

Dinamica del punto materiale

Forze e Interazioni

Il moto di un corpo è influenzato dalle sue interazioni con l'ambiente circostante

Le interazioni possono avvenire:

a contatto (interazioni macroscopiche tra corpi estesi) oppure

a distanza (interazioni fondamentali a livello microscopico)

Le interazioni vengono rappresentate tramite le **FORZE**

Sono **grandezze vettoriali** (applicate), che agiscono secondo precise direzioni, con verso e intensità (modulo) assegnati

Tipi di Forze

FORZE Fondamentali

Interazione gravitazionale, interazione elettromagnetica, interazioni nucleari (debole e forte)

Agiscono a distanza (senza necessità di contatto)
Possono agire a livello microscopico (nuclei, atomi, particelle)
ma anche a livello macroscopico (corpi estesi)

FORZE macroscopiche

Forza peso, forza elastica, forza di attrito, forze vincolari ecc...

In genere agiscono a contatto (tranne il peso) e a livello macroscopico (corpi estesi o parti di essi)
Sono il risultato di molte interazioni microscopiche

Le leggi della dinamica

Isaac Newton 1642-1727

Galileo Galilei 1564-1642

Le leggi della dinamica sono state intuite da Galileo e formalizzate da Newton

Le tre Leggi della dinamica

1 – primo principio o principio d'inerzia

2- 2a legge della dinamica (legge di Newton)

F = ma

3 – Terzo principio o **Principio di azione e reazione**

La prima legge della dinamica

Principio di inerzia (Galileo): un punto **non soggetto a forze** o soggetto a **forze con risultante nulla** non subisce cambiamenti di velocità:

se è in quiete, **resta in quiete** se è in moto, questo è **rettilineo e uniforme**

Il principio d'inerzia fornisce la definizione di Sistema di riferimento inerziale: Si dice Sistema inerziale ogni sistema di riferimento in cui valga sempre il principio d'inerzia. Dato un sistema inerziale, ogni sistema di riferimento in moto rettilineo uniforme rispetto a questo è a sua volta inerziale.

L'equilibrio delle forze

Un corpo è in equilibrio quando la risultante delle forze applicate è pari a zero.

- Se il punto è in movimento prosegue con moto rettilineo uniforme
- Se è fermo, resta in quiete

$$\vec{R} = 0 \Rightarrow R_x = R_v = R_z = 0$$

$$\Rightarrow \sum_{i=1}^{n} F_{ix} = \sum_{i=1}^{n} F_{iy} = \sum_{i=1}^{n} F_{iz} = 0$$

La seconda legge di Newton

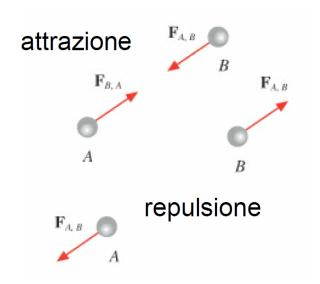
Legge fondamentale della dinamica del punto:

$$\vec{F} = m \, \vec{a} = m \, \frac{d\vec{v}}{dt}$$

- legame quantitativo tra forza e stato di moto
- la forza determina la variazione della velocità
- m è la massa inerziale del punto
- \implies se $\vec{v} = \cos t$, $\vec{a} = 0$, $\vec{F} = 0$ e viceversa,

Unita' di misura: [F] = kg m/s² = N (Newton)

la seconda legge contiene la prima

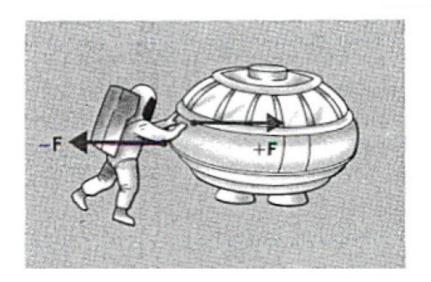

legge vettoriale (prove sperimentali)

Uso della legge:

- 1. Note \vec{F} e m si determina \vec{a} . Integrando (note le condizioni iniziali) si hanno \vec{v} e \vec{r} forza \rightarrow moto
- 2. Noto il moto (\vec{r}), derivando si ottiene \vec{a} e, nota la massa si ottiene \vec{F} moto \rightarrow forza

La terza legge della dinamica

Principio di azione e reazione


Se un corpo A esercita una forza \vec{F} su un corpo B, questo reagisce esercitando una forza— \vec{F} sul corpo A (stessa direzione, stesso modulo, verso opposto, stessa retta di azione).

NB!!!: Le due forze agiscono su due corpi diversi

Azione e reazione

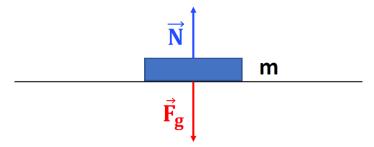
Le due forze sono identiche ma vengono esercitate su corpi diversi, con masse differenti. Quindi l'effetto indotto da queste due forze identiche può essere sensibilmente differente.

Esempio

$$F = 36 \text{ N}$$

 $m_{\text{astronave}} = 11000 \text{ kg}$
 $m_{\text{uomo}} = 92 \text{ kg}$

$$a_{astronave} = \frac{36}{11000} = 0.0033 \quad m/s^2$$


$$a_{uomo} = \frac{-36}{92} = -0.39 \quad m/s^2$$

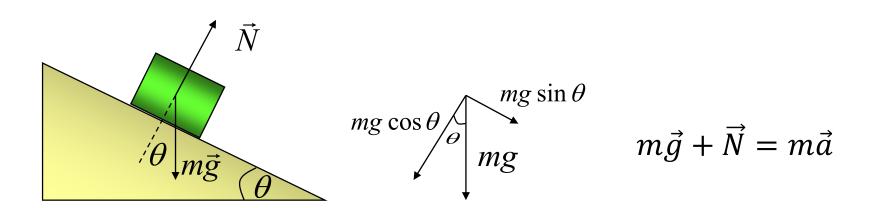
Reazione vincolare

Forza normale

È la forza con cui una superficie si oppone alla deformazione causata da un corpo appoggiato su di essa. La forza normale \vec{N} è sempre \bot alla superficie, è anche detta reazione vincolare della superficie. \vec{N} è applicata al corpo m.

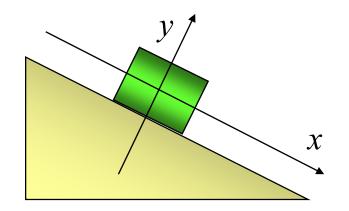
Se l'accelerazione a_v del corpo m è nulla si ottiene

$$F_{ris_y} = ma_y \Rightarrow N - F_g = ma_y$$


$$a_y = 0 \Rightarrow N - mg = 0$$

$$N = mg$$

Forze in più dimensioni


Vediamo come comportarci quando le forze e i sistemi a cui sono applicate non sono descrivibili in una sola dimensione.

Piano inclinato

E' conveniente utilizzare un sistema di riferimento solidale al piano

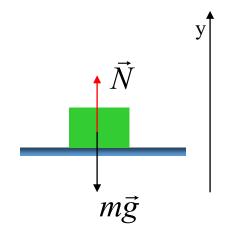
$$x) mg \sin \theta = ma_x$$

$$y) N - mg \cos \theta = 0$$

$$a_x = g \sin \theta$$

La componente del peso ortogonale al piano si annulla con la reazione vincolare

Se inizialmente il corpo scende


$$|v_x > 0, \vec{v}||\vec{a}|$$
 e concorde (moto unif. acc.)

Se inizialmente il corpo sale

$$|v_x| < 0$$
, $\vec{v} || \vec{a}|$ e discorde (moto unif. decel.)

La sensazione di peso

La piattaforma si muove verticalmente lungo y con accelerazione a.

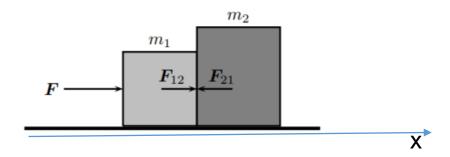
L'accelerazione del corpo è quella della piattaforma

Seconda legge di Newton: $\sum_{i} \vec{F}_{i} = \vec{N} + m\vec{g} = m\vec{a}$

$$\vec{N} = m(\vec{a} - \vec{g}) = m(\vec{a} - g(-\vec{u}_v)) = m(\vec{a} + g\vec{u}_v)$$
 N ci dà la sensazione di peso

i)
$$\vec{a}$$
 $N = m(a+g) > mg$

ii)
$$\vec{a}$$
 $|a| < g, N = m(g - a) < mg$


iii)
$$|a| = g, N = 0$$
 Sensazione di assenza di peso

iv)
$$\vec{a} > g, N = 0 \implies \frac{\text{https://www.youtube.com/watch?v=arebqikwGUw}}{a}$$

Terzo principio della dinamica

Due casse sono poste a contatto su di un piano orizzontale; le loro masse sono m_1 = 2.4 kg e m_2 = 3.6 kg; le casse sono messe in movimento da una forza di modulo F = 12 N che agisce sulla prima cassa; determinare l'intensità F_c della forza di contatto agente fra le casse e la loro accelerazione.

Le due casse interagiscono vicendevolmente con due forze F_{12} ed F_{21} opposte che hanno lo stesso modulo, indichiamo quindi $||F_{12}|| = ||F_{21}|| = F_c$, applicata alle due casse.

$$\begin{cases} F_c = m_2 a \\ F - F_c = m_1 a \end{cases}$$

 $\begin{cases} F_c = m_2 a \end{cases}$ sono le equazioni per i due corpi che si muoveranno insieme con la stessa accelerazione

ricavando l'accelerazione dalla prima equazione e sostituendola nella seconda si ottiene che:

$$F - F_c = \frac{m_1}{m_2} F_c \longrightarrow F_c = \frac{m_2}{m_1 + m_2} F = 7.2 \,\text{N}$$

$$a = \frac{F_c}{m_2} = 2.0 \,\mathrm{m/s^2}.$$