Consumers: Updating the Offset

How long do I want to store my data?

• How long (default: 1 week)
• Set globally vs per topic
• Business decision (cost factor)

Data Retention Policy

Log implementation on File System

Log implementation on File System

Log implementation on File System

https://medium.com/event-driven-utopia/understanding-kafka-topic-partitions-ae40f80552e8

https://sookocheff.com/post/kafka/kafka-in-a-nutshell/

https://medium.com/geekculture/essential-kafka-overview-with-pictures-bffd84c7f6ac

https://www.baeldung.com/ops/kafka-docker-setup

http://cloudurable.com/blog/kafka-tutorial-kafka-producer-advanced-java-examples/index.html

References

