A distributed pub/sub
platform: Apache Kafka
(Part 1)

Prof. Carlo Ferrari
Michele Stecca, Ph.D.

Request-Response model

Request/Response
Request
Qrrrrssnsnnnnnnn R &
C T T P T PP L PP PT PP PT PP TT TP PIT PP ILY o
Response

Server Client

Request-Response: some problems

Bad for multiple receivers

Tightly coupled

Client is waiting for response

Web Service chaining

Event-driven model

Evented
= 4 b LY .¥ l =esss
RRRLLTTT Distribution ---------- »
. Layer
M .ll"''
N # ol E
Long-Lived

Generators Connections Consumers

Event-driven model: some considerations

* Loosely coupled

 Works even though client(s) is(are) offline

 Message delivery issues

Software platforms for event-driven apps

2
<3

ORACLE

WebLogic Server

ACTIVEMQ

Comfluent cloud -7/
ZXPULSAR J,‘P\rav,eﬁgag/

ORACLE

#1a amazon @ & aiven

"'-""' KINESIS

Event Hub Cloud Service

solacee

YeokK

—
Oracle Cloud Infrastructure Streaming _
(===

= A E t Huk
Oracle Advanced Queuing e rent TR

Event-driven model

Some use cases:
* Managing “Events”
* Anything happened (or didn’t happen)
* A change in the state
* A condition that triggers a notification
* |oT (Internet of Things) data source
* Change Data Capture (CDC) for databases
* Near real-time data processing

Why Web APIs?

Web APIs as “an internal bus” for Microservices

Mobile [} Q
Application Browser
REST
API Web
API Web
Gateway Application

REST
API

Inventory
Services

//7

REST
API

Delivery
Services

REST
API

Account
Services

!

3 3
Delivery Account
DB DB DB
_,crg;telly

Inventory

Point to Point Pattern

Microservice | Microservice

==

e A point-to-point channel delivers a message to exactly one of the
consumers that is reading from the channel.

e Each service depends on other services directly.
e Services are directly coupled to each other APIs.

e Services know about and understand their dependencies.

Source: https://medium.com/@knoldus/distributed-messaging-patterns-reactive-architecture-c7f0ce989fe0

Why event-driven platforms?

Event-driven (a.k.a., Message Queue, Pub/Sub) as “an internal bus” for
Microservices

Publisher Microservices

1 ™

\ I 7
] \

Messages sent
and received |
between
MiCroservices

Pub/Sub
Message Broker

|

:_:-'. = i ";.'.__ : & # £ :-_.
Event handlers b 1 h
§ L & | b
I]I'-EI-EESE '-:-I - I'. '-:' — .I":.' E o8 o .:. g “..:-
published ~1 ; . ; \ "' /
event ; b F | b F

Subscriber Microservices

Publish/Subscribe Pattern

» Services publish messages to a common message bus.

Micmsarvice‘

l

Microservice p———————ypp»

= —

Microservice

e Other services subscribe to the messages.

» The publishing service has no knowledge of the subscribing services.
» Subscribing services also has no knowledge of the publishing services.

» Services are completely decoupled as they have no knowledge of each

other.

» Services are coupled to only the message format.

Apache Kafka

Distributed publish-subscribe messaging system

Designed for processing of real time activity stream
data (log, metrics, collections, social media
streams,.....)

Does not use JMS (Java Messaging Service) APl and
standards

Kafka maintains feeds of message in topics
Initially developed at Linkedin, then part of Apache
Current commercial version by Confluent

§g kafka

Main Components

* A Producer is an entity/application that publishes data to a Kafka cluster,

which is made up of brokers.

* A Broker is responsible for receiving and storing the data when a

producer publishes.
* A Consumer then consumes data from a broker at a specified offset, i.e.

position.

APACHE KAFKA

—{ CLUSTER |—

(PRODUCER)———
(_ PRODUCER)——
(PRODUCER)——— > (_ CONSUMER)

———> (_ CONSUMER)

——> (_ CONSUMER)

d3axodsd
d3axoda
d3axodd

Pub/Sub paradigm

Broker(s)
Topic 1
Producer \ / Consumer
Producer /
Topic 2
Producer / \ Consumer

Key Concepts

A Topic is a category/feed name to which records are stored and
published.

Each Topic is divided in partitions.

Each partition is an ordered, immutable sequence of messages that is
continually appended to.

The message order is only guarantee inside a partition (i.e., the FIFO
property is only guarantee inside a partition).

A message in a partition is identified by a sequence number called offset.

Consumers subscribes to topics.

Consumers with different group-id receives all messages of the
topics they subscribe to. They consume the messages at their own

speed.
Consumer offsets are persisted by Kafka with a commit/auto-
commit mechanism.

WWWWW

Log Anatomy — Producer side

Partition ©

Partition 1

Partition 2

| v :

Z :]—:—f - =

? V) U7]
Ui A 77
B |

\ \/ New

Writes

A topic in Kafka is broken into multiple partitions

Partitions are the way that Kafka provides scalability
and redundancy

Log Anatomy — Consumer side

Partition
LIl DI4||B116¢ |l 7T
= 1Jﬂ
)7\ \H
Consumer-1 Consumer-2
(offset 3) (offset 5)

Eoch consumer has s own View about the partition,

Kafka Messages

A message contains
- key-value pair (the key is optional)
- timestamp
- headers (optional)

All data is stored in Kafka as byte arrays
Producer provides serializers to convert the
key and value to byte arrays

Key and value can be any data type

Producers

The partitioning strategy is specified by the Producer

— Default strategy is a hash of the message key
hash(key) % number _of partitions

— If a key is not specified, messages are sent to
Partitions on a round-robin basis

— Developers can provide a custom partitioner class

Consumers and Consumer Groups

Consumers sharing the same group-id will be assigned to one (or
several) partition of the topics they subscribe. They only receive
messages from their partitions. So a constraint appears here: the

number of partitions in a topic gives the maximum number of parallel
consumers.

The assignment of partitions to consumer can be automatic and
performed by Kafka (through Zookeeper). If a consumer stops polling
or is too slow, a process call “re-balancing” is performed and the
partitions are re-assigned to other consumers.

Consumers and Consumer Groups

When a consumer group consumes the partitions of
a topic, Katka makes sure that each partition is

COI]SUI’I]@C]. by exactly one consumer in the group.

Consumers and Consumer Groups

Server 1

Kafka Cluster

PO

P3

C1 C2

-Consumer Group A-

A
C3 C4 C5 C6

——Consumer Group B——

Consumers and Consumer Groups

Topic with 3 partitions

| > 3

________________ =
|
|
|

V.74 |

7

I'a"ing consumer

e e e e e e e e e e e e e e e e J

Consumer &roup

