
A distributed pub/sub 
platform: Apache Kafka

(Part 1)

Prof. Carlo Ferrari
Michele Stecca, Ph.D.



Request-Response model



Request-Response: some problems

• Bad for multiple receivers

• Tightly coupled

• Client is waiting for response

• Web Service chaining



Event-driven model



Event-driven model: some considerations

• Loosely coupled

• Works even though client(s) is(are) offline

• Message delivery issues



Software platforms for event-driven apps



Some use cases:
• Managing “Events”

• Anything happened (or didn’t happen)
• A change in the state
• A condition that triggers a notification

• IoT (Internet of Things) data source
• Change Data Capture (CDC) for databases
• Near real-time data processing
• ...

Event-driven model



Why Web APIs?

Web APIs as “an internal bus” for Microservices



Source: https://medium.com/@knoldus/distributed-messaging-patterns-reactive-architecture-c7f0ce989fe0



Why event-driven platforms?

Event-driven (a.k.a., Message Queue, Pub/Sub) as “an internal bus” for 
Microservices





• Distributed publish-subscribe messaging system
• Designed for processing of real time activity stream 

data (log, metrics, collections, social media 
streams,…..)

• Does not use JMS (Java Messaging Service) API and 
standards

• Kafka maintains feeds of message in topics
• Initially developed at Linkedin, then part of Apache
• Current commercial version by Confluent

Apache Kafka



• A Producer is an entity/application that publishes data to a Kafka cluster, 

which is made up of brokers.

• A Broker is responsible for receiving and storing the data when a 

producer publishes.

• A Consumer then consumes data from a broker at a specified offset, i.e. 

position.

Main Components



Pub/Sub paradigm



• A Topic is a category/feed name to which records are stored and 
published.

• Each Topic is divided in partitions.
• Each partition is an ordered, immutable sequence of messages that is 

continually appended to.
• The message order is only guarantee inside a partition (i.e., the FIFO 

property is only guarantee inside a partition).
• A message in a partition is identified by a sequence number called offset.

• Consumers subscribes to topics.
• Consumers with different group-id receives all messages of the 

topics they subscribe to. They consume the messages at their own 
speed.

• Consumer offsets are persisted by Kafka with a commit/auto-
commit mechanism.

Key Concepts



Log Anatomy



Partitions are the way that Kafka provides scalability 
and redundancy

Log Anatomy – Producer side



Log Anatomy – Consumer side



• A message contains 
- key-value pair (the key is optional)
- timestamp
- headers (optional)

• All data is stored in Kafka as byte arrays
• Producer provides serializers to convert the 

key and value to byte arrays
• Key and value can be any data type

Kafka Messages



The partitioning strategy is specified by the Producer

– Default strategy is a hash of the message key
hash(key) % number_of_partitions

– If a key is not specified, messages are sent to 
Partitions on a round-robin basis

– Developers can provide a custom partitioner class

Producers



Consumers sharing the same group-id will be assigned to one (or 
several) partition of the topics they subscribe. They only receive 
messages from their partitions. So a constraint appears here: the 
number of partitions in a topic gives the maximum number of parallel 
consumers.

The assignment of partitions to consumer can be automatic and 
performed by Kafka (through Zookeeper). If a consumer stops polling 
or is too slow, a process call “re-balancing” is performed and the 
partitions are re-assigned to other consumers.

Consumers and Consumer Groups



Consumers and Consumer Groups



Consumers and Consumer Groups



Consumers and Consumer Groups


